尿素与甲醇非均相催化合成碳酸二甲酯反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次较系统地对尿素与甲醇合成碳酸二甲酯反应体系进行了热力学分析。结果表明:主反应分两步进行,即尿素先与甲醇反应生成氨基甲酸甲酯,后者再与甲醇反应生成碳酸二甲酯。其中,第二步反应在337K以上才可能实现,而且平衡常数较小。主要副反应是氨基甲酸甲酯的甲基化反应。提高反应温度对主、副反应都有利。反应过程中及时移出产物碳酸二甲酯既可以促进氨基甲酸甲酯向碳酸二甲酯转化,又可以有效地抑制副反应发生。
     采用沉淀法和溶胶—凝胶法,并结合超临界干燥技术制备出ZnO、PbO、La_2O_3和ZnO-PbO、ZnO-La_2O_3纳米金属氧化物催化剂,借助XRD、TEM、BET等手段对催化剂的晶相结构、表面形貌和比表面积进行表征,在间歇反应装置上评价了各催化剂的催化活性。研究发现,沉淀法和溶胶—凝胶法均制备出纳米ZnO粒子;溶胶—凝胶法制备出一维纳米尺度的PbO和La_2O_3粒子;沉淀法和溶胶—凝胶法都成功得到纳米ZnO-PbO粒子。研究还发现,PbO会因晶相变化和还原反应而失活,而ZnO中添加PbO或La_2O_3后,催化活性都有所提高。
     首次开发出用于尿素与甲醇反应制备碳酸二甲酯用Zn和Pb金属催化剂,并对其负载化进行了深入研究。采用TPR技术确定出制备负载型金属催化剂的还原温度,研究了载体种类、负载量、还原温度等对催化剂活性的影响,从而确定了负载型金属催化剂的最佳制备方法;对负载型Zn-Pb双金属催化剂的催化效果进行初步探索;最后利用XRD和XPS对催化剂样品进行了表征,对载体与活性组分之间的相互作用进行了理论分析。
     自行设计并建立了高压连续反应装置,对其操作性能进行了初步考核。以ZnO为催化剂优化了连续反应条件,并对不同因素对反应过程的影响进行了深入分析。相同反应条件下评价了不同催化剂的催化效果。结果表明,采用连续操作方式,碳酸二甲酯收率大幅提高,最高达到46.5%。
The reaction of urea and methanol catalyzed heterogeneously for synthesis of dimethyl carbonate (DMC) has been systematically studied in this thesis.
    The reaction system of synthesizing DMC from urea and metlianol has been analyzed thermodynamically. The conclusion is as follows: firstly, the main reaction proceeds in two steps: urea reacts with methanol to give methyl carbomate (MC), and then MC is converted to DMC by reaction with methanol. The second step can not happen until the reaction temperature rises above 337K, and the equilibrium constant of this step is very small. Secondly, the most important side reaction is methylation of MC with DMC to N-methyl methyl carbomate. Thirdly, elevating reaction temperature is in favor of both the main reaction and the side reaction. On the other hand, removing DMC out of the reaction zone in time can not only promote the reaction of MC to DMC, but also suppress the side reaction effectively.
    ZnO, PbO and LaiOs as well as ZnO-PbO, ZnO-LaiOa nano-meter metal oxide catalysts have been prepared by precipitation and sol-gel process in combination with supercritical drying technique. The crystal structure, surface morphology and specific surface area of the catalysts have been characterized by means of XRD, TEM and BET, and the catalytic activities have been evaluated in batch reactor system. It can be found that nm-ZnO particles can be prepared through both precipitation and sol-gel process. PbO particles can be made in one-dimensional nano-meter range through sol-gel process. Also, nm-I^Os particles can be obtained using sol-gel process in combination with supercritical drying technique. Nm-ZnO-PbO binary metal oxide catalysts are available from both methods. As far as PbO catalyst is concerned, it can be deactivated during the reaction process due to transition of crystal structure and reduction reaction. The catalytic activity of ZnO can be improved after PbO or I^Os is added.
    For the first time, Zn and Pb have been developed as catalysts in the reaction for DMC synthesis from urea and methanol, and their supporting methods have been studied emphatically. After the reduction temperature has been determined by TPR technique, the effects of support and amount of supported metal atoms on the activities of catalysts have been evaluated. And the catalytic properties of Zn-Pb binary metal catalyst have also been investigated. Finally, on the basis of characterization by XRD arid XPS, the interaction of support with the active component has been analyzed theoretically.
    In order to improve DMC yield, a set of apparatus for continuously producing DMC has been built, and its operational suitability test has also been performed. On this basis, the operation conditions over ZnO catalyst have been optimized, and each influential factor has been discussed in the mean time. Under the same conditions, the catalytic properties of different
    ii
    
    
    
    catalysts have been evaluated. The results show that DMC yield can be greatly improved under continuous operation conditions; the highest DMC yield reaches 46.5%.
引文
1.王延吉,赵新强.绿色催化过程与工艺.北京:化学工业出版社,2002
    2.赵天生,韩怡卓,孙予罕.碳酸二甲酯合成方法的研究进展.石油化工,1998,127 (6):457-462
    3.陈中,杨建设,张珩.碳酸二甲酯生产技术综述.精细石油化工,1998,(6):45-49
    4.潘鹤林,田恒水,宋新杰,等.酯交换法合成碳酸二甲酯研究.化学工业与工程,1998,15(2):17-21
    5.姜忠义,王泳.催化精馏过程制备碳酸二甲酯的研究.化学工业与工程,2001,18(4).187-191
    6.施云海,乐清华.反应蒸馏技术制备碳酸二甲酯.齐鲁石油化工,2000,28(1):23-26
    7.李渊,赵新强,王淑芳,等.超临界CO_2与环氧丙烷和甲醇催化反应体系研究.宁夏大学学报(自然科学版),2001,22 (1):158-159
    8. Yasushi Sato, Masahiro Kagotani, Yoshie Souma. A new type of support bipyridine containing aromaticpolyamide to CuCl_2 for synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methanol. Journal of molecular catalysis. A. chemical, 2000, 151(1-2): 79-85
    9. Chong Shik Chin, Dongchan Shin, Gyongshik Won, Joonsumg Ryu. The effects of catalyst composition on the catalytic production of dimethyl carbonate. Journal of molecular catalysis. A. chemcal, 2000, 160(2):315-321
    10.刘定华,赵贤广.MXnLm体系催化合成碳酸二甲酯.化学工业与工程技术,1998,19 (2):6-8
    11.李光兴,王俊义.吡啶-2-羧酸钻催化羧化合成碳酸二甲酯.石油化工,1999,28(7):440-443
    12.管精师,向木琴,王太海,等.甲醇、一氧化碳和氧合成碳酸二甲酯的研究.天然气化工.1983,8(3):1-8
    13.李光兴,王克洪.液相氧化羰化合成碳酸二甲酯中试研究.华中理工大学学,1999,27(3):37-39
    14.王延吉,赵新强,苑保国,等.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅰ.催化剂制备及反应性能.燃料化学学报,1997,25(4):323-327
    15.姜瑞霞,王延吉,赵新强,等.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅱ.助剂对催化性能的影响.燃料化学学报,1999,27(4):319-322
    16.姜瑞霞,王延吉,赵新强,等.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅲ.催化剂的失活再生.燃料化学学报,2000,28(5):478-480
    17.王延吉,姜瑞霞,赵新强,等.甲醇气相氧化羰基化合成碳酸二甲酯的催化剂结构表征.河北工业大学学报,2000,29(1):97-101
    18. Noboru Y, Seiichi N, Kazuo E. JP 54-03012. 1979
    19. Fang S, Fujimoto F. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Applied Catalysis, 1996, 142:L1-L3
    20.江琦,林齐合,黄仲涛.由二氧化碳及甲醇直接合成二甲酯的新催化过程.催化学报,1996,17(3):91-92
    21.江琦,刘涛,刘峰.添加剂在碳酸二甲酯直接合成中的作用,应用化学,1999,16(5):115-116
    22.房鼎业,曹发海,刘殿华,等.超临界条件下CO_2与CH_3OH的催化酯化.燃料化学学报,1998,26(2):170-174
    23.曹发海,刘殿华,房鼎业.碱性催化剂作用下CO2与甲醇直接合成碳酸二甲酯的探索性研究.化学世界,2000,41(11):594-596,674
    24.桂新胜,曹发海,刘殿华,等.超临界条件下二氧化碳与甲醇直接合成碳酸二甲酯.高校化学工程学报,1998,12(2):152-156
    25.钟顺和,黎汉生,王建伟,等.CO_2和CH_3OH直接台成碳酸二甲酯用Cu-Ni/ZrO_2-SiO_2催化剂.催
    
    化学报,2000,21(2):117-120
    26.赵天生,韩怡卓,孙予罕,等.近超临界条件下直接合成碳酸二甲酯.燃料化学学报,1999,27(增刊):53-57
    27. Kiyoshi Otsuka, Yagi Toshikazu, Ynmanaka Tchro. Electrolytic carbonylation of methanol over the CuCl_2 anode in the gas phase. J. Electrochem. Soc., 1995, 42 (1): 130-135
    28. Kiyoshi Otsuka, Yagi Tushikazu, Yamanaka Ichro. Dimethyl carbonate synthesis by electrolytic carbonate of methyl in the gas phase. ElectrochimicaActa, 1994, 39(14): 2105-2115
    29. Filardo G, Galar A, Rivetti P. Catalytic system based on transition metals for the carbonylation of methanol to dimethyl carbonate. Electrochimica Acta. 1997, 42(13-14): 1961-1965
    30. Ronald A, Dombro Jr, Geoffrey A, et al. Mxrk A Mcttugh. Electro-organic synthesis in supercritical srganic mistures. J. Eledtrochem. Soc. 1998, 135(9): 2219-2223
    31. Robert A, Bell. Electochemcal carbonate process[P]. US 4 310 353. 1982
    32. Saleh R Yanni, Michaelson R Chaeles, Suciu E Nausicaa, et al. Process for manufacturing dialkyl carbonates from urea and alcohol[P]. WO 9517369. 1995
    33. Ryu J, Yong. Process for making dialkl carbonates [P]. US 5902894, 1999
    34.原田英文,大木宏明,水上政道.制造方法[P].JP10-218842.1998
    35. Peter B, Heinz F, Reinhold S, et al. Synthesis of carbonates and polycarbonates by reaction of urea with hydroxy compounds. C1 Mol. Chem.. 1984, 1:95-108
    36. Mizukami Masamichi, Ohshida Takuo, Arai Yoshihisa, et al. Process for producing dialkyl carbonate[P]. US 6031122.2000
    37. Swciu E N, Kuhlmann B, Knudsen G A, et al. Investigation of dialkyltin as catalysts for the synthesis of carbonates from alkyl carbomates. Journal of Organmetallic Chemistry, 1998, 556:41-54
    38. Cho Tsurahide, Tamura Takaaki, Cho Toshitsura, et al. Process for preparing dialkyl carbonates[P]. US 5534649. 1994
    39.藤井隆人,山川文雄,伊藤光则.脂肪族炭酸类制造方法[P].JP10-109960.1998
    40.铜谷正晴,大川隆,神原豐,等.制造方法[P].JP10-259165.1998
    41.铜谷正晴,大川隆,神原豐,等.制造方法[P].JP10-259163.1998
    42.铜谷正晴,大川隆,神原豐,等.连续的制造方法[P].JP 10-259164.1998
    43.铜谷正晴,神原豐,大川隆.制造方法[P].JP7-330686.1995
    44. Doya Masaharu, Kimizuka Ken-ichi, Kanbara Yutaka. Process for the production of dialkyl carbonate [P]. US5489702. 1996
    45.大信田卓朗,水上正道.制造方法[P].JP 10-287625.1998
    46.方云进,肖文德.绿色工艺的原料——碳酸二甲酯.化学通报,2000,63(9):18-28
    47.孟振英,赵新强,王延吉.在固体催化剂上合成N-环己基氨基甲酸甲酯的研究.精细石油化工,2001,(1):13-15
    48.赵军,江琦.碳酸二甲酯与有机胺羰基化合成氨基甲酸酯的研究.现代化工,2001,21(2):24-26
    49.赵新强,王延吉,李芳,等.二苯甲烷二异氰酸酯清洁合成过程研究Ⅰ.苯氨基甲酸甲酯催化合成及其缩合反应.石油学报(石油加工),1999,15(6):9-14
    50.赵新强,王延吉,李芳,等.用碳酸二甲酯代替光气合成甲苯二异氰酸酯Ⅰ.甲苯二氨基甲酸甲脂的催化合成.石油化工,1999,28(1):611-614
    51.丛津生,王胜平,赵新强.甲酸甲酯促进甲醇钠催化DMC和2,4-二氨基甲苯合成2,4-甲苯二氮基甲酸甲酯反应的研究.河北工业大学学报,2000,29(1):62-66
    52.赵新强,王延吉,李芳,等.用碳酸二甲酯代替光气合成甲苯二异氰酸酯Ⅱ.甲苯二氨基甲酸甲酯的分解.精细化工,2000,17(10):615-617
    
    
    53.赵新强,王延吉.TDI和MDI洁净合成方法的研究进展.化学通讯,2001,(4):201-205
    54.卞觉新.碳酸二甲酯.安徽化工,1992 (4):50-54
    55.田恒水,朱云峰.碳酸二甲酯系列产品开发之三取代脲类除草剂绿色清洁生产新工艺.化工催化剂及甲醇技术,2001,(2):28-32
    56.江琦,赵军.绿色化工过程中的碳酸二甲酯.广东化工,2001,28 (1):2-4
    57.郭俊胜.合成间甲基苯甲醚的新方法.河南化工,2001,(2):12-13
    58.王正平,矫彩山,刘天才.三光气的合成及应用研究.化学工程师,2000,81 (6):14-15
    59.方云进,肖文德,陆婉珍.碳酸二甲酯作汽油添加剂的应用研究.现代化工,1998,18(4):20-22
    60.王为公.碳酸二甲酯的生产技术及市场前景.化工科技市场,2001,24(1):12-13
    61.李翔毓.碳酸二甲酯合成技术及应用评述.上海化工,2001,26(3):49-54
    62.杜光能.碳酸二甲酯的生产及技术经济.现代化工,1997,17(3):30-33
    63.姚允斌,解涛,高英敏.物理化学手册.上海:上海科学技术出版社,1985
    64. Sidney W Benson. Thermochemical Kinetics: methods for the estimation of thermochemical data and rate parameters, New York: John Wiley and Sons, Inc., 1968.
    65. Robert C, Reid. The properties of gases and liquids, 2nd ed. New York: McGraw-Hill, 1978
    66.王福安.化工数据导引.北京:化学工业出版社,1995.10
    67. Kozyro A A, Frenkel M L, Krasulin A P, et al. Thermodynamic properties of biuret in different states of aggregation, Russ. J. Phys. Chem. (Engl. Transl.), 1988, 62: 897-899.
    68. Chase M W Jr. NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998:1-1951
    69.程能林.溶剂手册.北京:化学工业出版社,1994.9
    70.谢端绶,璩定一,苏元复.化工工艺算图第一册,常用物料物性数据(第一版).北京:化学工业出版社,1982.10
    71.天津大学物理化学教研室编.物理化学(上册).北京:高等教育出版社,1997
    72. Spanhel L, Marc A Anderson. Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Golation and Crystal Growth in Concentrated ZnO Colloids. J. Am. Chem. Soc, 1991, 113: 2826-2833
    73.张昕彤,庄家骐,任玉林等.量子尺寸氧化锌微粒的制备与表征.物理化学学报,2000,16(7):636-642
    74. Redmond C, O'Keeffe A, Burgess C, et al. Spectroscopic Determination the Flatband Potential of Transparent Nanocrystalline ZnO Films. J. Phys. Chem., 1993, 97: 11081-11086
    75. Shuji Sakohara, Lane D Rickanen, Marc A Anderson. Luminescence Properties of Thin Zinc Oxide Membrances Prepared by the Sol-Gel Technique: Chang in Visible Luminescence during Firing. J. Phys. Chem., 1992, 96:11086-11091
    76. Schmidt T, Tuller G, Spanal L. Activation of 1.54 μ m Er~(3+) Fluorescence in Concentrated Ⅱ-Ⅵ Semiconductor Cluster Environments. Chem. Mater., 1998, 10:65-71
    77. Eric A Mealenkamp. Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B, 1998, 102:5566-5572
    78. M Haase, H Weller, A Henglein. Photochemistry and Radiation Chemistry of Colloidal Semiconductors: 23. Electron Storage on ZnO Particles and Size Quantization. J. Phys. Chem., 1998, 92:482-487
    79. Corrie L Carnes, Kenneth J Klabunde. Synthesis, Isolation and Chemical Reactivity Studies of Nanocrystalline Zinc Oxide. Langmuir, 2000, 16:3764-3772
    80.张永康,刘建本,易保华,等.常温固相反应合成纳米氧化锌.精细化工,2000,17(6):343-344
    81.徐甲强,潘庆谊,孙雨安,等.纳米氧化锌的乳液合成、结构表征与气敏性能.无机化学学报,1998,14(3):355-359
    82.刘超峰,胡行方,袒庸.以尿素为沉淀剂制备纳米氧化锌粉体.无机材料学报,1999,14(3):391-396
    83.易平贵,黄念东,刘俊峰,等.合成甲醇掺钒铜基催化剂XPS谱学研究.石油学报(石油加工),1998,14 (2):94-96