9-羟基—呫吨-9-乙基(环烃胺基)醚类化合物的设计合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗胆碱能药物是一类重要的外周神经系统药物,它能阻滞胆碱受体,使递质乙酰胆碱不能与受体结合。临床上,是治疗有机磷中毒的主要药物之一,此外还用作散瞳药、制止分泌药、解痉止痛药以及肌肉松弛剂等:军事上,用来对付化学武器的袭击,作为反恐药物对付恐怖分子。近年来,对此类药物的研究已经成为全球的热点。
     最初,抗胆碱能药是从天然药物中提取,目前研究重点以合成为主。但是,许多抗胆碱能药物起效慢并且副作用大,限制了此类药物的临床应用。因此,寻找活性好,选择性高,作用强,毒性低及具有新适应症的新型抗胆碱药物成为当前药物合成工作者的热点之一。抗胆碱能药物的主要是胆碱能神经递质乙酰胆碱竞争M受体和N受体,所以抗胆碱能药的结构一定要契合M受体和N受体的结构才能显示高效生物活性。大多数抗胆能化合物具有较强的抗M作用而没有强的抗N作用。其中,三环类抗胆碱能药物是一类具有较强抗胆碱能活性的药物。
     文献报道过的呫吨类抗胆碱药物多为氨基醇酯类化合物,其结构可以分为环状基团、含氮基团和酯基三个部分,但根据M受体拮抗剂的构效关系我们知道,环状基团与M受体上相应的亲酯性区域通过疏水键或范德华力发生附加结合,阻断乙酰胆碱对受体的作用。而且酯键并不是抗胆碱活性所必需的,也可以是醚键,即氨基醇醚类化合物。我们根据三取代乙氧基羟胺类抗胆碱能药物的合成方法设计合成了9-羟基呫吨-9-甲氧基胺类化合物。以期待获得选择性高,作用强,毒性低及具有新适应症的新型抗胆碱药物。
     我们在参考文献的基础上,设计了合成路线,以邻氯苯甲酸为起始原料经过Ullmann缩合和脱水闭环得到呫吨酮,然后在硫叶立德作用下合成出其环氧乙烷中间体;目标化合物的阳离子头部分我们选用哌啶环状基团,以异烟酸为原料,经过酯化、氢化还原合成了1-甲基-4-哌啶甲醇,最后在氢化钠的作用下合成了目标化合物。由于时间原因,未能针对该化合物建立动物模型开展活性测试工作。尽管如此,实验还是为将来药物筛选、组合以及药理学研究提供了参考依据。
     另外,我们用三氯氧磷为酰氯化试剂合成了水杨酸酯类紫外线吸收剂水杨酸苯酯和水杨酸对辛基苯酯,实验证明该方法具有操作简便、条件温和、环境友好等优点,是一条适合工业化生产的合成路线。
Anticholinergic drugs are a class of important peripheral nervous system drugs,which block cholinergic receptors,so that neurotransmitter acetylcholine receptor-binding and should not. Clinically,it is the treatment of organophosphate poisoning,one of the main drugs,in addition to drugs used to stop the secretion,mydriatics,spasmolytic and muscle relaxant analgesic agent,etc. Militarily,to deal with chemical weapons attacks,as the anti-terror drug dealing with terrorists. In recent years,studies of such drugs has become a global hot spots.
     Initially,the anti-cholinergic drugs are extracted from natural substances,and the present study mainly focuses on synthesis.However,many anti-cholinergic drugs have the effect to be slow and the side effect is big,which limited the clinical application of these drugs.Therefore, looking for good activity,high selectivity,the role of strong,low toxicity and a new indication for a new anticholinergic drags has become the one of the hot spots for drug synthetic workers. Anticholinergic drags are the main cholinergic neurotransmitter acetylcholine receptor M and N competition receptors,so its structure must fit M to N receptor and receptor in order to show the efficiency of the structure of biological activity.The majority of anti-cholinergic drugs has strong anti-M role but not the role of strong anti-N.Among them,the tricyclic anti-cholinergic drugs are a class of strong activity of anticholinergic drugs.
     Have been reported in the literature category xanthene anticholinergic drugs for many amino alcohol esters,and its ring structure can be divided into groups,nitrogen-containing ester groups and three parts.However,according to M-receptor antagonist structure-activity relationship of us know that the cyclic group with M receptor on the corresponding region of the pro-ester bond or through hydrophobic van der Waals force additional happen combination of blocking acetylcholine receptors.Ester and anti-cholinergic activity is not necessary,it could be ether bond,that is,amino-alcohol compounds.We according to the three types of ethoxy hydroxylamine anticholinergic drug design and synthesis 9-hydroxyl-xanthene-9-ethyl(cycloalkylamino)ethers to look forward to the high selectivity,the role of strong,low toxicity and a new indication for a new type of anti-cholinergic drugs.
     At our reference on the basic design of the synthetic route to o-chlorobenzoic acid as the starting material through Ullmann condensation and dehydration have been xanthene-one closed-loop,and then at the role of sulfur ylides under its ethylene oxide synthesis intermediates. We chose piperidine ring for the cationic compound,isonicotinic acid as raw material,after esterification,hydrogenation reduction synthesized 1-methyl-4-piperidine methanol,and finally at the role of sodium synthesized target compounds.Because of time reasons,we can not set up for the compounds to carry out activity in animal model testing.Nevertheless,it is providing a refference for future drug screening,combinatorial and pharmacological research.
     In addition,we used phosphorus oxychloride reagent for synthesis of the UV absorber of salicylic acid esters,phenyl salicylate and p-octylphenyl salicylate.Experiments show that the method is simple and mild conditions,the advantages of environmentally friendly,and is a suitable synthetic route for industrial production.
引文
[1]仉文升,李安良.药物化学[M].北京:高等教育出版社,1999.
    [2]郑虎.药物化学[M].北京:人民卫生出版社,2007.
    [3]杨志荣,修永欣.有机磷农药中毒的治疗进展[J].临沂医学专科学校学报,2005,(2):159-160.
    [4]黄崇军.急性有机磷农药中毒抗胆碱药物治疗进展[J].内科,2006;1(1):71-72.
    [5]胡文祥,王建营.协同组合化学[M].北京:科学出版社,2003.
    [6]胡文祥,恽榴红.抗胆碱能药物的构象研究(Ⅱ)3-[β-(苯基环戊基羟基)乙氧基]奎宁环烷的不对称合成与分子张力及立体化学与受体作用关系研究[J].化学通报,1993,(3):41-42.
    [7]汪开治.有毒药用植物颠茄[J].植物杂志,2003,(2):26-27.
    [8]张俊松,祝承霞.抗胆碱药的合成设计[J].广东药学,1995,(4):15-21.
    [9]黄锋,代先东,胡亚兰,陈常英,朱国政[J].化学试剂,2005,27(3),141-144.
    [10]谢晶曦,刘春雪,贾效先,周瑾.山莨菪碱的全合成研究[J].科学通报,1975,(04):197-198.
    [11]Atkinson E R,McRitchie-Ticknor D D,Harris L S,et al.Parasympatholytic(anticholinergic)esters of the isomeric 2-tropanols.2.Non-glycolates[J].J.Med.Chem,1983,26(12):1772-1775.
    [12]Eberlein W G,Trummlitz G,Engel W W,et al.Tricyclic compounds as selective antimuscarinics.1.Structural requirements for selectivity towards the muscarinic acetylcholine receptor in a series of pirenzepine and imipramine analogs[J].J.Med.Chem,1987,30(8):1378-1382.
    [13]Eberlein W G,Engel W W,Trummlitz G,et al.Tricyclic compounds as selective antimuscarinics.2.Structure-activity relationships of M1-selective antimuscarinies related to pirenzepine[J].J.Med.Chem,1988,31(6):1169-1174.
    [14]王宗君,胡文祥.二苯羟乙酸酯酶促合成[J].广西大学学报(自然科学版).1999,24(12):70-72.
    [15]Noronha-Blob L,Kachur J F,et al.Enantiomers of oxybutynin:in vitro pharmacologic characterization at M1,M2 and M3 muscarinic receptors and in vivo effects on urinary bladder contraction,mydriasis and salivary secretion in guinea pigs[J].J Pharmacol Exp Ther,1991,(256):562-567.
    [16]Scapecchi S,Angeli P,Dei S,et al.Dialkylaminoalkyl Esters of 2,2-diphenyl-2-alkylthioacetic acids:a new class of potent and functionally selective muscarinic antagonists[J].Bioorg.Med.Chem,1994,2(10):1061-1074.
    [17]王兰明.抗胆碱药盐酸环喷托酯的合成[J].化工时刊.1999,13(1):36-37.
    [18]吴培金,恽榴红.抗胆碱药2-(1-萘基)-2-环戊基-2-羟基乙氧基环烃胺类化合物的合成 [J].中国药物化学杂志,1999,9(2):102-105.
    [19]Harms A F,Nauta.The Effects of Alkyl Substitution in Drugs-Ⅰ.Substituted Dimethylaminoethyl Benzhydryl Ethers[J].J.Med.Chem,1959,2(1):57-77.
    [20]Farquharson M E,Johnston R G.Antagonism of the effects of tremorine by tropine derivatives[J].Br J.Pharmacol.Chemother,1959,14(4):559-566.
    [21]高建华,冉允章,张其楷.抗胆碱药α-环戊基苯甲氧基烃胺类化合物的合成[J].药学学报,1986,21(04):265-271.
    [22]肖文彬.全国药理学术会议论文摘要集(二)[D].黑龙江哈尔滨,1982,61.
    [23]Zirkle C L,Anderson E L,Craig P.N,et al.3-Substituted Tropine Derivatives Ⅲ3-Substituted Tropane Carbinols,Alkenes,and Alkanes[J].J.Med.Pharm.Chem,1962,(5):341-345.
    [24]恽榴红,文广伶,张其楷.解胆碱能药物:二苯乙基氮杂环烃衍生物的合成[J].药学学报,1984,19(09):671-675.
    [25]Hiroyuki M,Hiromi K,Hideham U,et al.Synthesis and antimuscarinic activity of a Series of 4-(1-Imidazolyl)-2,2-diphenylbutyramides:discovery of potent and subtype-selective antimuscarinic agents[J].Bioor & Med.Chem,1999,7(06):1151-1161.
    [26]Hu W X,Yun L H,Li S.Conformational analysis on anticholinergic drugs:molecular mechamics mmpm calculation of atropine and other alkaloids in the belladonna[J].Chin.Chem.Lett,1992,3(4):271-275.
    [27]Scapecchi S,Marucci R,Angeli P,et al.Structure-activity relationships in 2,2-diphenyl-2-ethylthioacetic acid esters:unexpected agonistic activity in a series of muscarinic antagonists[J].Bioor & Med.Chem.Lett,2001,9(05):1165-1174.
    [28]Jean-Philippe S,Patrice T,et al.Potent anti-muscarinic activity in a novel series of quinuclidine derivatives[J].Bioor & Med.Chem.Lett,2006,16(02):373-377.
    [29]Moersch G W,Zwiesler M L.The synthesis of alfa-Hydroxycarboxylic acids by aeration of lithiated carboxylic acids in tetrahydrofuran solution[J].Synthesis,1971:647.
    [30]高守海,恽榴红.三环羧酸酯的羟基化反应研究[J].合成化学,1995,3(1):49.
    [31]Atkinson E R,McRitchie D D,Shoer L F,et al.Parasympatholytic(anticholinergic) esters of the isomeric 2-tropanols.1.Glycolates[J].J.Med.Chem,1977,20(12):1612-1617.
    [32]Atkinson E R,McRitchie D D,Harris L S,et al.Parasympatholytic(anticholinergic) esters of the isomeric 2-tropanols.2.Non-glycolates[J].J.Med.Chem,1983,26(12):1772-1775.
    [33]高建华,文广伶,张其楷.抗胆碱药3-(2-苯基-2-环戊基-2-羟基-乙氧基)奎宁环烷的立体化学和构效关系[J].药学学报,1990,25(12):891-897.
    [34]文广伶,李叔埔,张其楷.2,2,2-苯基羟基取代基乙基(环烃胺基)醚类化合物的合成[J].军事医学科学院院刊,1985,(06):613-617.
    [35]Han X Y,Liu H,Liu C H,et al.Synthesis of the optical isomers of a new anticholinergic drug,penehyclidine hydrochloride(8018)[J].Bioor & Med.Chem.Lett,2005,15(08):1979-1982.
    [36]高建华,冉允章,张其楷.抗胆碱药α-环戊基苯甲氧基烃胺类化合物的合成[J].药学学报,1986,21(04):265-271.
    [37]Corey E J,Chaykovsky M.Dimethyloxosulfonium Methylide((CH_3)_2SOCH_2) and Dimethylsulfonium Methylide((CH_3)_2SCH_2) Formation and Application to Organic Synthesis[J].J.Am.Chem.Soc,1965,87(6):1353-1364.
    [1]高守海,恽榴红.6,11-二氢二苯[b,e]氧(硫)杂卓-11-羧酸酯及其衍生物合成[J].中国药物化学杂志,1994,4(2):79-83.
    [2]Rajsner M,Bartl V,Sindelar K,et al.Synthesis of new dibenzo[b,e]thiepin derivatives related to the antidepressant agent prothiadene[J].Coll.Czech.Chem.Commun,1979,44:2536.
    [3]Rajsner M,Scatek E,Metysova J,et al.Neurotropic and psychotropic compounds ⅩⅩⅩⅢ.Contribution to the chemistry of 11 -(3-dirnethylamino-propylidene) 11-(3-dimethylamino-propylidene)-6,11-dihydrodibenzo[b,e]thiepin(prothiadene)and of related compounds[J].Coll.Czech.Chem.Commun,1969,34:1963.
    [4]Jalander L,Oksanen L,Tahtinen J.Synthesis of Dothiepin and Doxepin by Grignard Reactions in Toluene[J].Synth.Commun,1989,19(19):3349-3352.
    [5]吴培金,冉允章,文广伶,张其楷.抗胆碱药9-羟基-噻吨-9-羧酸氨基烃酯类化合物的合成[J].军事医学科学院院刊,1989,(04):284-289.
    [6]Corey E J,Chaykovsky M.Dimethyloxosulfonium Methylide((CH_3)_2SOCH_2) and Dimethylsulfonium Methylide((CH_3)ESCH_2) Formation and Application to Organic Synthesis[J].J.Am.Chem.Soc,1965,87(6):1353-1364.
    [7]吴培金.二替代羟乙酸-N-甲基-4-哌啶甲酯的合成.内部资料.
    [8]胡利红,覃章兰.呫吨酮类化合物的合成及生理活性[J].合成化学,2002,10(4):285-291.
    [9]Zhao J,Yue D W,Campo M A,Larock R C.An Aryl to Imidoyl Palladium Migration Process Involving Intramolecular C-HActivation[J].J.Am.Chem.Soc,2007,129(16):5288-5295.
    [10]Zhou C X,Larock R C.Synthesis of Aryl Ketones or Ketimines by Palladium-Catalyzed Arene C-H Addition to Nitriles[J].J.Org.Chem,2006,71(9):3551-3558.
    [11]HollemanA F.Xanthone[J].Org.Syn.,Coll,1941,(1):552.
    [12]K(u|¨)rti L,Czak(?) B.Strategic Applications of Named Reactions in Organic Synthesis[M].Burlington USA:Elsevier Academic Press,2005.
    [13]Sayrafi S E,Rayyan S.Intramolecular Acylation of Aryl- and Aroyl-Aliphatic Acids by the Action of Pyrophosphoryl Chloride and Phosphorus Oxychlodde[J].Molecules,2001,(6):279-286.
    [14]Ullmann F A.New Path for Preparing Phenyl Ether Salicylic Acid.Ber,1904,37:853-854.
    [15]洪镛裕,赵宏伟,宋静.呫吨酮及咕吨醇的合成[J].化学试剂,2006,28(10):632,634.
    [16]Wipf P,Jung J K,Formal Total Synthesis of(+)-Diepoxin[J].J.Org.Chem,2000,(65):6319-6337.
    [17]Tomita M,Fujitani K,Aoyagi Y.Cupric Oxide as an Efficient Catalyst in Ullmann Condensation Reaction[J].Chem.Pharm.Bull,1965,13(11):1341-1345.
    [18]Pell(?)n R F,Mart(?)n A,Mesa M,et al.Microwave-assisted Synthesis of 2-Phenoxybenzoic Acids[J].J.Chem.R,2006,(8):527-529.
    [19]Pell(?)n R F,Carraseo R,Mili(?)n V,Rod(?)s L.Use of Pyridine as Cocatalyst for the Synthesis of 2-Carboxy Substituted Diphenylethers by Ullmann-Goldberg Condensation[J].Synth.Comm,1995,25(7):1077-1083.
    [20]Chan D M T,Monaco K L,Wang R P,Winters M P.New N- and O-Arylation with Phenylboronic Acids and Cupric Acetate[J].Tetra.Lett,1998,39,2933-2936.
    [21]Ma D W,Xia C F.CuI-Catalyzed Coupling Reaction of β-Amino Acids or Esters with Aryl Halides at Temperature Lower than that Employed in the Normal Ullmann Reaction.Facile Synthesis of SB-214857[J].Org.Lett,2001,3:2583-2586.
    [22]Boger D L,Sakya S M,Yohannes D.Total Synthesis of Combretastatin D-2:Intramoleeular Ullmann Maerocyclization Reaction[J].J.Org.Chem,1991,56:4204-4207.
    [23]许海涛.9-羟基-呫吨-9-羧酸酯类化合物的设计合成[D].北京:首都师范大学,2007.
    [24]文广伶,李叔壎,张其楷.2,2,2-苯基羟基取代基乙基(环烃胺基)醚类化合物的合成[J].军事医学科学院院刊,1985,(06):613-617.
    [25]吴培金,恽榴红.抗胆碱药2-(1-萘基)-2-环戊基-2-羟基乙氧基环烃胺类化合物的合成[J].中国药物化学杂志,1999,9(2):102-105.
    [1]郭振宇,周淑静,丁著明.苯并三唑类紫外线吸收剂的研究进展[J].精细与专用化学品,2007,15(10):4-10.
    [2]王克昌,宁培森,丁著明.二苯甲酮类紫外线吸收剂的研究进展[J].化工文摘,2008,(1):48-53.
    [3]沈华,郭玉良,殷志剑,金雅,朱泉,石碧.三嗪类紫外线吸收剂的制备及应用性能[J].东华大学学报(自然科学版),2008,34(4):422-427.
    [4]王树清,高崇.紫外线吸收剂水杨酸对-叔丁基苯酯的合成[J].塑料助剂,2007,(4),27-29.
    [5]钟声,关岩,张玲,肖瑞华.紫外线吸收剂BAD的合成[J].鞍山钢铁学院学报,1999,22(5),264-266.
    [6]许拴善.水杨酸的衍生物[J].甘肃化工,1997,3:27-42.
    [7]黄亮,武志富.直接法合成苯甲酸苯酯的研究[J].安阳师范学院学报,2003,2:38-39.
    [8]郑时龙,李麟,胥佩菱.苯甲酸苯酯的相转移催化合成条件优化[J].华西药学杂志,1996,11(4):230-231.
    [9]Pande C.S,Jain N.Polymer-Supported Persulfonic Acid as Oxidising Agent[J].Synth.Comm,1989,19(7):1271-1279.
    [10]Yamamoto T.Copper Promoted Coupling Reaction I.Phenylation of O-H and N-H Compounds with C_6H_5X by Using Copper Catalyst Itself as the Acceptor of HX Released[J].Synth.Comm,1979,9(3):219-222.
    [11]田春良.苯甲酸苯酯合成方法研究[J].曲阜师范大学学报,2008,34(1):89-91.
    [12]方小牛,李新发,许亚平.合成水杨酸酯的催化剂研究进展[J].应用化工,2004,(5):4-7.
    [13]聂辉,武引文,耿惠琳等.苯酚直接酰化制备苯甲酸苯酯[J].河北化工,1997,(3):45.
    [14]李秀瑜.催化合成水杨酸酯的工艺研究[J].精细化工,2000,17(2):94-96.
    [15]丁盈红,张红.水杨酸苯酯的合成新方法研究[J].山西化工,2002,22(2):10-11.
    [16]佘志刚,陈育平等.DMAP催化合成苯甲酸苯酯的研究[J].化学试剂,2001,23(2):110;6.
    [17]陈良,王红.水杨酸及其下游产品开发[J].江苏化工,1994,22(4):39-40;45.