二苯羟基乙酸酯类抗胆碱能药物的合成及其中间体的微波催化合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗胆碱能药物是人体的神经递质乙酰胆碱的拮抗剂,是一类重要的神经系统药物。在军用方面,抗胆碱能药物对于预防、急救和治疗神经性毒剂引起的伤害具有重要作用,同时因其具有致幻效用且不易引起死亡,因此能够作为反恐药物应用于反恐领域中。在民用方面,抗胆碱药物对帕金森病、晕车晕船等运动病、胃绞痛、胃溃疡、肠功能性疾病等有一定的治疗效果,也是治疗和拯救有机磷农药中毒者的主要药物之一。
     本论文首先合成出了经典的抗胆碱能化合物二苯羟基乙酸奎宁酯(QNB),它是一种M受体拮抗剂,作为研究M受体结构和功能的工具药而广泛应用于基础实验中。我们以苯甲醛为起始原料,经过安息香缩合、氧化反应、碱条件下重排得到二苯羟基乙酸,再经过酯化反应和酯交换反应,得到二苯羟基乙酸奎宁酯。并在合成过程中探讨了催化剂、反应时间等不同条件对各步反应结果的影响,简化了后处理方法。
     因为二苯羟基乙酸奎宁酯的毒副作用较强,我们根据文献报道,对其含氮原子部分进行了替换,用托品环、哌啶环等代替奎宁环,设计并合成出其他二苯羟基乙酸酯类抗胆碱能化合物。在合成过程中,托品醇和4-取代哌啶醇类均能得到较好的实验结果,但使用吗啉醇和N-取代哌啶醇则几乎得不到实验结果。
     二苯羟基乙酸酯类是经典的M受体拮抗剂,抗N样作用较弱,我们根据文献报道,用氧原子将二苯基连在一起,形成刚性的呫吨环,增强了其抗N样作用,并以呫吨羧酸为起始原料,合成出羟基呫吨羧酸酯类抗胆碱能化合物,因其能够更好的与受体结合,从而增强了该类化合物的受体选择性。
     在合成二苯羟基乙酸甲酯和呫吨羧酸甲酯这两个中间体时,我们引入了微波催化的物理催化方法,大大缩短了反应时间,提高了反应产率,并通过正交实验设计,找到了微波催化酯化反应的最佳反应条件。微波辐射促进有机合成反应是自上世纪80年代逐步发展起来的有机化学领域中的一个新的热点,因其具有反应时间短,产率高,立体选择性良好且后处理简单、绿色环保等特点,而受到广泛关注。
Anticholinergic drug is the antagonist of Acetycholine, which is an important neural drug. Inmilitary affairs, it can be used in the fields of prevention, first aid and treatment of injury caused bynerve agents. Meanwhile, for it can create hallucinations and is not inclined to cause death,anticholinergic drug is applied in antiterrorism to overmaster terrorists. In civil life, it has a certaindegree of therapeutic effect on parkinsonism, car sickness, seasickness, stomach convulsion, gastriculcer and intestinal functional diseases. It is also one of the drugs used to cure and save patientswith organophosphorus pesticide poisoning. The literature also shows that such drugs may have thetherapeutic effect of blocking human dreams and rehabilitation.
     In this paper, 3-quinuclidinyl benzilate (QNB), a classical anticholinergic compound, wassynthesized, which is an M receptor antagonist and is widely used in fundamental experiments asthe tool medicine for research on the structure and function of M receptor. Benzaldehyde was firstused as the starting material, via the reactions of benzoin condensation, esterification,rearrangement under alkalinity condition, Benzilic acid was obtained, and through the reactions ofesterification and transesterification, 3-quinuclidinyl benzilate was obtained. This paper as wellexplored the influence on each step, of different conditions, such as the catalysts, reaction time andthe methods of post-processing.
     For the side effects of 3-quinuclidinyl benzilate are comparatively strong, of which the cationgroup is replaced, according to research, in the way that quinine ring is replaced with tropine ringand piperidine ring, and as a result, benzilic esters were synthesized. In the synthesizing process,good experimental results were achieved by using tropine alcohol and 4-substituted piperidinealcohol, while nearly no experimental result can be achieved if morpholine alcohol andN-substituted piperidine alcohol were used.
     Benzilic esters are classical M receptor antagonists, the antinicotinic activity of which iscomparatively weak. According to the research, diphenyls are linked by oxygen atoms, and rigidXanthene ring is formed, which enhances the antinicotinic activity. In this experiment, xanthenecarboxyl acid was used as the starting material to synthesize hydroxyl xanthene carboxylates, ofwhich the receptor selectivity is enhanced due to their good binding with the receptor. During the synthesizing process of the two intermediates, methyl benzilate and methyl xanthene carboxylate,microwave catalysis was utilized, which greatly shortened the reaction time and increased thereaction efficiency. Also, the ideal reaction condition of microwave catalyisis of esterification wasfound via orthogonal experiment. Microwave radiation to promote the organic synthesis reaction isa new focus in the field of Organic Chemistry, which has gradually developed since the 80s lastcentury. It has received wide attention due to its characteristics, like short reaction time, highefficiency, good stereoselectivity, easy post-processing, and environmental friendliness and so on.
引文
[1]尤启东.药物化学[M].北京:化学工业出版社, 2004.
    [2]胡文祥,恽榴红.抗胆碱能药物的构象研究(Ⅱ)3-[|?-(苯基环戊基羟基)乙氧基]奎宁环烷的不对称合成与分子张力及立体化学与受体作用关系研究[J].化学通报,1993, (3): 41-42.
    [3]闻韧.药物化学[M].北京:科技文献出版社, 2005.
    [4] Hu, W X.; Yun, L H.; Li, S. Conformational analysis on anticholinergic drugs Molecularmechamics mmpm calculation of atropine and other alkaloids in the belladonna[J].Chin. Chem. Lett. 1992, 3(4): 271-275.
    [5]胡文祥,恽榴红.抗胆碱能药物抗N样作用的分子药理学研究[J].科学通报, 1994,39(1): 79-81.
    [6] Pfister, J R.; Wymann, W E.; Weissberg, R M. Strosberg A M. Synthesis andbronchodilator activity of endo-2-(2-cyclopentyl-2-hydroxy-2-phenyl)acetoxy-7-methyl-7-azabicyclo-[2.2.1]heptane methobromide, a potent and long-actinganticholinergic agent [J]. J. Pharm. Sci. 1985, 74(2): 208-210.
    [7] Chiang, P K.; Richard, M M.; Padilla, F N.; Carroll, F I. Preparation of azabicyloalkane(phenyl-substituted)alkanecarboxylates as anticholinergic agents[P]. US: 4713391,1987.
    [8]任其云.二苯羟乙酸-9-[N-甲基-3-氮二环(3, 3, 1)壬醇]酯的合成[J].江苏化工, 1996,24(3): 38-39.
    [9] John, A.; Pianfetti, W L.; Johnson, F.; Edward, F. Process for making 3-quinuclidinylbenzilate[P]. US: 3118896, 1962.
    [10] Wolinski, J.; Baranowski, A.; Gutowska, B. Search for anticholinergic compounds.XLII. Synthesis of 3-(2-aminoethyloamino)-8-butylo-8-aza-bicyclo[3.2.1]octanederivatives[J]. Acta. Pol. Pharm. 1984, 41(1): 25-30.
    [11] Treves, G R.; Baum, B M. Anticholinergic glycolates[P]. US: 4467095, 1984.
    [12]葛邦伦,吴瑞琴,唐琴梅等.某些取代羟乙酸哌啶醇酯类化合物的合成及抗胆碱作用的研究[J].药学学报. 1985, 20(6): 427-432.
    [13]张俊松,徐鸣夏.抗胆碱药的合成设计方法[J].广东药学. 1995, 6(4): 15-21.
    [14]王兰明.抗胆碱药烟酸环喷托酯的合成[J].化工时刊. 1999, 13(1): 36-37.
    [15]冉允章,吴培金,文广伶等.抗胆碱能药物的研究:3-取代托品衍生物的合成[J].药学学报. 1984, 19(5): 361-366.
    [16] Cusic, J W.; Robinson, R A. Quatemary ammonium salts of dialkylam inoalkyl estersof thiaxanthene-10-carboxylic acid[P]. US: 2776299, 1957.
    [17]高守海.二苯并氧(硫)杂卓羟基羧酸酯的设计合成[D].北京:军事医学科学院毒物药物研究所, 1996.
    [18] Eberlein, W G.; Engel, W W.; Trummlitz, G.; Schmidt, G.; Hammer, R. Tricycliccompounds as selective antimuscarinics. 2. Structure-activity relationships ofM1-selective antimuscarinics related to pirenzepine[J]. J. Med. Chem. 1988, 31(6):1169-1174.
    [19]吴培金,恽榴红.抗胆碱药2-(1-萘基)-2-环戊基-2-羟基乙氧基环烃胺类化合物的合成[J].中国药物化学杂志. 1999, 9(2): 102-105.
    [20] Noronha, B L.; Kachur, J F. Enantiomers of oxybutynin: in vitro pharmacologicalcharacterization at M1, M2 and M3 muscarinic receptors and in vivo effects on urinarybladder contraction, mydriasis and salivary secretion in guinea pigs[J]. J. Pharm. Exp.Ther. 1991, 256(2): 562-567.
    [21] Scapecchi, S.; Marucci, R.; Angeli, P. Structure-Activity relationships in 2, 2-diphenyl-2-ethylthioacetic acid esters: Unexpected agonistic activity in a series of muscarinicantagonists[J]. Bioorg. Med. Chem. 2001, 9(5): 1165-1174.
    [22] Hiroyuki, M.; Hiromi, K.; Hideharu, U. Synthesis and antimuscarinic activity of aseries of 4-(1-imi-dazolyl)-2, 2-diphenylbutyramides: Discovery of potent andsubtype-selective antimuscarinic agents[J]. Bioorg. Med. Chem. 1999, 7(6): 1151-1161.
    [23]戴德哉,林军,王路阳,张大禄,黄君.新抗胆碱化合物TBBB的M-受体拮抗作用与丁基东蓑若碱HBB及阿托品的比较.药学学报. 1986, 21(11): 853-856.
    [24] Sugai, S.; Ikawa, H.; Hasegawa, Y.; Yoshida, S.; Kutsuma, T.; Akaboshi, S. Studies onspasmolytics. I. Synthesis and spasmolytic activities of 4-(acyloxy)-1-(1, 3-dioxolan-4-ylmethyl) piperidines[J]. Chem. Pharm. Bull. 1984, 32(3): 967-976.
    [25] Gulin, A V.; Istatov, K I.; Sabirov, S S.; Khaidarov, K K. Coronary dilating effect of2-methyl-2-(2-propylthioethyl)-1,3-dioxolane[J]. Dok. Akad. Nauk. Tadzh. SSR. 1987,30(1): 173-175.
    [26] Pilli-Ayyildiz, H G.; Ozkanli, F.; Palaska, E.; Safak, C.; Erdogan, H.; Erol, K.;Ozdemir, M. 3-Aroylmethyl-2H-1,3-benzoxazinedione derivatives with anticholinergicand antihistaminic activities[J]. FARMACO. 1993, 48(7): 1015-1020.
    [27] Melchiorre, C.; Quaglia, W.; Picchio, M T.; Giardina, D.; Brasili, L.; Angeli, P.Structure-activity relationships among methoctramine-related polymethylenetetramines.Chain length and substituent effects on M-2 muscarinic receptor blocking activity[J].J. Med. Chem. 1989, 32(1): 79-84.
    [28] Kumar, G N.; Hammer, R H.; Bodor, N S. Soft drugs 12: Design, syntheses andevaluation of soft anticholinergics[J]. Drug. Design. Disc. 1993, 10(1): 11-21.
    [1]胡文祥,恽榴红.抗胆碱能药物抗N样作用的分子药理学研究[J].科学通报. 1994,39(1): 79-81.
    [2] Turck, A.; Mojovic, L.; Queguiner, G. A new route to 2,3-disubstituted pyrazines;regioselective metalation of chloropyrazine. Synthesis. 1988, (11): 881-884.
    [3]胡文祥,王建营.协同组合化学[M].北京:科学出版社, 2003.
    [4]张永华.苯甲酰甲酸及其酯的合成[J].中国医药工业杂志. 2001, 32(1): 33-34.
    [5]杨士豪,李莉萍,陈明.二苯甲酮的合成和二苯乙醇酸含成条件探索[J].广东医学院学报. 1997, 15(4): 372-373.
    [6]任其云.二苯羟乙酸-9-[N-甲基-3-氮二环(3,3,1)壬醇]酯的合成[J].江苏化工. 1996,24(3): 38-39.
    [7]杨士豪,李莉萍,杨建文.苯妥英钠的合成工艺改进[J].中国医药工业杂质. 1995,26(1): 4-5.
    [8] Zirkle, C L.; Anderson, E L.; Craig, P N.; Gerns, Fred R.; Indik, Z K.; Pavloff, A M.3-Substituted Tropane Derivatives 3-Substituted Tropane Carbinols Alkenes andAlkanes[J]. J. Med. Pham. Chem. 1962, (5): 341-356.
    [9]谷珉珉,贾韵仪,姚子鹏.有机化学实验[M].上海:复旦大学出版社, 1991.
    [10] John A, Pianfetti W L, JohnsonF, Edward F. Process for making 3-quinuclidinylbenzilate[P]. US: 3118896, 1962.
    [11]吴培金,恽榴红.抗胆碱药2-(1-萘基)-2-环戊基-2-羟基乙氧基环烃胺类化合物的合成[J].中国药物化学杂志. 1999, 9(2): 102-105.
    [12]葛邦伦,吴瑞琴,唐琴梅,仇达萍等.某些取代羟乙酸哌啶醇酯类化合物的合成及抗胆碱作用的研究[J].药学学报. 1985, 20(6): 427-432.
    [13] Joel D W, Newport T. Process for Benzilic esters[P]. US: 3252981, 1966.
    [1] Pauling, P.; Datta, N. Anticholinergic substances: A single consistent conformation[J].Proc. Natl. Acad. Sci. USA. 1980, 77(2): 708-712.
    [2] Rzeszotarski, W J.; Gibson, R E.; Eckelman, W C.; Simms, D A.; Jagoda, E M.; Ferreira,N L,; Reba, R C. Analogues of 3-quinuclidinyl benzilate[J]. J. Med. Chem. 1982, 25(9):1103-1106.
    [3]高守海,恽榴红.三环羧酸酯的|á-羟基化反应的研究.合成化学, 1995, 3(1): 49-52.
    [4] Davis, M A. Spiro oxazolidinedione derivatives[P]. US: 3138608, 1964.
    [5] Ueda, I. The Rearrangement of 10-Bromo-10, 11-Dihydrodibenzo [b, f] thiepin-11-oneand Related Compounds in an Alkaline Solution[J]. Bull. Chem. Soc. Japan. 1975,48(8): 2306-2309.
    [6] Fuji, K.; Ueda, M.; Sumi, K. 2-Ethylthio-1, 3-Benzodithiole: A Methoxycarbonyl AnionEquivalent. A General Synthesis of |á-Hydroxy Esters[J]. Synth Commun. 1981, 11(3):209 -215.
    [1]陆模文,胡文祥,恽留红.有机微波化学研究进展[J].有机化学. 1995, 15(6):561-566
    [2]李丽华,翟玉春,张金生,王吉林,于廷云.微波技术在催化领域中应用的研究进展[J].材料与冶金学报. 2005, 14(11): 40-43.
    [3]王静,姜凤超.微波有机合成反应的新进展[J].有机化学. 2002, 22(3): 212-219.
    [4]贺鹤明,蒋大振,孙铁.微波场下水滑石的快速合成制备[J].高等学校化学学报.1992, 13(11): 1462-1463.
    [5]矫庆泽,郭金福,毛丽秋,蒋大振.微波辐射下LaNaY沸石的水热交换反应[J].应用化学. 1994, (3): 84-85.
    [6]曹晔,曹泮香,胡文祥.微波密封罐消解AAS法测定螺旋藻中金属元素含量[J].现代科学仪器. 2000, (5): 47-48.
    [7]于爱民,李全忠,金钦汉.表面波激发微波等离子体-醋酸钴解离沉积钴薄膜的研究[J].高等学校化学学报. 1993, 14(7): 935-936.
    [8]黄生乔,马兵.微波等离子体化学合成纳米粉体材料研究与应用[J].过程工程学报.2002, 2(6): 564-569.
    [9]金钦汉,微波化学[M].北京:科学出版社, 1999.
    [10]黄卡玛,刘永浦,唐敬贤.电磁波对化学反应非致热作用的实验研究[J ].高等学校化学学报. 1996, 17(12): 764-768.
    [11]苏跃增,孙晓娟,许晓琴.微波对胶体稳定性的影响[J].化学世界. 2001, (10):514-516.
    [12]余建平,王科军,林燕.在微波作用下正交设计合成丙烯酸十六酯[J].化工科技.2005, 13(6): 14-17.