基于二氧化钛/氧化锌光催化剂的新型能量储存和转换体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了新型光电储能体系Ni(OH)2/TiO2, NiOOH/TiO2, CoOOH/ZnO复合膜电极的制备方法,并测试了其性能。
     我们用阳极氧化法制备的Ti箔上的TiO2纳米管阵列在500WXe灯下(5mWcm-2),光电流是10-4A。在同样的条件下,用水热法在FTO导电玻璃上制备的TiO2纳米线阵列光电流是10-3A。虽然我们将Ti02纳米管在碱液中进行了电化学还原,一定程度上提高了其导电性,但是可惜的是并没有能提高其光活性。
     我们通过调整合成条件,将TiO2纳米线阵列的密度调整到最合适沉积Ni(OH)2的值。我们经过反复试验发现,以饱和食盐水和盐酸各7.5ml,钛酸四丁酯0.15ml溶液为前驱溶液,160℃水热15h可以得到密度最合适的TiO2纳米线阵列。
     以上述Ti02纳米线阵列为基体,我们用阴极电沉积的方法将Ni(OH)2沉积到基体上,制备了Ni(OH)2/TiO2复合膜电极。这种复合膜电极在光照下会由淡绿色变为黑色(Ni(OH)2被氧化为NiOOH),在光照过程中我们将复合膜电极与Pt对电极短接,可以有效地将TiO2中的光生电子由外电路转移到对电极上,从而降低光生电子空穴的复合,而且我们将复合膜电极和对电极分开放置,以盐桥连通,避免了副产物如H2O2等把NiOOH还原,经计算这种复合膜电极的IPCE可以达到6.8%,光照1h后在1μA的电流下放电可以放10000s以上,并可以进行反复光充电-放电。
     在光电储能体系中,光活性材料和储能材料的结合非常重要,而光沉积方法相比于传统的电沉积就方法,不仅可以使储能材料与光活性材料紧密结合,而且会使储能材料沉积在光活性位点上,提高光活性的利用率。我们正是基于这一思路,用光沉积的方法制备了NiOOH/TiO2复合膜电极,我们在光沉积液中加入不同量的SDS,一方面可以降低表面张力,另一方面SDS可以作为模板,使沉积的NiOOH片更厚,稳定性更好,SDS浓度在0-0.3wt%时光沉积的NiOOH都是交联的片状结构,当SDS浓度达到1.5wt%时,沉积的NiOOH是致密的薄膜。经过试验测试,我们发现SDS浓度是0.3wt%时,光沉积5h后得到的NiOOH/TiO2复合膜电极光电性能最好,IPCE可以达到8%。而且NiOOH/TiO2复合膜电极不仅可以用于放电,还能用于甲醛气体的探测与降解,可以在短时间内将甲醛浓度降解到人体可以接受的浓度,并且可以反复使用。
     我们用光沉积方法制备的CoOOH/ZnO复合膜电极用在葡萄糖电化学检测中,线性范围是1×10-5到2.4×10-4M(R2=0.996),响应灵敏度是40mA mM-1cm-2,比其他非酶类的电化学传感器的灵敏度都要高。
In this dissertation, the Ni(OH)2/TiO2, NiOOH/TiO2, CoOOH/ZnO bilayer electrodes are studied as noble light energy conversion and storage systems. We discussed the fabricating methods and their properties.
     We prepared TiO2nanotube arrays on Ti foil by anodic oxidation method, and its photocurrent under illumination of500W Xe light (5mW cm-2) was10-4A. Under the same condition, the photocurrent of TiO2nanowire arrays grown on FTO conductive glass prepared by a simple hydrothermal method was10-3A. Although we treated the TiO2nanotube arrays in an alkaline solution to reduce it by electrochemical reduction, and this reduction had actually improved its conductivity, but unfortunately its photoactivity was not improved. So we took the TiO2nanowire arrays as the photoactive material.
     We adjusted the density of TiO2nanowire arrays to a value as optimal for the deposition of Ni(OH)2, by adjusting the synthesis conditions. After repeated experiments, we finally found that the best synthesis condition for TiO2nanowire arrays on FTO conductive glass was:the presoma was a solution containing the saturated salt water and hydrochloric acid7.5ml, respectively, and0.15ml butyl titanate, after hydrothermal reacting under160℃for15h, we could get the TiO2nanowires array with the most suitable density.
     Using the TiO2nanowire arrays above mentioned as the substrate, we deposited Ni(OH)2on it by cathodic electrodeposition to prepare Ni(OH)2/TiO2bilayer electrode. Under illumination of UV light, the plale green bilayer electrode would turn to black (Ni(OH)2was oxidized to NiOOH). In the illumination process, we made the bilayer electrode short circuited with the Pt counter electrode, then the photoexcited electrons could easily transport to the Pt electrode through the external circuit, and the recombination of photoexcited electrons and holes would be decreased; we also put the Pt electrode and the bilayer electrode in different containers and linked them by salt bridge, then the NiOOH would not be reduced by the by-product, such as H2O2etc., finally by calculation, the IPCE of the bilayer electrode reached to6.8%. The light energy stored in the bilayer could be discharged under1μA current for larger than10000s, and the light charge-discharge process could be repeated.
     In the light energy conversion and storage system, the contact between the photoactive material and energy storage system is very important. Compared with the traditional electrodeposition method, the material combined with the photoactive material by photodeposition can not only contact the photoactive material tightly, but also occupy the best photoactive sites, so the bilayer electrode can use the photoactivity to the best extent. Based on this idea, we prepared NiOOH/TiO2bilayer electrode by photodeposition. In the photodeposte solution we added different amounts of SDS. The SDS can not only reduce the surface tension of the solution but also act as template for the NiOOH-the NiOOH can be thicker and more stable. The NiOOH photodeposited from solution containing0-0.3wt%SDS was a nanoporous wet comprised of many nanoplates, but when the SDS reached to1.5wt%, the NiOOH became a dense film. We found that the bilayer photodeposited from solution containing0.3wt%SDS had the best property, and its IPCE could reach to8%. The light energy stored in NiOOH/TiO2could be used to discharge, and detect/degrade formaldehyde. With the bilayer electrode, the concentration of formaldehyde could be soon reduced to a value which the human body could withstand. For the NiOOH/Ti02bilayer electrode the light charge-discharge process could also be repeated.
     The CoOOH/ZnO bilayer electrode prepared by photodeposition could be used to detect glucose. The detection linear range was1*10-5to2.4*10-4M (R2=0.996), the response sensitivity is40mA mM-1cm-2, which was higher than the sensitivity of other non enzyme electrochemical sensors.
引文
1. Hochbaum A I, Yang P. Semiconductor nanowires for energy conversion. Chemical reviews,2009,110(1),27-546.
    2. ByungaYoon K. Energy and environment policy case for a global project on artificial photosynthesis. Energy & Environmental Science,2013,6(3), 695-698.
    3. Lewis N S, Nocera D G. Powering the planet:Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences,2006, 103(43),15729-15735.
    4. Barber J. Photosynthetic energy conversion:natural and artificial. Chemical Society Reviews,2009,38(1),185-196.
    5. Faunce T, Styring S, Wasielewski M. R, Brudvig G W, Rutherford A W, Messinger J, Amal R. Artificial photosynthesis as a frontier technology for energy sustainability. Energy & Environmental Science,2013,6(4), 1074-1076.
    6. Shah A, Torres P, Tscharner R, Wyrsch N,& Keppner H. Photovoltaic technology:the case for thin-film solar cells. Science,1999,285(5428), 692-698.
    7. Yuhas B D, Yang P. Nanowire-based all-oxide solar cells. Journal of the American Chemical Society,2009,131(10),3756-3761.
    8. King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H,& Karam N H.40%efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Applied physics letters,2007,90(18) 183516-183516.
    9. Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters,2007, 91(2),023502-023502.
    10. Zhao J, Wang A, Green M A.24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates. Solar Energy Materials and Solar Cells,2001,66(1),27-36.
    11. Banyai L, and Koch S W. Semiconductor quantum dots, World Scientific Publishing Company Incorporated,1993.
    12. Alivisatos A P. Synthesis of nanoparticles. Science,1996,271,933-937.
    13. Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry,1991,95(2),25-532.
    14. Klimov V I. Semiconductor and metal nanocrystals:synthesis and electronic and optical properties, CRC,2003.
    15. Cahen D, Hodes G, Gratzel M, Guillemoles J F,& Riess I. Nature of photovoltaic action in dye-sensitized solar cells. The Journal of Physical Chemistry B,2000,104(9),2053-2059.
    16. Robertson N. Optimizing Dyes for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition,2006,45(15),2338-2345.
    17. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews,2012,41(2), 797-828.
    18. Fernandez J A, Tennison S, Kozynchenko O, Rubiera F, Stoeckli F,& Centeno T A. Effect of mesoporosity on specific capacitance of carbons. Carbon,2009,47(6),1598-1604.
    19. Law M, Goldberger J, and Yang P D. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res.2004,34,83-122.
    20. Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni (OH)2 cluster modification. The Journal of Physical Chemistry C, 2011,115(11),4953-4958.
    21. Yang F, Takahashi Y, Sakai N,& Tatsuma T. Oxidation of methanol and formaldehyde to CO2 by a photocatalyst with an energy storage ability. Physical Chemistry Chemical Physics,2010,2(19),5166-5170.
    22. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y,& Fujishima A. Energy storage of TiO2-WO3 photocatalysis systems in the gas phase. Langmuir, 2002,18(21),7777-7779.
    23. Zhang W K, Wang L, Huang H, Gan Y P, Wang C T,& Tao X Y. Light energy storage and photoelectrochemical behavior of the titanate nanotube array/Ni (OH)2 electrode. Electrochimica Acta,2009,54(21),4760-4763.
    24. Takahashi Y, Tatsuma T. Visible light-induced photocatalysts with reductive energy storage abilities. Electrochemistry Communications,2008,10(9), 1404-1407.
    25. Takahashi Y, Tatsuma T. Oxidative energy storage ability of a TiO2-Ni (OH)2 bilayer photocatalyst. Langmuir,2005,21(26),12357-12361.
    26. Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. International journal of hydrogen energy,2005,30(10),1053-1062.
    27. Kostecki R, Richardson T, McLarnon F. Photochemical and photoelectrochemical behavior of a novel TiO2/Ni(OH)2 electrode. Journal of the Electrochemical Society,1998,145(7),2380-2385.
    28. Shifu C, Sujuan Z, Wei L,& Wei Z. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2. Journal of Hazardous Materials,2008, 155(1),320-326.
    29. Takahashi Y, Tatsuma T. Remote energy storage in Ni(OH)2 with TiO2 photocatalyst. Physical Chemistry Chemical Physics,2006,8(23), 2716-2719.
    30. Tatsuma T, Saitoh S, Ohko Y,& Fujishima A. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chemistry of Materials,2001,13(9),2838-2842.
    31. Schubert E F, Gessmann T, Kim J K. light emitting diodes.2005, Wiley OnlineLibrary,http://onlinelibrarywileycom/doi/101002/0471238961120907 0811091908a01pub2/full.
    32. Seeger K. semiconductor physics:an introduction.2004, books google com, http://booksgooglecomhk/books?hl=zh-CN&lr=&id=il4nyDF0IJIC&oi=fnd &pg=PA1&dq=semiconductor&ots=mXdU_ROmyx&sig=cF_6J9wZKN7B gzzevHEWUvhIzQ8&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage& q=semiconductor&f=false.
    33. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M,& Ye J. Nano-photocatalytic Materials:Possibilities and Challenges. Advanced Materials, 2012,24(2),229-251.
    34. Hoffmann M R, Martin S T, Choi W,& Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical reviews,1995, 95(1),69-96.
    35. Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews,1995,95(1),49-68.
    36. Fox M A, Dulay M T. Heterogeneous photocatalysis. Chemical reviews, 1993,93(1),341-357.
    37. Yang J, Wang D, Han H,& Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of chemical research,2013,46(8), 1900-1909.
    38. Leung D Y, Fu X L, Wang C F, Ni M, Leung M K H, Wang X X, Fu X Z. Hydrogen Production over Titania-Based Photocatalysts. ChemSusChem, 2010,3,681-694.
    39. Bao N Z, Shen L M, Takata T, Domen K. Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light. Chemistry of Materials,2008,20, 110-117.
    40. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. Visible-Light-Driven Hydrogen Production with Extremely High Quantum Efficiency on Pt-PdS/CdS Photocatalyst. Journal of Catalysis,2009,266, 165-168.
    41. Maeda K, Xiong, A K, Yoshinaga, T, Ikeda, T, Sakamoto, N, Hisatomi, T, Takashima, M, Lu, D L, Kanehara, M, Setoyama, T, Teranishi, T, Domen, K. Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and Oxygen Evolution under Visible Light. Angewandte Chemie,2010,49,4096-4099.
    42. Ouyang S, Kikugawa N, Zou Z,& Ye J. Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation. Applied Catalysis A:General,2009, 366(2),309-314.
    43. Ouyang S, Kikugawa N, Chen D, Zou Z,& Ye J A. systematical study on photocatalytic properties of AgMO2 (M= Al, Ga, In):effects of chemical compositions, crystal structures, and electronic structures. The Journal of Physical Chemistry C,2009,113(4),1560-1566.
    44. Li X, Ouyang S, Kikugawa N,& Ye J. Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation. Applied Catalysis A:General, 334(1),51-58.
    45. Ouyang S, Zhang H, Li D, Yu T, Ye J,& Zou Z. Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2. The Journal of Physical Chemistry B,2006,110(24),11677-11682.
    46. Tang J, Zou Z,& Ye J. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie International Edition,2004,43(34),4463-4466.
    47. Ye J, Zou Z,& Matsushita A A. novel series of water splitting photocatalysts NiM2O6 (M= Nb, Ta) active under visible light International. Journal of Hydrogen Energy,2003,28(6),651-655.
    48. Zou Z, Ye J, Sayama K,& Arakawa H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1),65-69.
    49. Zou Z, Ye J, Arakawa H. Surface Characterization of Nanoparticles of NiOx/In09Ni01TaO4:Effects on Photocatalytic Activity. The Journal of Physical Chemistry B,2002,106(51),13098-13101.
    50. Zou Z, Arakawa H, Ye J. Substitution effect of Ta5+ by Nb5+ on photocatalytic, photophysical, and structural properties of BiTa1-xNbxO4 (0 ≦x≦10). Journal of materials research,2002,17(6),1446-1454.
    51. Ye J, Zou Z, Oshikiri M, Matsushita A, Shimoda M, Imai M,& Shishido T A. novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chemical Physics Letters,2002,356(3),221-226.
    52. Zou Z, Ye J, Sayama K,& Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001,414(6864),625-627.
    53. Kako T, Zou Z, Katagiri M,& Ye J. Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chemistry of materials,2007, 19(2),198-202.
    54. Osterloh F E. Inorganic materials as catalysts for photochemical splitting of water. Chemistry of Materials,2007,20(1),35-54.
    55. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M A. metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials,2009,8(1),76-80.
    56. Scaife D E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy,1980,25(1),41-54.
    57. Maeda K, Domen K. Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chemistry of Materials,2009,22(3),612-623.
    58. Yi Z G, Ye J H. Band gap tuning of Na1-xLax Ta1-xCrxO3 for H2 generation from water under visible light irradiation. Journal of Applied Physics,2009, 106(7),074910-074910-5.
    59. Wang D, Kako T, Ye J. New Series of Solid-Solution Semiconductors (AgNbO3)1-x(SrTiO3)x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. The Journal of Physical Chemistry C, 2009,113(9),3785-3792.
    60. Li G, Kako T, Wang D, Zou Z,& Ye J. Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation. Dalton Transactions,2009, (13),2423-2427.
    61. Wang D, Kako T, Ye J. Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. Journal of the American Chemical society, 2008,130(9),2724-2725.
    62. Li X, Kikugawa N, Ye J. Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity. Advanced Materials, 2008,20(20),3816-3819.
    63. Wang D, Ye J, Kako T,& Kimura T. Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. The Journal of Physical Chemistry B,2006,110(32),15824-15830.
    64. Tong H, Umezawa N, Ye J. Visible light photoactivity from a bonding assembly of titanium oxide nanocrystals. Chemical Communications,2011, 47(14),4219-4221.
    65. Tong H, Umezawa N, Ye J,& Ohno T. Electronic coupling assembly of semiconductor nanocrystals:self-narrowed band gap to promise solar energy utilization. Energy & Environmental Science,2011,4(5),1684-1689.
    66. Li Q, Kako T, Ye J. PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity. Journal of Materials Chemistry,2010,20(45),10187-10192.
    67. Chen X, Li P, Tong H, Kako T,& Ye, J. Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response. Science and Technology of Advanced Materials,2011,12(4),044604.
    68. Chen X, Ye J, Ouyang S, Kako T, Li Z,& Zou Z. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3d-photonic crystal design. ACS nano,2011,5(6),4310-4318.
    69. Thompson T L, Yates J T. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chemical Reviews,2006,106(10), 4428-4453.
    70. Osgood R. Photoreaction dynamics of molecular adsorbates on semiconductor and oxide surfaces. Chemical reviews,2006,106(10), 4379-4401.
    71. Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C,& Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008, 453(7195),638-641.
    72. Bi Y, Ouyang S, Umezawa N, Cao J,& Ye J. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. Journal of the American Chemical Society,2011,133(17),6490-6492.
    73. Xi G, Ye J. Synthesis of bismuth vanadate nanoplates with exposed{001} facets and enhanced visible-light photocatalytic properties. Chemical Communications,2010,46(11),1893-1895.
    74. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S,& Anpo M. Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of synchrotron radiation, 1999,6(3),451-452.
    75. Herrmann J M, Disdier J, Pichat P. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chemical physics letters,1984,108(6),618-622.
    76. Borgarello E, Kiwi J, Graetzel M, Pelizzetti E,& Visca M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Journal of the American chemical society, 1982, 104(11), 2996-3002.
    77. Karakitsou K E, Verykios X E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. The Journal of Physical Chemistry,1993,97(6),1184-1189.
    78. Mu W, Herrmann J M, Pichat P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catalysis letters,1989,3(1),73-84.
    79. Umebayashi T, Yamaki T, Itoh H,& Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids,2002,63(10),1909-1920.
    80. Nishikawa T, SHINOHARA Y, Nakajima T, Fujita M,& Mishima S. Prospect of Activating a Photocatalyst by Sunlight-a Quantum Chemical Study of Isomorphically Substituted Titania. Chemistry letters,1999,11, 1133-1134.
    81. Ye J, Zhigang Z. Visible light sensitive photocatalysts In1-xMxTaO4 (M=3d transition-metal) and their activity controlling factors. The Journal of physics and chemistry of solids,2005,66(2-4),266-273.
    82. Kato H, Kobayashi H, Kudo A. Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M:Ta and Nb) with the Perovskite Structure. The Journal of Physical Chemistry B,2002,106(48), 12441-12447.
    83. Kako T, Ye J. Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation. Journal of Materials Research,2007,22(09), 2590-2597.
    84. Li X, Kako T, Ye J.2-Propanol photodegradation over lead niobates under visible light irradiation. Applied Catalysis A:General,2007,326(1),1-7.
    85. Tang J, Zou Z, Ye J. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catalysis Letters,2004,92(1-2), 53-56.
    86. Kudo A, Omori K, Kato H A. novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of the American Chemical Society,1999,121(49), 11459-11467.
    87. Kim H G, Hwang D W, Lee J S. An undoped, single-phase oxide photocatalyst working under visible light. Journal of the American Chemical Society,2004,126(29),8912-8913.
    88. Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2.Solar Energy,2006,80(3),272-280.
    89. Saadi S, Bouguelia A, Derbal A,& Trari M. Hydrogen photoproduction over new catalyst CuLaO2. Journal of Photochemistry and Photobiology A: Chemistry,2007,187(1),97-104.
    90. Hosogi Y, Shimodaira Y, Kato H, Kobayashi H,& Kudo A. Role of Sn2+ in the Band Structure of SnM2O6 and Sn2M2O7(M=Nb and Ta) and Their Photocatalytic Properties. Chemistry of Materials,2008,20(4),1299-1307.
    91. Hosogi Y, Kato H, Kudo A. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+under visible light irradiation. The Journal of Physical Chemistry C,2008,112(45),17678-17682.
    92. Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie International Edition,2003,42(40), 4908-4911.
    93. Zhao W, Ma W, Chen C, Zhao J,& Shuai Z. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x Bx under visible irradiation. Journal of the American Chemical Society,2004,126(15),4782-4783.
    94. Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. Journal of the American Chemical Society,2008,130(15),5018-5019.
    95. Li X, Kikugawa N, Ye J A. Comparison Study of Rhodamine B Photodegradation over Nitrogen-Doped Lamellar Niobic Acid and Titanic Acid under Visible-Light Irradiation. Chemistry-A European Journal,2009, 15(14),3538-3545.
    96. Li X, Yue B, Ye J. Photocatalytic hydrogen evolution over SiO2-pillared and nitrogen-doped titanic acid under visible light irradiation. Applied Catalysis A:General,2010,390(1),195-200.
    97. Hitoki G, Takata T, Kondo J N, Hara M, Kobayashi H,& Domen K. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chemical Communications,2002, (16), 1698-1699.
    98. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J,& Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. Journal of Catalysis,2009,266(2), 165-168.
    99. Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K,& Li C. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chemical Communications, 2003, (17),2142-2143.
    100.Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chemical Communications,2002 (17).1958-1959.
    101.Zhang X, Jing D, Liu M,& Guo L. Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1-xZnxS microsphere photocatalysts. Catalysis Communications,2008,9(8),1720-1724.
    102.Tang J, Zou Z, Ye J. Effects of Substituting Sr2+ and Ba2+ for Ca2+ on the Structural Properties and Photocatalytic Behaviors of CaIn2O4. Chemistry of materials,2004,16(9),1644-1649.
    103.Yin J, Zou Z, Ye J. A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with Special Electronic Structures. The Journal of Physical Chemistry B,2003,107(21),4936-4941.
    104.Yin J, Zou Z, Ye J. Photophysical and Photocatalytic Properties of MIno5Nbo503 (M=Ca, Sr, and Ba). The Journal of Physical Chemistry B, 2003,107(1),61-65.
    105.Sato J, Kobayashi H, Saito N, Nishiyama H,& Inoue Y. Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A=Li, Na) with d10 configuration. Journal of Photochemistry and Photobiology A:Chemistry, 2003,158(2),139-144.
    106.Sato J, Saito N, Nishiyama H,& Inoue Y. New Photocatalyst Group for Water Decomposition of RuO2-Loaded p-Block Metal (In, Sn, and Sb) Oxides with d10 Configuration. The Journal of Physical Chemistry B,2001, 105(26),6061-6063.
    107.Sato J, Saito N, Nishiyama H,& Inoue Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration I Influences of preparation conditions on activity. The Journal of Physical Chemistry B,2003,107(31),7965-7969.
    108.Sato J, Kobayashi H, Inoue Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration II Roles of geometric and electronic structures. The Journal of Physical Chemistry B,2003,107(31),7970-7975.
    109.Zhang W F, Tang J W, Ye J H. Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M=Ca, Sr, and Ba) photocatalysts. J Mater Res,2007,22,1859-1871.
    110.Zou Z, Ye J, Arakawa H. Substitution Effects of In3+ by Al3+ and Ga3+ on the Photocatalytic and Structural Properties of the Bi2lnNbO7 Photocatalyst. Chemistry of materials,2001,13(5),1765-1769.
    111.Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y,& Withers R L. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials,2010,9(7),559-564.
    112.Zou Z, Ye J, Arakawa H. Structural properties of InNbO4 and InTaO4 correlation with photocatalytic and photophysical properties. Chemical Physics Letters,2000,332(3),271-277.
    113.Zou Z, Ye J, Sayama K,& Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1-xNbxO4 (0≤x≤1). Chemical physics letters,2001,343(3),303-308.
    114.Shimodaira Y, Kato H, Kobayashi H,& Kudo A. Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium (VI). Bulletin of the Chemical Society of Japan,2007,80(5),885-893.
    115.Ouyang S, Li Z, Ouyang Z, Yu T, Ye J,& Zou Z. Correlation of Crystal Structures, Electronic Structures, and Photocatalytic Properties in a Series of Ag-based Oxides:AgAlO2, AgCrO2, and Ag2CrO4. The Journal of Physical Chemistry C,2008,112(8),3134-3141.
    116.Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y,& Domen K. Photocatalyst releasing hydrogen from water. Nature,2006,440(7082), 295-295.
    117.Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H,& Domen K. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. Journal of the American Chemical Society,2005,127(23), 8286-8287.
    118.Li G, Kako T, Wang D, Zou Z,& Ye J. Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions. Journal of Solid State Chemistry 2007,180(10),2845-2850.
    119.Yoshino M, Kakihana M, Cho W S, Kato H,& Kudo A. Polymerizable Complex Synthesis of Pure Sr2NbxTa2-xO7 Solid Solutions with High Photocatalytic Activities for Water Decomposition into H2 and O2. Chemistry of materials,2002,14(8),3369-3376.
    120.Yuan Y, Lv J, Jiang X, Li Z, Yu T, Zou Z,& Ye J. Large impact of strontium substitution on photocatalytic water splitting activity of BaSnO3. Applied Physics Letters,2003,91(9),094107-094107.
    121.Ouyang S, Ye J. β-AgAl1-xGaxO2 Solid-Solution Photocatalysts:Continuous Modulation of Electronic Structure toward High-Performance Visible-Light Photoactivity. Journal of the American Chemical Society,2011,133(20), 7757-7763.
    122.Yao W, Ye J. Photophysical and Photocatalytic Properties of Ca1-xBixVxMo1-xO4 Solid Solutions. The Journal of Physical Chemistry B, 2006,110(23),11188-11195.
    123.Bi Y, Ye J. In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. Chemical Communications,2009 (43), 6551-6553.
    124.Jung H S, Hong Y J, Li Y, Cho J, Kim Y J,& Yi G C. Photocatalysis using GaN nanowires. ACS nano,2008,2(4),637-642.
    125.Jang J S, Joshi U A, Lee J S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. The Journal of Physical Chemistry C,2007,111(35),13280-13287.
    126.Kenanakis G, Katsarakis N. Light-induced photocatalytic degradation of stearic acid by c-axis oriented ZnO nanowires. Applied Catalysis A:General, 2010,378(2),227-233.
    127.Bi Y, Ye J. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction. Chemical Communications, 2010,46(9),1532-1534.
    128.Selloni A. Crystal growth:Anatase shows its reactive side. Nature materials, 2008,7(8),613-615.
    129.Liu G, Sun C, Yang H G, Smith S C, Wang L, Lu G Q M,& Cheng H M. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chemical Communications,2010,46(5),755-757.
    130.Kamat P V. Meeting the clean energy demand:nanostructure architectures for solar energy conversion. The Journal of Physical Chemistry C,2007, 111(7),2834-2860.
    131.Xi G, Yue B, Cao J, Ye J. Fe3O4/WO3 Hierarchical Core-Shell Structure: High-Performance and Recyclable Visible-Light Photocatalysis. Chemistry-A European Journal,2011,17(18),5145-5154.
    132.Ouyang S, Cao J,& Ye J. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X=Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Physical Chemistry Chemical Physics,2011, (21), 10071-10075.
    133.Wang D, Zou Z, Ye J. A novel Zn-doped Lu203/Ga203 composite photocatalyst for stoichiometric water splitting under UV light irradiation. Chemical physics letters,2004,384(1-3),139-143.
    134.Wang D, Zou Z, Ye J. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chemistry of materials, 2005,17(12),3255-3261.
    135.Zong X, Yan H, Wu G, Ma G, Wen F, Wang L,& Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society,2008, 130(23),7176-7177.
    136.Wang G, Yang X, Qian F, Zhang J Z,& Li Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano letters,2010,10(3),1088-1092.
    137.Hensel J, Wang G, Li Y,& Zhang J Z. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano letters,2010,10(2), 478-483.
    138.Muller H D, Steinbach F. Decomposition of isopropyl alcohol photosensitized by zinc oxide. Nature,1970,225,728-729.
    139.Steinbach F. Influence of Metal Support and Ultraviolet Irradiation on the Catalytic Activity of Nickel Oxide. Nature,1969,221,657-658.
    140.Doerffler W, Hauffe K. Heterogeneous photocatalysis II The mechanism of the carbon monoxide oxidation at dark and illuminated zinc oxide surfaces. Journal of Catalysis,1964,3(2),171-178.
    141.Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238,37-38.
    142.Hoffmann M R, Martin S T, Choi W,& Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical reviews,1995, 95(1),69-96.
    143.Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews,1995,95(3), 735-758.
    144.Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M,& Watanabe T. Light-induced amphiphilic surfaces. Nature,1997,388,431-432.
    145.Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis:a historical overview and future prospects. Japanese Journal of Applied Physics,2005, 44(12R),8269-8285.
    146.Roy S C, Varghese O K, Paulose M,& Grimes C A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. Acs Nano, 2010,4(3),1259-1278.
    147.Asahi R, Morikawa T, Ohwaki T, Aoki K,& Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528), 269-271.
    148.1n S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov M S, Wright D S,& Lambert R M. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. Journal of the American Chemical Society, 2007,129(45),13790-13791.
    149.Hu C C, Teng H. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. Journal of Catalysis,2010, 272(1),1-8.
    150.Li Q, Kako T, Ye J. WO3 modified titanate network film:highly efficient photo-mineralization of 2-propanol under visible light irradiation. Chemical Communications,2010,46(29),5352-5354.
    151.Jang J S, Choi S H, Park H, Choi W,& Lee J S. A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets. Journal of nanoscience and nanotechnology,2006,6(11),3642-3646.
    152.Feng J, Han J, Zhao X. Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells. Progress in Organic Coatings,2009,64(2),268-273.
    153.Dibbell R S, Youker D G, Watson D F. Excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. The Journal of Physical Chemistry C,2009,113(43), 18643-18651.
    154.Nakahira T, Inoue Y, Iwasaki K, Tanigawa H, Kouda Y, Iwabuchi S, Iwabuchi S, Gratzel M. Visible light sensitization of platinized TiO2 photocatalyst by surface-coated polymers derivatized with ruthenium tris (bipyridyl). Die Makromolekulare Chemie, Rapid Communications,1988, 9(1),13-17.
    155.Nakahira T, Gratzel M. Visible light sensitization of platinized TiO2 photocatalyst by surface-adsorbed poly (4-vinylpyridine) derivatized with ruthenium trisbipyridyl complex. Die Makromolekulare Chemie, Rapid Communications,1985,6(5),341-347.
    156.Bessekhouad Y, Robert D, Weber J V,& Chaoui N. Effect of alkaline-doped TiO2 on photocatalytic efficiency. Journal of Photochemistry and Photobiology A:Chemistry,2004,167(1),49-57.
    157.Cao Y, Yang W, Zhang W, Liu G,& Yue P. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New Journal of Chemistry, 28(2),218-222.
    158.Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry,1994,98(51), 13669-13679.
    159.Li W, Wang Y, Lin H, Shah S I, Huang C P, Doren D J, Rykov S A, Chen J G, Barteau M A. Band gap tailoring of Nd3+-doped TiO2 nanoparticles. Applied Physics Letters,83(20),4143-4145.
    160.Luo Z, Gao Q. Decrease in the photoactivity of TiO2 pigment on doping with transition metals. Journal of Photochemistry and Photobiology,1992, 63,367-375.
    161.Nagaveni K, Hegde M S, Madras G. Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M=W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method. Journal of Physical Chemistry B,2004,108, 20204-20212.
    162.Wang Y, Cheng H, Hao Y, Ma J, Li W,& Cai S. Preparation, characterization and photoelectrochemical behaviors of Fe (Ⅲ)-doped TiO2 nanoparticles. Journal of materials. Science 1999,34(15),3721-3729.
    163.Wang X H, Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y,& Ishigaki T. Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma:phase formation, defect structure, band gap, and magnetic properties. Journal of the American Chemical Society,2005,127(31), 10982-10990.
    164.Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. Journal of Materials Science,2004, 39(5),1837-1839.
    165.165 Park J H, Kim S,& Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano letters,2006, (1),24-28.
    166.Burda C, Lou Y, Chen X. Enhanced nitrogen doping in TiO2 nanoparticles. Nano letters,2003,3(8),1049-1051.
    167.Irie H, Watanabe Y,& Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. The Journal of Physical Chemistry B,2003,107(23),5483-5486.
    168.Chen S, Chen L, Gao S, Cao G. The preparation of nitrogen-doped photocatalyst TiO2-xNxby ball milling. Chem Phys Lett,2005,413,404-409.
    169.Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T,& Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A:General,265(1),115-121.
    170.Umebayashi T, Yamaki T, Tanaka S. Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters,2003 (4),330-331.
    171.Umebayashi T, Yamaki T, Yamamoto S, Miyashita A, Tanaka S, Sumita T, Asai K. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. Journal of Applied Physics,2003,93,5156-5160.
    172.Umebayashi T, Yamaki T, Sumita T, Yamamoto S, Miyashita A, Tanaka S, Asai K. Sulfur-doping in titanium dioxide by ion implantation technique. JAERI-Review,2003,222-224.
    173.Umebayashi T, Yamaki T, Yamamoto S, Tanaka S, Asai K. Synthesis of Sulfur-Doped TiO2 by Ion Implantation. TRANSACTIONS-MATERIALS RESEARCH SOCIETY OF JAPAN,2003,28(2),461.
    174.Hattori A, Yamamoto M, Tada H,& Ito S. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chemistry letters,1998, (8),707-708.
    175.Yu J G, Yu J C, Cheng B, Hark, S K,& Iu, K. The effect of F- doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. Journal of Solid State Chemistry,2003,174(2),372-380.
    176.Yu J C, Yu J, Ho W, Jiang Z,& Zhang L. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of materials,2002,14(9),3808-3816.
    177.Luo H, Takata T, Lee Y, Zhao J, Domen K,& Yan Y. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chemistry of Materials,2004,16(5),846-849.
    178.Asahi R, Morikawa T, Ohwaki T, Aoki K,& Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528), 269-271.
    179.Anpo M,& Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of catalysis,2003,216(1),505-516.
    180.Di Valentin C, Pacchioni G, Selloni A, Livraghi S,& Giamello E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. The Journal of Physical Chemistry B, 2005,109(23),11414-11419.
    181.Okato T, Sakano T,& Obara M. Suppression of photocatalytic efficiency in highly N-doped anatase films. Physical Review B,2005,72(11),115124.
    182.Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A,& Itoh H. Fluorine-doping in titanium dioxide by ion implantation technique Nuclear Instruments and Methods in Physics. Research Section B: Beam Interactions with Materials and Atoms,2003,206,254-258.
    183.Lee J Y, Park J,& Cho J H. Electronic properties of N-and C-doped TiO2. Applied Physics Letters,2005,87(1),011904-011904.
    184.Li D, Haneda H, Hishita S,& Ohashi N. Visible-light-driven NF-codoped TiO2 photocatalysts 2 Optical characterization, photocatalysis, and potential application to air purification. Chemistry of Materials,2005,17(10), 2596-2602.
    185.Gratzel M. Photoelectrochemical cells. Nature,2001,414(6861),338-344.
    186.Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews,1995,95(1),49-68.
    187.Meyer G J. Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces. Inorganic chemistry,2005,44(20),6852-6864.
    188.Fitzmaurice D, Frei H, Rabani J. Time-resolved optical study on the charge carrier dynamics in a TiO2/AgI sandwich colloid. The Journal of Physical Chemistry,1995,99(22),9176-9181.
    189.Hoyer P, Konenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots. Applied physics letters,1995,66(3),349-351.
    190.Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry,1994,98(12), 3183-3188.
    191.Tian Y, Tatsuma T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chemical Communications, 2004(16),1810-1811.
    192.DavideaCozzoli P, LuciaaCurri M. Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems. Chemical communications,2005 (25),3186-3188.
    193.Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M,& Wang F. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. Journal of the American Chemical Society,2004,126(45),14943-14949.
    194.Argazzi R, Bignozzi C A, Heimer T A, Castellano F N,& Meyer G J. Light-induced charge separation across Ru (Ⅱ)-modified nanocrystalline TiO2 interfaces with phenothiazine donors. The Journal of Physical Chemistry B,1997,101(14),2591-2597.
    195.Gregg B A, Chen S G, Ferrere S. Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in nanoporous TiO2. The Journal of Physical Chemistry B,2003,107(13), 3019-3029.
    196.Haque S A, Handa S, Peter K, Palomares E, Thelakkat M,& Durrant J R. Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films:Towards a Quantitative Structure-Function Relationship. Angewandte Chemie International Edition,2005,44(35), 5740-5744.
    197.Jasieniak J, Johnston M, Waclawik E R. Characterization of a Porphyrin-containing dye-sensitized solar cell. The Journal of Physical Chemistry B,2004,108(34),12962-12971.
    198.Wang D, Liu Y, Yu B, Zhou F,& Liu W. TiO2 nanotubes with tunable morphology, diameter, and length:synthesis and photo-electrical/catalytic performance. Chemistry of Materials,2009,21(7),1198-1206.
    199.So S, Lee K, Schmuki P. Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. Journal of the American Chemical Society,2012,134(28),11316-11318.
    200. Gong J, Lin C, Ye M,& Lai Y. Enhanced photoelectrochemical activities of a nanocomposite film with a bamboo leaf-like structured TiO2 layer on TiO2 nanotube arrays. Chem Commun,2011,47(9),2598-2600.
    201.Shao F, Sun J, Gao L, Yang S,& Luo J. Growth of various TiO2 nanostructures for dye-sensitized solar cells. The Journal of Physical Chemistry C,2010,115(5),1819-1823.
    202.Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society,2009,131(11),3985-3990.
    203.Cho I S, Chen Z, Forman A J, Kim D R, Rao P M, Jaramillo T F,& Zheng X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano letters,2011,11(11),4978-4984.
    204.Lazzeri M, Vittadini A, Selloni A. Structure and Energetics of Stoichiometric TiO2 Anatase. SurfacesPhys Rev B,2001,63, No 155409.
    205.Diebold U. The Surface Science of Titanium Dioxide. Surf Sci Rep,2003, 48,53-229.
    206.206 Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J Am Chem Soc,2009,131,3152-3153.
    207.Xie S F, Han X G, Kuang Q, Fu J, Zhang L, Xie Z X, Zheng L S. Solid State Precursor Strategy for Synthesizing Hollow TiO2 Boxes with a High Percentage of Reactive{001} Facets Exposed. Chem Commun,2011,47, 6722-6724.
    208.Han X G, Wang X, Xie S F, Kuang Q, Ouyang J J, Xie Z X, Zheng L S. Carbonate Ions-Assisted Syntheses of Anatase TiO2 Nanoparticles Exposed with High Energy (001) Facets. RSC Adv,2012,2,3251-3253.
    209.Ohno T, Sarukawa K, Matsumura M. Crystal Faces of Rutile and Anatase TiO2 Particles and Their Roles in Photocatalytic Reactions. New J Chem, 2002,26,1167-1170.
    210.Liu C, Han X G, Xie S F, Kuang Q, Wang X, Jin M S, Xie Z X, Zheng L S. Enhancing the Photocatalytic Activity of Anatase TiO2 by Improving the Specific Facet-Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chem-Asian J,2013,8,282-289.
    211.Lu L, Chen J, Li L,& Wang W. Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance. Nanoscale research letters,2012,7(1),1-8.
    212.Shafiei S, Nourbakhsh A, Ganjipour B, Zahedifar M,& Vakili-Nezhaad G. Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment. Nanotechnology,2007,18(35),355708.
    213.Alvi N H, Farooq B, Nur O,& Willander M. Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor-liquid-solid (VLS) method. Materials Letters,2013,106,158-163.
    214.Xu L, Liao Q, Zhang J, Ai X,& Xu D. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods. The Journal of Physical Chemistry C,2007, 111(12),4549-4552.
    215.Greene L E, Yuhas B D, Law M, Zitoun D,& Yang P. Solution-grown zinc oxide nanowires. Inorganic chemistry,45(19),7535-7543.
    216.216 Wang Y, Li X, Lu G, Quan X,& Chen G. Highly oriented 1-D ZnO nanorod arrays on zinc foil:direct growth from substrate, optical properties and photocatalytic activities. The Journal of Physical Chemistry C,2008, 112(19),7332-7336.
    217.Khun K, Ibupoto Z H, AlSalhi M S, Atif M, Ansari, A A,& Willander, M Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer Materials,2013,6(10), 4361-4374
    218.Green M A, Wenham S R. Novel parallel multijunction solar cell. Applied Physics Letters,1994,65(23),2907-2909.
    219.Kayes B M, Filler M A, Putnam M C, Kelzenberg M D, Lewis N S,& Atwater H A. Growth of vertically aligned Si wire arrays over large areas (>1cm2) with Au and Cu catalysts. Applied Physics Letters,2007,91(10), 103110.
    220.Kelzenberg M D, Turner-Evans D B, Kayes B M, Filler M A, Putnam M C, Lewis N S,& Atwater H A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano letters,2008,8(2),710-714.
    221.Lewis N S. Toward cost-effective solar energy use. Science,2007, 315(5813),798-801.
    222.Corathers L A. Minerals Yearbook:Silicon. US Geological Survey:2006.
    223.Sze S M. Physics of Semiconductor Devices,2nd ed. Wiley:New York, 1981
    224.Hu L, Chen G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano letters,2007,7(11),3249-3252.
    225.Peng K, Xu Y, Wu Y, Yan Y, Lee S T,& Zhu J. Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications. Small,2005, 1(11),1062-1067.
    226.Martensson T, Svensson C P T, Wacaser B A, Larsson M W, Seifert W, Deppert K, Gustafsson A, Wallenberg L R, and Samuelson L. Epitaxial III-V nanowires on silicon. Nano Letters,2004,4(10),1987-1990.
    227.Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, and Lieber C M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164),885-889.
    228.Garnett E C, Yang P. Silicon nanowire radial p- n junction solar cells. Journal of the American Chemical Society,2008,130(29),9224-9225.
    229.Peng K Q, Yan Y J, Gao S P,& Zhu J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Advanced Materials,2002,14(16),1164.
    230.Gregg B A. Excitonic solar cells. The Journal of Physical Chemistry B,2003, 107(20),4688-4698.
    231.Gledhill S E, Scott B, Gregg B A. Organic and nano-structured composite photovoltaics:An overview. Journal of Materials Research,2005,20(12), 3167-3179.
    232.Kannan B, Castelino K, Majumdar A. Design of nanostructured heterojunction polymer photovoltaic devices. Nano Letters,2003,3(12), 1729-1733.
    233.Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chemistry of Materials,2004,16(23),4533-4542.
    234.Yakimov A, Forrest S R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters,2002,80(9),1667-1669.
    235.Ma W L, Yang C Y, Gong X, Lee K,& Heeger A J. Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Advanced Functional Materials,2005,15,1617-1622.
    236.Kang Y, Park N G, Kim D. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer. Applied Physics Letters,2005,86(11), 113101.
    237.Williams S S, Hampton M J, Gowrishankar V, Ding I K, Templeton J L, Samulski E T, DeSimone J M, and McGehee M D. Nanostructured titania-polymer photovoltaic devices made using PFPE-based nanomolding techniques. Chemistry of Materials,2008,20(16),5229-5234.
    238.Olson D C, Shaheen S E, Collins R T,& Ginley D S. The effect of atmosphere and ZnO morphology on the performance of hybrid poly (3-hexylthiophene)/ZnO nanofiber photovoltaic devices. The Journal of Physical Chemistry C,2007,111(44),16670-16678.
    239.Greene L E, Law M, Yuhas B D,& Yang P. ZnO-TiO2 core-shell nanorod/P3HT solar cells. The Journal of Physical Chemistry C,2007, 111(50),18451-18456.
    240.Novotny C J, Yu E T, Yu P K L. InP nanowire/polymer hybrid photodiode. Nano letters,2008,8(3),775-779.
    241.Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G,& Yang P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters,2005,5(7),1231-1236.
    242.Wang G, Swensen J, Moses D,& Heeger A J. Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors. Journal of applied physics,2003,93(10),6137-6141.
    243.Chirvase D, Chiguvare Z, Knipper M, Parisi J, Dyakonov V,& Hummelen J C. Temperature dependent characteristics of poly (3 hexylthiophene)-fullerene based heterojunction organic solar cells. Journal of Applied Physics,2003,93(6),3376-3383.
    244.Kroeze J E, Savenije T J, Vermeulen M J,& Warman J M. Contactless determination of the photoconductivity action spectrum, exciton diffusion length, and charge separation efficiency in polythiophene-sensitized TiO2 bilayers. The Journal of Physical Chemistry B,2003,107(31),7696-7705.
    245.Plank N O, Snaith H J, Ducati C, Bendall J S, Schmidt-Mende L,& Welland M E A. simple low temperature synthesis route for ZnO-MgO core-shell nanowires. Nanotechnology,2008,19(46),465603.
    246.Takanezawa K, Hirota K, Wei Q S, Tajima K,& Hashimoto K. Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. The Journal of Physical Chemistry C,2007,111(19),7218-7223.
    247.Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, Zakeeruddin S M, Gratzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, and Tulloch G E. Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics:Research and Applications,2007,15(1),1-18.
    248.Wang P, Zakeeruddin S M, Moser J E, Nazeeruddin M K, Sekiguchi T,& Gratzel M A. stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature materials,2003,2(6),402-407.
    249.Rensmo H, Keis K, Lindstrom H, Sodergren S, Solbrand A, Hagfeldt A, Lindquist S E, Wang L N, and Muhammed M. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. The Journal of Physical Chemistry B,1997,101(14),2598-2601.
    250.Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications,1999 (1), 15-16.
    251.Keis K, Magnusson E, Lindstrom H, Lindquist S E,& Hagfeldt A A.5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Solar Energy Materials and Solar Cells,2002,73(1),51-58.
    252.Solbrand A, Keis K, Sodergren S, Lindstrom H, Lindquist S E,& Hagfeldt A. Charge transport properties in the nanostructured ZnO thin film electrode-electrolyte system studied with time resolved photocurrents. Solar energy materials and solar cells,2000,60(2),181-193.
    253.Fisher A C, Peter L M, Ponomarev E A, Walker A B,& Wijayantha K G U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B,2000,104(5),949-958.
    254.Green A N, Palomares E, Haque S A, Kroon J M,& Durrant J R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. The Journal of Physical Chemistry B, 2005,109(25),12525-12533.
    255.Kopidakis N, Schiff E A, Park N G, Van de Lagemaat J,& Frank A J. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2 The. Journal of Physical Chemistry B,2000,104(16),3930-3936.
    256.Enache-Pommer E, Boercker J E, Aydil E S. Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells. Applied Physics Letters,2007,91(12),123116-123116-3.
    257.Adachi M, Sakamoto M, Jiu J, Ogata Y,& Isoda S. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B,2006,110(28),13872-13880.
    258.Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, and Yanagida S. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry B,2002,106(39),10004-10010.
    259.Fan S H and Wang K Z. Recent advances on molecular design of ruthenium(II) sensitizers indye-sensitized solar cells Chin. J Inorg Chem, 2008,24,1206-1212.
    260.Bai Y, Cao Y M, Zhang J, Wang M, Li R Z, Wang P, Zakeeruddin S M, and Gratzel M. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature materials, 2008,7(8),626-630.
    261.Kron G, Egerter T, Werner J H,& Rau U. Electronic Transport in dye-sensitized nanoporous TiO2 solar cells comparison of electrolyte and solid-state devices. The Journal of Physical Chemistry B,2003,107(15), 3556-3564.
    262.Law M, Greene L E, Johnson J C, Saykally R,& Yang P. Nanowire dye-sensitized solar cells. Nature materials,2005,4(6),455-459.
    263.Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells. Applied Physics Letters,2005,86(5),053114.
    264.Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y,& Yanagida S. Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. The Journal of Physical Chemistry B,2003, 107(33),8607-8611.
    265.Tan B, Wu Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. The Journal of Physical Chemistry B, 2006,110(32),15932-15938.
    266.Jiang C Y, Sun X W, Tan K W, Lo G Q, Kyaw A K K,& Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2003,92(14),143101.
    267.Ku C H, Wu J J. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology, 2007,18(50),505706.
    268.Suh D I, Lee S Y, Kim T H, Chun J M, Suh E K, Yang O B,& Lee S K. The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chemical physics letters,2007,442(4), 348-353.
    1. Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society,2009,131(11),3985-3990.
    2. Gong J, Lin C, Ye M, Lai Y. Enhanced photoelectrochemical activities of a nanocomposite film with a bamboo leaf-like structured TiO2 layer on TiO2 nanotube arrays. Chem. Commun.,2011,47(9),2598-2600.
    3. Wang Y, Li X, Lu G, Quan X, Chen G. Highly oriented 1-D ZnO nanorod arrays on zinc foil:direct growth from substrate, optical properties and photocatalytic activities. The Journal of Physical Chemistry C,2008,112(19), 7332-7336.
    4.陈炎,孙东红,李舒,王军。乙酰丙酮荧光分光光度法测定环境空气中的微量甲醛。中国环境监测,2000,16(4),30-31。
    5. 王苏勤,吕多佳。乙酰丙酮分光光度法测定室内空气中的甲醛。苏州大学学报(工科版),2003,23(6),15-17。
    6.啤酒甲醛含量分析方法。啤酒科技,2005,9,1-2。
    7.赖海涛,苏国成,林加富。乙酰丙酮分光光度法测定啤酒中甲醛含量。酿酒科技,2012,6,15。
    8.王钟,刘顺军,何漪。乙酰丙酮分光光度法测定啤酒中甲醛。中国卫生检验杂志,2005,15(4),494。
    1. Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238,37-38.
    2. Roy P, Berger S, Schmuki P. TiO2 nanotubes:synthesis and applications. Angewandte Chemie International Edition,2011,50(13),2904-2939.
    3. Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A,& Snaith H J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature,2013,495(7440),215-219.
    4. Wei Q, Hirota K, Tajima K, Hashimoto K. Design and synthesis of TiO2 nanorod assemblies and their application for photovoltaic devices. Chemistry of materials,2006,18(21),5080-5087.
    5. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M,& Watanabe T. Light-induced amphiphilic surfaces. Nature, 1997,388,431-432.
    6. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis:a historical overview and future prospects. Japanese Journal of Applied Physics,2005,44(12R), 8269-8285.
    7. Roy S C, Varghese O K, Paulose M,& Grimes C A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010,4(3),1259-1278.
    8. Zhu K, Neale N R, Miedaner A, Frank A. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters,2007,7(1),69-74.
    9. Shim H W, Lee D K, Cho I S, Hong K S,& Kim D W. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries. Nanotechnology,2010,21(25),255706.
    10. Kim J H, Zhu K, Yan Y, Perkins C L,& Frank A J. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano letters,2010,10(10),4099-4104.
    11. Hou Y, Li X, Liu P, Zou X, Chen G,& Yue P L. Fabrication and photo-electrocatalytic properties of highly oriented titania nanotube arrays with{101} crystal face. Separation and Purification Technology,2009,67(2), 135-140.
    12. Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society,2009,131(11),3985-3990.
    13. He X, Hu C, Feng B, Wang B, Tian Y. Vertically aligned TiO2 nanorod arrays as a steady light sensor. Journal of The Electrochemical Society,2010, 157(11), J381-J385.
    14. Na S I, Kim S S, Hong W K. Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells. Electrochimica Acta,2008,53(5),2560-2566.
    15. Liu L, Qian J, Li B, Cui Y, Zhou X, Guo X,& Ding W. Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. Chemical Communications,2010,46(14),2402-2404.
    16. Kumar A, Madaria A R, Zhou C. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. The Journal of Physical Chemistry C,2010, 114(17),7787-7792.
    17. Zeng Y, Zhang W, Xu C. One-Step Solvothermal Synthesis of Single-Crystalline TiOF2 Nanotubes with High Lithium-Ion Battery Performance. Chemistry-A European Journal,2012,18(13),4026-4030.
    18. Li Y, Zhang M, Guo M, Wang X. Hydrothermal growth of well-aligned TiO2 nanorod arrays:Dependence of morphology upon hydrothermal reaction conditions. Rare metals,2010,29(3),286-291.
    19. Zhang Z K, Guo D Z, Xing Y J, Zhang J M. Fabrication of open-ended TiO2 nanotube arrays by anodizing a thermally evaporated Ti/Au bilayer film. Applied Surface Science,2011,257(9),4139-4143.
    20. Yip C T, Guo M, Huang H, Zhou L, Wang Y, Huang C. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale,2012,4(2),448-450.
    21. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y,& Li Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano letters,2012,12(3),1690-1696.
    22. Macak J M, Gong B G, Hueppe M, Schmuki P. Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition. Advanced Materials,2007,19(19), 3027-3031.
    23. Zhang F, Liu X. Effect of O2 pressure on the preferred orientation of TiO2 films prepared by filtered arc deposition. Thin Solid Films,1998,326(1), 171-174.
    1. Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid. Chem. Rev,1995,95,69.
    2. Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews,1995,95(3), 735-758.
    3. Hochbaum A I, Yang P. Semiconductor nanowires for energy conversion. Chemical reviews,2009,110(1),527-546.
    4. Takahashi Y, Ngaotrakanwiwat P, Tatsuma T. Energy storage TiO2-MoO3. photocatalysts. Electrochimica Acta,2004,49(12),2025-2029.
    5. Takahashi Y, Tatsuma T. Visible light-induced photocatalysts with reductive energy storage abilities. Electrochemistry Communications,2008,10(9), 1404-1407.
    6. Ngaotrakanwiwat P, Tatsuma T. Optimization of energy storage TiO2-WO3. photocatalysts and further modification with phosphotungstic acid. Journal of Electroanalytical Chemistry,2004,573(2),263-269.
    7. Cao L, Yuan J, Chen M, Shangguan W. Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique. Journal of Environmental Sciences,2010,22(3),454-459.
    8. Ngaotrakanwiwat P, Tatsuma T, Saitoh S. Charge-discharge behavior of TiO2-WO3 photocatalysis systems with energy storage ability. Physical Chemistry Chemical Physics,2003,5(15),3234-3237.
    9. Kostecki R, Richardson T, McLarnon F. Photochemical and photoelectrochemical behavior of a novel TiO2/Ni(OH)2 electrode. Journal of the Electrochemical Society,1998,145(7),2380-2385.
    10. Takahashi Y, Tatsuma T. Oxidative energy storage ability of a TiO2-Ni (OH)2 bilayer photocatalyst. Langmuir,2005,21(26),12357-12361.
    11. Takahashi Y, Tatsuma T. Remote energy storage in Ni(OH)2 with TiO2 photocatalyst. Physical Chemistry Chemical Physics,2006,8(23), 2716-2719.
    12. Lian H Q, Wang J M, Xu L, Zhang L Y, Shao H B, Zhang J Q,& Cao C N. Oxidative energy storage behavior of a porous nanostructured TiO2-Ni (OH)2 bilayer photocatalysis system. Electrochimica Acta,2011,56(5), 2074-2080.
    13. Zhang W K, Wang L, Huang H, Gan Y P, Wang C T,& Tao X Y. Light energy storage and photoelectrochemical behavior of the titanate nanotube array/Ni(OH)2 electrode. Electrochimica Acta,2009,54(21),4760-4763.
    14. Chen H, Wang J M, Pan T, Zhao Y L, Zhang J Q,& Cao C N. The structure and electrochemical performance of spherical Al-substituted a-Ni (OH)2 for alkaline rechargeable batteries. Journal of power sources,2005,143(1), 243-255.
    15. Zhao Y L, Wang J M, Chen H, Pan T, Zhang J Q,& Cao C N. Different additives-substituted a-nickel hydroxide prepared by urea decomposition. Electrochimica Acta,2004,50(1),91-98.
    16. Fu X Z, Zhu Y J, Xu Q C. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni (OH)2. Solid State Ionics,2007,178(13),987-993.
    17. Fujishima A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature,1972,238(5385),37-38.
    18. Fujishima A, Sugiyama E, Honda K. Photosensitized electrolytic oxidation of iodide ions on cadmium sulfide single crystal electrode. Bulletin of the Chemical Society of Japan,1971,44(1),304-304.
    19. Park H, Kim K Y, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. The Journal of Physical Chemistry B,2002,106(18),4775-4781.
    20. Park K W, Choi J H, Kwon B K. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. The Journal of Physical Chemistry B,2002,106(8),1869-1877.
    21. Wei L, Shifu C, Sujuan Z, et al. Preparation and characterization of p-n heterojunction photocatalyst p-CuBi2O4/n-TiO2 with high photocatalytic activity under visible and UV light irradiation. Journal of Nanoparticle Research,2010,12(4),1355-1366.
    22. Tabata H, Tanaka H, Kawai T. Formation of Bi-based layered perovskite oxide films by a laser ablation technique. Japanese journal of applied physics, 1995,34(part 1),5146-5149.
    23. Wang Z S, Li F Y, Huang C H. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. The Journal of Physical Chemistry B,2000,104(41),9676-9682.
    24. Li X L, Liu J F, Li Y D. Low-temperature conversion synthesis of M(OH)2 (M=Ni, Co, Fe) nanoflakes and nanorods. Materials chemistry and physics, 2003,80(1),222-227.
    25. Chou S, Cheng F, Chen J. Electrochemical Deposition of Ni(OH)2 and Fe-Doped Ni (OH)2 Tubes. European journal of inorganic chemistry,2005, 2005(20),4035-4039.
    1. Nagasuna K, Akita T, Fujishima M, Tada H. Photodeposition of Ag2S Quantum Dots and Application to Photoelectrochemical Cells for Hydrogen Production under Simulated Sunlight. Langmuir,2011,27(11),7294-7300.
    2. Matsumoto Y, Ida S, Inoue T. Photodeposition of metal and metal oxide at the TiOx nanosheet to observe the photocatalytic active site. The Journal of Physical Chemistry C,2008,112(31),11614-11616.
    3. Zheng Z, Huang B, Qin X. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry,2011,21(25),9079-9087.
    4. Li F B, Li X Z. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere,2002,48(10),1103-1111.
    5. Hu C, Tang Y, Jiang Z, Hao Z, Tang H,& Wong P K. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Applied Catalysis A, General,2003,253(2),389-396.
    6. Chan S C, Barteau M A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition. Langmuir, 2005,21(12),5588-5595.
    7. Forouzan F, Richards T C, Bard A J. Photoinduced reaction at TiO2 particles. Photodeposition from NiⅡ solutions with oxalate. The Journal of Physical Chemistry,1996,100(46),18123-18127.
    8. Lin W Y, Rajeshwar K. Photocatalytic Removal of Nickel from Aqueous Solutions Using Ultraviolet-Irradiated TiO2. Journal of the Electrochemical Society,1997,144(8),2751-2756.
    9. Foster N S, Lancaster A N, Noble R D, Koval C A. Effect of organics on the photodeposition of copper in titanium dioxide aqueous suspensions. Industrial & engineering chemistry research,1995,34(11),3865-3871.
    10. Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. Journal of the American Chemical Society,1978, 100(13),4317-4318.
    11. Rodriguez J L, Valenzuela M A, Pola F. Photodeposition of Ni nanoparticles on TiO2 and their application in the catalytic ozonation of 2, 4-dichlorophenoxyacetic acid. Journal of Molecular Catalysis A, Chemical, 2012,353,29-36.
    12. Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Advances in Environmental Research,2002,6(4),471-485.
    13. Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science,2008,321,1072-1075.
    14. McDonald K J, Choi K S. Photodeposition of co-based oxygen evolution catalysts on a-Fe2O3 photoanodes. Chemistry of Materials,2011,23(7), 1686-1693.
    15. Khnayzer R S, Mara M W, Huang J. Structure and Activity of Photochemically Deposited "CoPi" Oxygen Evolving Catalyst on Titania. ACS Catalysis,2012,2(10),2150-2160.
    16. Khnayzer R S, Mara M W, Huang J. Structure and Activity of Photochemically Deposited "CoPi" Oxygen Evolving Catalyst on Titania. ACS Catalysis,2012,2(10),2150-2160.
    17. Casas-Cabanas M, Canales-Vazquez J, Rodriguez-Carvajal J. Deciphering the structural transformations during nickel oxyhydroxide electrode operation. Journal of the American Chemical Society,2007,129(18), 5840-5842.
    18. Deabate S, Fourgeot F, Henn F. Electrochemical behaviour of the p (II)-Ni(OH)2/β(Ⅲ)-NiOOH redox couple upon potentiodynamic cycling conditions. Electrochimica acta,2006,51(25),5430-5437.
    19. Daramola D A, Singh D, Botte G G. Dissociation rates of urea in the presence of NiOOH catalyst, a DFT analysis. The Journal of Physical Chemistry A,2010,114(43),11513-11521.
    20. Sac-Epee N, Palacin M R, Delahaye-Vidal A, et al. Evidence for Direct γ-NiOOH(?)β-Ni (OH)2 Transitions during Electrochemical Cycling of the Nickel Hydroxide Electrode, Journal of The Electrochemical Society, 1998,145(5),1434-1441.
    21. Fu X Z, Zhu Y J, Xu Q C. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2. Solid State Ionics,2007,178(13),987-993.
    22. Lian H Q, Wang J M, Xu L, Zhang L Y, Shao H B, Zhang J Q,& Cao C N. Oxidative energy storage behavior of a porous nanostructured TiO2-Ni(OH)2 bilayer photocatalysis system. Electrochimica Acta,2011,56(5),2074-2080.
    23. Fujishima A. Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature,1972,238(5385),37-38.
    24. Mansour A N, Melendres C A. Characterization of Electrochemically Prepared γ-NiOOH by XPS. Surface Science Spectra,1994,3(3),271-278.
    25. Leng Y, Chen G, Mendoza A J. Solid-state water electrolysis with an alkaline membrane. Journal of the American Chemical Society,2012, 134(22),9054-9057.
    26. Sritharathikhun P, Oshima M, Motomizu S. On-line collection/concentration of trace amounts of formaldehyde in air with chromatomembrane cell and its sensitive determination by flow injection technique coupled with spectrophotometric and fluorometric detection. Talanta,2005,67(5), 1014-1022.
    27. Christoskova S T, Stoyanova M. Catalytic degradation of CH2O and C6H5CH2OH in wastewaters. Water research,2002,36(9),2297-2303.
    28. Kostecki R, Richardson T, McLarnon F. Photochemical and photoelectrochemical behavior of a novel TiO2/Ni(OH)2 electrode. Journal of the Electrochemical Society,1998,145(7),2380-2385.
    1. Ozgur U, Alivov Y I, Liu C. A comprehensive review of ZnO materials and devices. Journal of applied physics,2005,98(4),041301.
    2. Look D C. Recent advances in ZnO materials and devices. Materials Science and Engineering, B,2001,80(1),383-387.
    3. Li Y, Meng G W, Zhang L D. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters,2000, 76(15),2011-2013.
    4. Park W I, Kim D H, Jung S W. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters,2002,80(22), 4232-4234.
    5. Kong Y C, Yu D P, Zhang B. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters,2001,78(4),407-409.
    6. Pacholski C, Kornowski A, Weller H. Self-Assembly of ZnO, From Nanodots to Nanorods. Angewandte Chemie International Edition,2002, 41(7),1188-1191.
    7. Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Advanced Materials,2002,14(3),215.
    8. Leprince-Wang Y, Yacoubi-Ouslim A, Wang G Y. Structure study of electrodeposited ZnO nanowires. Microelectronics journal,2005,36(7), 625-628.
    9. Li Q, Kumar V, Li Y. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chemistry of Materials,2005,17(5),1001-1006.
    10. Wu X, Bai H, Li C, Lu G, Shi G. Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chemical communications,2006 (15),1655-1657.
    11. Barka-Bouaifel F, Sieber B, Bezzi N. Synthesis and photocatalytic activity of iodine-doped ZnO nanoflowers. Journal of Materials Chemistry,2011, 21(29),10982-10989.
    12. Lee K K, Loh P Y, Sow C H. CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochemistry Communications,2012,20, 128-132.
    13. Wu R J, Wu J G, Tsai T K. Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures. Sensors and Actuators B, Chemical,2006,120(1),104-109.
    14. Lee K K, Loh P Y, Sow C H. CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochemistry Communications,2012,20, 128-132.
    15. Fu X Z, Xu Q C, Hu R Z. β-CoOOH coated spherical β-NiOOH as the positive electrode material for alkaline Zn-NiOOH battery. Journal of power sources,2007,164(2),916-920.
    16. Na S I, Kim S S, Hong W K. Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells. Electrochimica Acta,2008,53(5),2560-2566.
    17. Liu J, Li Y, Fan H. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis, large-area design and reversible lithium storage. Chemistry of Materials,2009,22(1),212-217.
    18. Yang J, Sasaki T. Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating. Chemistry of Materials, 2008,20(5),2049-2056.
    19. Ding Y, Wang Y, Su L. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics,2010,26(2), 542-548.
    20. Xie J, Huang Y. Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection. Analytical Methods,2011, 3(5),1149-1155.
    21. Lee K K, Loh P Y, Sow C H, et al. CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochemistry Communications,2012, 20,128-132.
    22. Hou C, Xu Q, Yin L, Hu X. Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst,2012, 137(24),5803-5808.
    23. Cherevko S, Chung C H. The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta,2010,80(3),1371-1377.
    24. Li C, Su Y, Zhang S, Lv X, Xia H. An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosensors and Bioelectronics,2010,26(2),903-907.
    25. Zhang X, Gu A, Wang G. Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. CrystEngComm,2010, 12(4),1120-1126.
    26. Xia C, Ning W. A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire. Electrochemistry Communications,2010, 12(11),1581-1584.
    27. Li Y, Song Y Y, Yang C. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications,2007,9(5),981-988.
    28. Ye J S, Wen Y, De Zhang W. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochemistry Communications, 2004,6(1),66-70.
    29. Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum. Analytical chemistry,2003,75(13),3046-304