甲醇、二甲醚共进料气相氧化羰基化合成碳酸二甲酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二甲酯(DMC)是一种重要的绿色化工产品,有广泛的应用前景,被誉为21世纪有机合成的“新基块”。目前采用的甲醇氧化羰基化制碳酸二甲酯存在的主要缺陷是:反应过程生成的水引起催化剂的快速失活,同时造成设备的腐蚀。将二甲醚(DME)引入反应体系,利用二甲醚水解及时消耗掉羰基化反应中生成的水,不仅可以缓解水引起的负面效应,同时可以提高DMC的收率。
     本论文考察了二甲醚的低温水解性能,开发出低温高活性的DME水解催化剂。并将其与羰基化催化剂进行复合,研究复合型催化剂在共进料体系中的催化性能。结果如下:
     1.考察了分子筛的类型、硅铝比及Cu、Pd改性对分子筛催化剂上二甲醚低温水解活性的影响,利用吡啶吸附FT-IR对催化剂的酸性进行表征。结果表明,催化剂的性能主要依赖于分子筛的结构和酸性质。具有超笼结构的MCM-22分子筛显示出较高的DME水解活性。Cu、Pd改性后的MCM-22催化剂,其水解活性得到进一步的提高,150℃时,二甲醚的转化率为14.0%,比改性前提高了3.9%。这有效地解决了水解与羰基化反应的温度匹配问题。
     2.采用SEM、XRD、FT-IR、NH_3-TPD和吡啶吸附FT-IR等对自制的分子筛的结构和酸性进行表征。结果表明,所合成的MCM-22分子筛结晶度良好,该分子筛具有两类酸中心,即弱酸中心和强酸中心。
     3.将Cu-Pd-TBAB/AC与Cu-Pd/MCM-22进行复合,并将二甲醚引入反应体系中,可以有效提高DMC的时空收率。添加Ce可使催化剂的性能有更进一步的提高,当DME流量为5mL/min时,甲醇的转化率为17.9%,DMC对甲醇的选择性为99.8%,DMC的时空收率为10.18mmol·(g-cat·h)~(-1)。寿命评价结果表明,在氧化羰基化反应体系中引入DME,能够利用二甲醚水解及时消耗掉甲醇氧化羰基化反应中生成的部分水,一定程度上消除甲醇羰基化反应生成的水所导致的催化剂快速失活的问题,提高催化剂的寿命。反应55h后,催化剂的性能才降到最好性能时的一半。
Dimethyl carbonate (DMC), a green chemical intermediate, has considerable potential fororganic synthesis. It is currently produced by the oxidative carbonylation of methanol. Theco-product water in this reaction, however, often induces catalyst deactivation and equipmentcorrosion. In light of the reversible reaction (CH_3OCH_3+H_2O(?)2CH_3OH), the aboveproblems may be diminished somewhat if the dimethyl ether (DME) is introduced as a co-feedgas to the methanol carbonylation reaction. From the thermodynamic point of view, partialconsumption of the produced water via the hydrolysis of DME can also increase the yield ofDMC.
     In the present thesis, the hydrolysis performance of dimethyl ether at low temperature wasinvestigated to develop a catalyst for DME hydrolysis with high activity at low temperature.Furthermore, the catalytic performance in the co-feeding system over the bi-functional catalysts,which were prepared by mixing the hydrolysis catalyst with carbonization catalyst, was alsostudied. The results are summarized as follows:
     1. The effect of the types of zeolites, silicon aluminum mole ratio, Cu and Pd modificationon the hydrolysis activity of dimethyl ether at low temperature over the zeolite catalysts wasinvestigated. The acidity of the catalysts was characterized by Py-IR. The results show that theperformance of the catalysts was dependent on the structure and acidity of the zeolites. TheMCM-22 zeolite with super-cage structure showed better hydrolysis activity of DME. Thehydrolysis activity of the MCM-22 catalysts modified by Cu and Pd was further enhanced. At150℃, the conversion of dimethyl ether increased by 3.9%to 14.0%when compared with theunmodified MCM-22 catalysts. Based on the above results, the problem of reaction temperaturematching for the coupling DME hydrolysis with methanol oxidative carbonylation was resolvedeffectively.
     2. The structure and the acidity of MCM-22 zeolite, which was home-made according to themethod in reference, were characterized by SEM、XRD、FT-IR、NH_3-TPD and Py-IR. The resultsindicated that the MCM-22 zeolite has high crystallization, and there are two kind of acid site, i.e.the strong-acidic site and the weak-acidic site, in this zeolite.
     3. The space time yield of DMC over the mixed catalysts of Cu-Pd-TBAB/AC and Cu-Pd/MCM-22 can be improved effectively after the dimethyl ether was introduced to the reactionsystem. The addition of Ce to the catalysts further enhanced the catalytic performance. When theflux of DME is 5mL/min, the conversion of methanol, the selectivity of DMC to methanol andspace time yield of DMC were 17.9%,99.8%and 10.18 mmol·(g-cat·h)~(-1), respectively. Theresults of life-time evaluation indicate that the introduction of DME in the reaction system ofoxidative carbonylation could increase the stability of the catalysts. This is because that thehydrolysis of dimethyl ether can consume some of the water produced in the oxidativecarbonylation of methanol, which, to some extent, resolves the problem of dramatic deactivationof the catalysts due to the water produced in the oxidative carbonylation of methanol. Theconversion of methanol decreased to the half of the highest value after running for 55h.
引文
[1] 王延吉,赵新强.绿色催化过程与工艺[M].北京:化学工业出版社,2002,76-78.
    [2] 张广遇,张恒水,王翎.开创二十一世纪化工的碳酸二甲酯[J].化学世界,1995,6:283—288.
    [3] 顾蕊瑛,刘蓉.碳酸二甲酯的开发应用[J].1995,23(2):20—25.
    [4] Yoshio Ono. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block [J].Appl. Catal.A: General. 1997, 155(2):133-166.
    [5] Yoshio Ono. Dimetyly carbonate for environmentally benign reactions [J]. Catalysis Today. 1997, 35:15-25.
    [6] 崔宗耀.碳酸二甲酯的生产和开发[J].河北化工,1994,4:30—34.
    [7] 张光辉,丁兆东,刘敏.碳酸二甲酯的生产工艺进展及市场前景[J].精细石油化工进展.2001,2(2):46—49.
    [8] 曹法海.碳酸二甲酯合成方法进展.化工生产与技术,1995,(1):5-9.
    [9] 陈中,杨建设,张珩.碳酸二甲酯的生产技术综述[J].精细石油化工,1998,6:45-49.
    [10] Fang Yun-Jin, Xiao Wen-De. Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification [J]. Separation and Purification Technology. 2004, 34:255-263.
    [11] R. Srivastava, D. Srinivas, P. Ratnasamy. Fe-Zn double-metal cyanide complexes as novel, solid transesterification catalysts [J]. Journal of Catalysis. 2006, 241:34-44.
    [12] Yoshiaki Watanabe, Takashi Tatsumi. Hydrotalcite-type materials as catalysts for the synthesis of dimethyl carbonate from ethylene carbonate and methanol [J]. Microporous and Mesoporous Material. 1998, 22:399-407.
    [13] Gao Junjie, Li Huiquan, Zhang Yi. Simultaneous synthesis of dimethyl carbonate and ethylene glycol dimethacrylate using homogenous basic catalyst [J]. Catalysis Today. 2006, 115:124-129.
    [14] Feng Xiu-Juan, Lu Xiao-Bing, He Ren. Tertiary amino group covalently bonded to MCM-41 silica as heterogeneous catalyst for the continuous synthesis of dimethyl carbonate from methanol and ethylene carbonate [J]. Applied Catalysis A: General. 2004, 272:347-352.
    [15] Cui Hongyou, Wang Tao, Wang Fujun, et al. Transesterification of ethylene carbonate with methanol in supercritical carbon dioxide [J]. Journal of Supercritical Fluids. 2004, 30:63-69.
    [16] 张小兵,李忠,卫有存.甲醇液相氧化羰基化合成碳酸二甲酯催化剂研究进展[J].工业催化,2004,12(11):19-23.
    [17] 朱晓斌,孙秀岩.碳酸二甲酯生产工艺综述[M].《山东医药工业》,2000,19(6):27-29.
    [18] 李忠,潘亚利,谢克昌.碳酸二甲酯的合成化学[J].煤炭转化.2001,24(2):46-52.
    [19] 李好管.碳酸二甲酯(DMC)的生产、技术进展及应用开发[J].煤化工,2001,4:
    [20] 肖博文,方云进.碳酸二甲酯合成及应用技术的研究进展[J].化工科技,1998,6(4):1-6.
    [21] 莫婉玲,熊辉,黄荣生,李光兴.Schiff碱助剂对CuCl催化反应性能的影响[J].华中科技大学学报(自然科学版),2002,30(7):101-103.
    [22] 莫婉玲,李光兴,朱永强.咪唑类化合物-CuCl络合催化剂在甲醇氧化羰基化反应中的催化性能[J].燃料化学学报,2003,31(2):124-127.
    [23] Ping Yang, Yong Cao, Jun-Cheng Hu, Wei-Lin Dai, Kang-Nian Fan. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol[J] . Applied Catalysis A: General 241 (2003) 363-37.
    [24] 陈吉书.铜催化合成碳酸二甲酯[J].曲靖师专学报,1995 12(6).
    [25] Chong Shik Chin, Dongchan Shin, Gyongshik Won, Joonsung Ryu ,Hoon Sik Kim, Byung Gwon Lee . The effects of catalyst composition on the catalytic production of dimethyl carbonate[J] . Journal of Molecular Catalysis A: Chemical 160 2000 : 315-321.
    [26] Nishihaira Keigo , Yoshida Shinichi, Tanaka Shuji .Process for continuously producing dimethyl carbonate[P].Japan:5631396,1997,5(4).
    [27] 绍领,李朝恒,王秀珍,吴之仁,孟凡东,张圣麟.钯催化气相氧化羰基化合成碳酸二甲酯[J].分子催化,2004,18(6):425-429.
    [28] Yasushi Sato, Masahiro Kagotani, Yoshie Souma . A new type of support 'bipyridine containing aromatic polyamide' to CuCl for synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methanol[J] . Molecular Catalysis A: Chemical 151 2000 79-85.
    [29] Jun-Cheng Hu, Yong Cao, Ping Yang, Jing-Fa Deng, Kang-Nian Fan.A novel homogeneous catalyst made of poly(N-vinyl-2-pyrrolidone)-CuCl2 complex for the oxidative carbonylation of methanol to dimethyl carbonat[J]. Journal of Molecular Catalysis A: Chemical 185 (2002) 1-9.
    [30] 朱晓斌,孙秀岩.碳酸二甲酯生产工艺综述[M]. 《山东医药工业》,2000,19(6): 27-29.
    [31] 曹法海.碳酸二甲酯合成方法进展.化工生产与技术,1995,(1):5-9.
    [32] Wang Yanji, Zhao Xinqiang, Yuan Baoguo, Zhang Bingchang, Cong Jinsheng . Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalyst I. Catalyst preparation and catalytic properties[J] . Applied Catalysis A: General 171 (1998) 255-260.
    [33] 王延吉,赵新强,苑保国,张秉常,从津生.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅰ.催化剂制备及反应性能[J].燃料化学学报,1997,25(4):323-327.
    [34] 姜瑞霞,王延吉,赵新强,王淑芳.甲醇气相氧化羰基化合成碳酸二甲酯的研究Ⅱ助剂对催化性能的影响[J].然料化学学报,1999, 27(4):319-322.
    [35] 王延吉,姜瑞霞,赵新强,王淑芳.甲醇气相氧化羰基化合成碳酸二甲酯的催化剂的催化剂界都表征[J].河北工业大学学报,2000,29(1):97-101.
    [36] Jiang Ruixia, Wang Shufang, Zhao Xinqiang ,Wang Yanji, Zhang Chengfang . The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate[J] Applied Catalysis A: General 238 (2003) 131-139.
    [37] 王淑芳,赵新强,王延吉.甲醇气相氧化羰基化合成碳酸二甲酯的催化反应条件分析[J].化学反应工程于工艺,2004,20:29-35.
    [38] 杨平,曹勇,包信和,戴维林,范康年.助剂对合成碳酸二甲酯用活性炭负载Wacker催化剂结构和性能的影响[J].催化学报,2004,25(12):995-999.
    [39] 王少成,曹勇,杨平,胡建国,吴东,孙予罕,邓景发.TBAB修饰的负载型Wacker催化剂催化甲醇羰基化合成碳酸二甲酯[J].高等学校化学学报,2002,23(12):2363-2365.
    [41] Chunjie Jiang, Yihang Guo, Chungang Wang, et al. Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions [J]. Applied Catalysis A: General. 2003, 256: 203-212.
    [42] 孟超,周龙昌.非光气法合成碳酸二甲酯的研究进展[J].企业技术开发.2004,23(4): 33-34
    [43] 孙迎春,刘植昌,徐春明.碳酸二甲酯实验室开发的合成方法[J].贵州化工,2004,29(4):16-20.
    [44] 赵天生,李永昕,陈兴权.二氧化碳向碳酸二甲酯的选择催化转化[J].宁夏大学学报(自然科学版,2001,22(2):129-131.
    [45] 姜瑞霞,谢在库. 尿素直接醇解法合成碳酸二甲酯催化剂研究进展[J]. 工业催化,2006,4:10-13.
    [46] 王延吉,赵新强.绿色催化过程与工艺.北京:化学工业出版社,2002.160
    [47] Monica Distaso, Eugenio Quaranta. Highly selective carbamation of aliphatic diamines under mild conditions using Sc(OTf)_3 as catalyst and dimethyl carbonate as a phosgene substitute[J]. Applied Catalysis B: Environmental. 2006, 66:72-80.
    [48] Sharath R. Kirumakki, N. Nagaraju, Komandur V.R. Chary. Kinetics of esterification of aromatic carboxylic acids over zeolites Hβ and HZSM5 using dimethyl carbonate[J]. Applied Camlysis A: General. 2003, 248:161-167.
    [49] Du Zhiping, Kang Wukui, Cheng Tong, et al. Novel catalytic systems containing n-BuSn(O)OH for the transesterification of dimethyl carbonate and phenol[J]. Journal of Molecular Catalysis A: Chemical. 2006, 246:200-205.
    [50] 李翔毓.碳酸二甲酯合成技术及应用详述[J].上海化工.2001,(3-4):49-54
    [51] 闫慧芳,李好管.碳酸二甲酯(DMC)生产技术进展及应用开发[J].煤化工.2001,(4):6-11
    [52] 汪玉同、王宗科、冯连玉,等.碳酸二甲酯的生产及应用[J].大庆石油学院学报.2002,26(2):35-39
    [53] 王福君,郭世卓.碳酸二甲酯的生产及应用[J].石油化工技术经济.2003,(2):38-42.
    [54] 吴顺元,肖亚平,孙培培,等.略论碳酸二甲酯的绿色化学[J].化工时刊.2003,17(6)11-15.
    [55] 张桂香,焦玉清,赵三群,等. 碳酸二甲酯及其衍生产品的应用与市场[J].江苏化工.2003,31(4):58-59
    [56] 陶锐锋.碳酸二甲酯市场现状及发展前景[J].化工技术经济.2003,21(10):15-18.
    [57] 上海市化工轻工供应公司编.化学危险品实用手册[M].北京:化学工业出版社,1992,96.
    [58] 吴茨坪.二甲醚的制备及其应用[J].化工纵横,2003,17(4):9-12.
    [59] 贺元启,鲁皓.生物质气化合成燃料的绿色化学效应分析[J].可再生资源,2005,6:47-50.
    [60] 王铁军,常杰, 吕鹏梅,祝京旭.生物质间接液化一步法合成燃料二甲醚[J].煤炭转化,2003,26(4):21-25
    [61] 王铁军,常杰,祝京旭.生物质合成燃料二甲醚的技术[J].化工进展,2003,22(11):1156-1159.
    [62] 康淑云.中美合作二甲醚项目落户宁夏[J].中国煤炭,2004,(11)
    [63] Gary P. Hagen, Michael J. Spangler. Synthesis of Oxygenate Products for High-Volume Fuels Applications. Joint Power and Fuel Systems Contractor Review Meeting, 1996.
    [64] Cipris D, Mador I L. Electrochemical Synthesis of Organic Carbonates [P]. US: 4131521,1978.
    [65] Theo Fleisch (BP Amoco). Gas to liquid fuels-a niche or a commodity business. 21st World Gas Conference-Gas, the Energy for the 21st Century, 2000.
    [66] 常雁红,韩怡卓,王心葵,等.二甲醚的生产、应用及下游产品的开发[J].天然气化工.2000,25(3):45-49
    [67] Wei Tong, Wang Mouhua, Wei Wei, et al. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol [J]. Fuel Processing Technology. 2003, 83(1-3):175-182.
    [68] 蔡光宇,徐龙伢. 见:蔡启瑞,彭少逸编.碳—化学中的催化作用[M]. 北京:化学工业出版社.1995:367.
    [69] 杨飘萍,王振旅,于剑锋,等. 合成方法对MCM-22分子筛的结构、性质及催化性能的影响[J]. 高等学校化学学报,2005,26(11):2108-2112.
    [70] 许宁,王东阳,姜玉子,阚秋斌,吴通好,孙家锺.MCM-22分子筛的静态合成与条件优化[J].燃料化学学报,2001,29:48-51.
    [71] 彭建彪,谢素娟,徐龙伢,王清遐.MCM-22分子筛的结构、性质及合成和应用前景[J].天然气化工,2001,26:42—47.
    [72] 石油化工用的一种新分子筛催化剂[J].石油炼制与化工,1994,4:69.
    [73] 白杰,谢素娟,王清遐,徐龙伢,陈巍,吴治华.MCM-22分子筛的合成和应用[J].石油与天然气化工,2000,29(3):110-117.
    [74] Leonowicz M. E., Lawton J. A., Lawton S. L., et al. MCM-22-A Molecular-seive with 2 independent multidimensional channel systems[J]. Science. 1994, 264:1910-1913.
    [75] Lawton J. A., Lawton S. L., Leonowicz M. E., et al. Studies in Surface Science and Catalysis. 1995, 98: 250-251.
    [76] Rubin M K, Chu P. Composition of synthesi sporous crystalline material, its synthesis and use [P]. US: 4954325, 1990.
    [77] Corma A, Corell C, Perez-pariente J. Synthesis and characterization of the MCM-22 zeolite[J] .Zeolite, 1995,15(1):2-8.
    [78] 宋一兵.甲烷脱氢芳构化Mo基催化剂催化性能的研究. 华南理工大学博士学位论文.2002,34.