氯化钯/三氟甲基磺酸盐/含氮配体催化烯烃与CO共聚反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高分子材料的发展和聚烯烃的研究不断深入,聚烯烃功能化研究尤为令人瞩目。丰富而廉价的一氧化碳与烯烃共聚是制造功能性聚烯烃的一种有效途径。CO 和一种或多种含双键的不饱和单体进行交替共聚反应可以得到产物—聚酮高分子,其合成、性质与应用是基础研究与工业开发的热点, 而寻找高效、廉价的催化体系是聚酮研究中一项十分重要的工作。
    据报道,Pd(OAc)_2/bipy/CF_3SO_3H 体系对于苯乙烯与CO 的共聚反应具有较高的催化活性,但是当用PdCl_2替代Pd(OAc)_2后,相应的催化体系PdCl_2/bipy/CF_3SO_3H 的活性很低。论文研究了在三氟甲基磺酸盐(M(CF_3SO_3)n)的助催化作用下,首次将PdCl_2 作为催化前体用于苯乙烯与CO 共聚制备聚酮(PK)的反应体系中, 并取得了较好的催化效果。在PdCl2为1×10~(-4)mol, 2,2'-联吡啶(bipy)为5×10~(-4)mol, Cu(CF_3SO_3)_2为2×10~(-4)mol, 对苯醌(BQ)为3×10~(-3)mol, 苯乙烯为10ml, 甲醇为4ml,温度为65℃,CO 压力为3.0MPa的条件下,苯乙烯/CO 共聚活性高达1.80×10~4 gPK/(molPd·h),共聚产物重均分子量(Mw)为4.60 ×10~3g/mol 。加入一定量的溶剂邻氯苯酚后可使活性进一步提高到2.00×104gPK/(molPd·h),共聚物的重均分子量同时提高至1.86×10~4g/mol。
    本文从催化活性和共聚产物分子量等方面系统讨论了氯化钯/三氟甲基磺酸盐/含氮双齿配体催化体系中各活性组份及反应条件对苯乙烯/CO 共聚反应的影响,尤其对M(CF_3SO_3)n 良好的助催化效果及其机理进行了详细地讨论。利用量子化学理论初步计算所得结果, 分析了5-硝基-邻菲咯啉(NO_(2-)phen), 5-氨基-邻菲咯啉(NH_(2-)phen), 邻菲咯啉(phen)和bipy 等分子的键长, 键角和电子云密度, 并针对这几种含氮配体在苯乙烯与CO共聚反应中不同的助催化性能进行了合理解释。
    采用核磁共振(~1HNMR、~(13)CNMR)、傅立叶红外光谱(FT-IR)、元素分析(EA)、凝胶渗透色谱(GPC)、粉末广角X-衍射(XRD)、热重分析(TGA)和差热扫描(DSC)等检测手段对苯乙烯/CO 共聚产物(STCO)进行了详细的结构表征,证实了产物为严格交替共聚、结晶度较高的聚酮。结合前人机理研究成果对氯化钯/三氟甲基磺酸盐/含氮双齿配体新型催化体系下苯乙烯/CO 共聚反应机理进行了初步探讨。
    本文还进一步研究了氯化钯/三氟甲基磺酸盐/含氮双齿配体催化体系下张力环烯烃如双环戊二烯(DCPD)和冰片烯(NBE)与CO的共聚反应,发现此催化体系对于DCPD/CO
Copolymerization of carbon monoxide and olefins is an effective approach to prepare functional macromolecules, especially polyketones and polyalkenes. Polyketone, obtained by alternating copolymerization of carbon monoxide and olefinically unsaturated monomers such as styrene, is a class of low-cost innovative thermoplastics. The synthesis, properties and applications of polyketones are still the objects of intense fundamental and applied research.
    It was reported that the Pd(OAc)_2/bipy/CF_3SO_3H catalytic system had a very high catalytic activity on the copolymerization of styrene and CO, but if PdCl_2 was used instead of Pd(OAc)_2, the corresponding catalytic system, PdCl_2/bipy/CF_3SO_3H, had very low activity. In this paper, it is found that PdCl_2 has excellent catalytic activity on the copolymerization of styrene and CO as catalytic precursor under the prominent co-catalytic effects of M(CF_3SO_3)n. At the reaction temperature of 65℃and the pressure of CO 3.0MPa with PdCl2 1×10~(-4)mol, bipy 5×10~(-4)mol, Cu(CF_3SO_3)_2 2×10~(-4)mol, BQ 3×10~(-3)mol, styrene 10ml, methanol 4ml,the catalytic activity was 1.80×10~4gPK/(molPd·h) in the copolymerization of styrene with CO and the Mw of the styrene/CO copolymer (STCO) was 4.60×10~3g/mol. Adding solvent o-chloride-phenol into the catalytic system, the corresponding activity could be increased to 2.00×10~4gPK/(molPd·h) and the Mw of STCO also increased to 1.86×10~4g/mol.
    The effects of catalytic components and reaction conditions on the copolymerization of styrene/CO have been studied in detail for the catalytic system of PdCl_2/M(CF_3SO_3)n/N-N ligands. The prominent co-catalytic effects of M(CF_3SO_3)n and the mechanism were especially discussed. Quantum chemistry was used to calculate the bond-length, bond-angle and density of electron cloud of NO_(2-)phen, NH_(2-)phen, phen and bipy, and the different catalytic activities of these four N-N bidentate ligands in the copolymerization of styrene with CO were explained by the calculation results.
    The structure and properties of STCO were characterized by ~1HNMR, ~(13)CNMR, FT-IR, EA, GPC, XRD, TGA and DSC, and it is found that the product polyketone is the linear alternating copolymer of styrene and CO. The catalytic mechanism of the copolymerization of styrene and CO catalyzed by PdCl_2/M(CF_3SO_3)n/bipy was also discussed.
    In addition, it is shown that the catalytic system of PdCl2/M(CF3SO3)n/N-N ligands also has excellent catalytic effects on the copolymerization of dicyclopentadiene/CO and norbornene/CO. Under certain reaction conditions, the catalytic activity of DCPD/CO and NBE/CO reached to 5.73×104gP/(molPd·h) and 8.20×104 gP/(molPd·h), respectively. The cooligomers of strained olefins and CO were analyzed using various techniques such as FT-IR, 1HNMR, 13CNMR, TGA and XRD. The results indicated that the cooligomer of DCPD/CO was a polyspiroketal with different end groups. Compared with the copolymerization of styrene/CO, the activities of strained olefins with CO were much higher and the degree of crystallinity was not high due to the tension of the ring. The catalytic mechanisms of the copolymerization of DCPD/CO and NBE/CO catalyzed by PdCl2/M(CF3SO3)n/bipy were also investigated on the basis of literatures. Homogeneous catalytic systems have suffered from disadvantages such as difficult separation of the products and corrosive effect of the catalyst on the reactor. The supported catalyst will offer an alternative way to remedy the disadvantages of homogeneous catalyst. In this paper, Pd(OAc)2 and PdCl2 have been successfully immobilized on NH2-phen modified polystyrene. The structures of the resultant catalysts were characterized with various techniques such as FT-IR, XPS, EA, TGA, AAS and FESEM. The PS-phen/Pd(Ⅱ) catalysts have certain catalytic activities for the copolymerization of styrene and CO, and the catalysts could be separated easily and be reused for several times. After recycling for three times, the catalytic activity of PS-phen/Pd(OAc)2 was decreased from 1.02 ×104gPK/(molPd·h) to 570gPK/(molPd·h) and that of PS-phen/PdCl2 was decreased from 5.50×103gPK/(molPd·h) to 97.4gPK/(molPd·h) under the reaction conditions of CO 3.0MPa and 65℃. It was noteworthy that the Mw of STCO catalyzed by PS-phen/Pd(Ⅱ) were reasonably high, reaching to 6.86×103g/mol and 7.33×103g/mol, respectively. In order to discuss the mechanism of the supported catalyst, for the fresh supported catalyst PS-phen/Pd(Ⅱ) and reused catalyst after reaction, EA, AAS, FT-IR, XPS, TGA and FESEM were used to analyze the change of catalysts and the reason of decreasing of catalytic activity. It is found that the loss of Pd and N is the main factor to result in the decreasing of catalytic activity.
    In conclusion, the copolymerization of styrene, dicyclopentadiene and norbornene with carbon monoxide has been studied in this paper, and the novel catalytic system of PdCl2/M(CF3SO3)n/N-N ligands is found to have excellent effects on the copolymerization. The catalytic mechanism of the copolymerization catalyzed by this new system was discussed in detail. The study on this new catalytic system provides a valuable foundation for exploiting the system of polyketone with great perspective of application.
引文
[1] Sen A. The copolymerization of carbon monoxide with olefins. Adv. Polym. Sci., 1986, 73/74: 125~144
    [2] Kawaguchi T., Kanno M., Yanagihara T. et al. Reaction of carbon monoxide with strained alkenes catalyzed by a cationic palladium (Ⅱ) complex. J. Mol. Catal. A: Chem., 1999, 143: 253~262
    [3] 郑荣华, 张一峰, 沈之荃. 一氧化碳与烯烃共聚及其功能高分子. 高分子通报, 1996, 1: 36~37
    [4] 冯亚凯, 孙经武, 朱银邦. 利用一氧化碳合成高分子材料. 高分子通报, 1997, 1: 49~53
    [5] 孙启波, 潘为森, 张增智. 新型功能高分子材料—聚酮. 辽宁化工, 2000, 29(3): 158~159
    [6] Coffman D. D., Pinkney P. S., Wall F. T. et al. Compositional Relationships in the Copolymerization of Ethylene with Carbon Monoxide. J. Am. Chem. Soc., 1952, 74(13): 3391~3393
    [7] Brubaker M. M., Coffman D. D., Hoehn H. H. Synthesis and Characterization of Ethylene/Carbon Monoxide Copolymers, A New Class of Polyketones. J. Am. Chem. Soc., 1952, 74(6): 1509~1515
    [8] Colombo P., Steinberg M., Fontana J. γ-ray initiated copolymerization of ethylene and carbon monoxide. J. Polym. Sci., Part B, 1963, 1(8): 447~450
    [9] 樊汝栋. 石化工业的一个增长点-聚合物共混物. 现代化工, 1998, 11: 13~16
    [10] 樊汝栋. 石油化学工业的增长点. 石油化工, 1997, 26(7): 474~479
    [11] 罗河宽, 李达刚, 李树本. CO/烯烃共聚制聚酮高分子. 化学通报, 1996(9): 9~10
    [12] Fenton D. M., Calif A. Ethylene-Carbon Monoxide Copolymers. US, 3, 530, 109, 1970. 1~5
    [13] Shryne T. M., Holler H. V. Process to prepare polyketones. US, 3, 984, 388, 1976. 1~8
    [14] Iwashita Y., Sakuraba M., Nakamura A. Ketones. JP, 74 48, 406, 1974. 1~3
    [15] Drent E. Polyketones. EP, 121, 965, 1984. 1~14
    [16] 冯亚凯, 孙经武. 一氧化碳和α-烯烃共聚物制备方法. 天然气化工, 1996, 21(1): 43~46
    [17] Drent E. Catalytic Process for the Preparation of Polyketones from Carbon Monoxide and Ethylenically Unsaturated Hydrocarbon. US, 4, 818, 810, 1989. 1~6
    [18] 约汉斯·安德里诺斯·玛利亚,玛尔坦·玛利诺斯,詹姆斯·亚瑟. 一氧化碳与一种或多种不饱和烯烃族化合物的聚合物的制备方法. CN, 1, 032, 173A, 1989. 1~14
    [19] 约翰尼斯·安德里诺斯·范·多伦爱特·德林特,伦纳德·艾格伯特·亨利·杰拉德斯. 催化剂组合物. CN, 1, 042, 717A, 1990. 1~9
    [20] Broekhoven V., Maria J. A., Drent E. Catalyst Compositions. EP, 0, 239, 145B1, 1987. 1~6
    [21] 普·万·王,约翰尼斯·雅各布斯·凯斯伯, 亚历山大·威廉·万得马迪. 制备一氧化碳和烯属不饱和化合物的聚合物用催化剂组合物. CN, 1, 048, 707A, 1991. 1~21
    [22] Drent E., Budzelaar P. H. M. Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide. Chem. Rev., 1996, 96: 663~681
    [23] Wong P. K., Keijsper J. J., van der Made A.W. Catalyst compositions for the preparation of polymers of carbon monoxide with olefinically unsaturated compounds. EP, 0, 408, 155 B1, 1990. 1~16
    [24] Bianchini C., Lee H. M., Meli A. et al. Copolymerization of Carbon Monoxide with Ethene Catalyzed by Palladium( Ⅱ) Complexes of 1,3-Bis (diphenylphosphine) propane Ligands Bearing Different Substituents on the Carbon Backbone. Macromolecules, 1999, 32: 4183~4193
    [25] Dumbar K. R., Sun J. S. Synthesis and Structure of the Distorted Octahedral Palladium( Ⅱ) Complex Pd(tmpp)2(BF4)2 (tmpp=tris(2,4,6-trimethoxyphenyl) phosphine). J. Chem. Soc. Chem. Commun., 1994, 2387~2388
    [26] Sen A., Jiang Z. Palladium( Ⅱ)-Catalyzed Alternating Copolymerization and Terpolymerization of Carbon Monoxide with α-Olefins: Formation of Syndiotactic Copolymers as well as Terpolymers with both Syndiotactic and Atactic Segments. Macromolecules, 1993, 26: 911~915
    [27] Sirbu D., Consiglio G., Milani B. et al. Palladium complexes with meso-bioxazoline ligands for alternating styrene/CO copolymerization: Counterion effect. J. Organomet. Chem., 2005, 690(9): 2291~2299
    [28] Feng Y., Sun J., Yao F. et al. Synthesis of Functional Styrene Derivatives-Carbon Monoxide Copolymer. J. Appl. Polym. Sci., 1998, 68: 855~857
    [29] Nozaki K., Sato N., Takaya H. Highly Enantioselective Alternating Copolymerization of Propene with Carbon Monoxide Catalyzed by a Chiral Phosphine-phosphite Complex of Palladium(Ⅱ). J. Am. Chem. Soc., 1995, 117: 9911~9912
    [30] Milani B., Paronetto F., Zangrando E. Ligand driven σ, π-η3 structural rearrangements of organopalladium complexes: their relevance to the CO/styrene copolymerization reaction. J. Chem. Soc. Dalton Trans., 2000, 3055~3057
    [31] Bianchini C., Lee H. M., Barbaro P. et al. Copolymerization of carbon monoxide with ethene catalyzed by bis-chelated palladium(Ⅱ) complexes containing diphosphine and dinitrogen ligands. New J. Chem., 1999, 23(9): 929~938
    [32] Jiang Z., Sen A. Water-Soluble Palladium(Ⅱ) Compounds as Catalysts for the Alternating Copolymerization of Olefins with Carbon Monoxide in an Aqueous Medium. Macromolecules, 1994, 27: 7215~7216
    [33] Bastero A., Claver C., Ruiz A. et al. New catalysts for the alternating copolymerization of 4-tert-butylstyrene/CO. J. Organomet. Chem., 2001, 619: 287~292
    [34] Milani B., Scarel A., Zangrando E. et al. Cationic palladium complexes with mono-and bidentate nitrogendonor ligands: synthesis, characterization and reactivity in CO/styrene copolymerization reaction. Inorg. Chim. Acta, 2003, 350: 592~602
    [35] Sirbu D., Consiglio G., Milani B. et al. Palladium complexes with meso-bioxazoline ligands for alternating styrene/CO copolymerisation: Counterion effect. J. Organomet. Chem., 2005, 690: 2291~2299
    [36] Bruckner S., Rosa C. D., Corradini P. et al. Crystal Structure of the Isotactic Alternate Copolymer between Carbon Monoxide and Styrene. Macromolecules, 1996, 29: 1535~1539
    [37] Corradini P., Rosa C. D., Panunzi A. et al. The structure of poly (1-oxo-2-phenyltrimethylene): a crystalline alternating styrene-carbon monoxide copolymer. Chimia, 1990, 44 (3): 52~54
    [38] Nozaki K., Hijama T. Stereoselective alternating copolymerization of carbon monoxide with alkenes. J. Organomet. Chem., 1999, 576: 248~253
    [39] Belov G. P. Cationic PdⅡ, NiⅡ, and RuⅡcomplexes in the synthesis of alternating copolymers of CO with vinyl monomers. Russian Chemical Bulletin, International Edition, 2002, 51(9): 1605~1615
    [40] Ingo B., Wilhelm K., Stefan K. et al. Synthesis an catalytic activity of ally, methallyl and methyl complexes of nickel(Ⅱ) and palladium(Ⅱ) with biphosphine monoxide ligands: oligomerization of ethylene and copolymerization of ethylene and carbon monoxide. J. Mol. Catal. A: Chem., 2000, 157: 41~58
    [41] Sylvie Y. D., Kingsley J. C., Jason L. H. et al. Single componet N-O chelated arylnickel(Ⅱ) complexes as ethene polymerization and CO/ethene copolymerization catralysts. Examples of Ligands induced changes to the reaction pathway. J. Organomet. Chem., 1997, 544: 163~174
    [42] Edward G., Brame J. R. Applications of Polymer Spectroscopy. New York San Francisco London: Academic Press, 1978. 19
    [43] Sen A., Lai T. W. Novel Palladium(Ⅱ)-catalyzed Copolymerization of Carbon Monoxide with Olefins. J. Am. Chem. Soc., 1982, 104: 3520~3522
    [44] Lommerts B. J., Klop E. A., Aerts J. Structure and Melting of Perfectly Alternating Ethylene-Carbon Monoxide Copolymers. J. Polym. Sci., part B: Polymer Physics, 1993, 31: 1319~1330
    [45] Trifuoggi M., De Rosa C., Auriemma F. et al. Crystalline Structure of Some Alternate Copolymers between Carbon Monoxide and Styrene Derivatives. Macromolecules, 1994, 27: 3553~3559
    [46] Drent E., van Broekhoven J. A. M., Doyle M. J. Efficient palladium catalysts for the copolymerization of carbon monoxide with olefins to produce perpectly alternating polyktones. J. Organomet. Chem., 1991, 417: 235~251
    [47] Jiang Z., Dahlen G. M., Houseknecht K. et al. Palladium(Ⅱ)-Catalyzed Alternating Copolymerization of Carbon Monoxide with α-Olefins: Synthetic and Mechanistic Aspects. Macromolecules, 1992, 25: 2999~3001
    [48] Barb W. G. A Suggested Reaction Mechanism for the Copolymerization of Ethylene and Carbon Monoxide. J. Am. Chem. Soc., 1953, 75: 224~226
    [49] 罗河宽, 李达刚. 钯(Ⅱ)催化CO/乙烯交替共聚反应机理-反应状态下钯/膦配位结构的原位~(31)PNMR 研究. 化学学报, 1996, 54: 697~701
    [50] Brumbaugh J. S., Whittle R. R., Parvez M. et al. Insertion of Olefins into Palladium(Ⅱ)-Acyl Bonds. Mechanistic and Structural Studies. Organometallics, 1990, 9: 1735~1747
    [51] Dekker G. P. C. M., Elsevier C. J., Vrieze K. et al. Influence of ligands and anions on the insertion of alkenes into palladium-acyl and palladium-carbomethoxy bonds in the neutral complex (dppp)Pd(C(O)CH_3)Cl and the ionic complexes [(P-P)PdR(L)]~+SO_3CF_3~-(P-P=dppe, dppp, dppb; R=C(O)CH3, L=CH3CN, PPh3; R=C(O)OCH3, L=PPh3). J. Organomet. Chem., 1992, 430: 357~372
    [52] Ozawa F., Hayashi T., Koide H. et al. Insertion of Alkenes into a Palladium-Acetyl Bond. J. Chem. Soc. Chem. Commun., 1991, 1469~1470
    [53] Brookhart M., Rix F. C., Desimone J. M. Palladium(Ⅱ) Catalysts for Living Alternating Copolymerization of Olefins and Carbon Monoxide. J. Am. Chem. Soc., 1992, 114: 5894~5895
    [54] Batistini A., Consiglio G. Mechanistic Aspects of the Alternating Copolymerization of Carbon Monoxide with Olefins Catalyzed by Cationic Palladium Complexes. Organometallics, 1992, 11: 1766~1769
    [55] Wong P. K., van Doorn J. A., Drent E. et al. Palladium-catalyzed alternating copolymerization of propylene and carbon monoxide. Formation of poly (spiroketal/ketone). Ind. Eng. Chem. Res., 1993, 32: 986~988
    [56] Sen A. Mechanistic aspects of metal-catalyzed alternating copolymerization of olefins with carbon monoxide. Acc. Chem. Res., 1993, 26: 303~310
    [57] Bronco S., Gindro E. L. P. Olefin-carbon monoxide alternating opticallyactive copolymers and terpolymers. Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering, ACS 1997, 76: 106~107
    [58] Ash C. E. Alternating olefin/carbon monoxide polymers: A new family of thermoplastics. Int. J. Polym. Mater., 1995, 30 (1-2): 1~13
    [59] 冯亚凯, 孙经武. 新型高分子-聚酮. 高分子材料科学与工程, 1996, 12 (1): 1~6
    [60] 王新英. 环境友好材料聚酮STCO 的合成与性能研究:[博士学位论文]. 保存地点:天津大学图书馆,2001.
    [61] Murtuza S., Harkins S. B., Sen A. Palladium (Ⅱ)-catalyzed synthesis of alternating fluoroalkene-carbon monoxide copolymers. Macromolecules, 1999, 32(26): 8697~8702
    [62] Clark J. H., Cullen S. R., Barlow S. J. et al. Environmentally Friendly Chemistry using Supported Reagent Catalysis: Sturcture-Property Relationships for Clayzic. J. Chem. Soc., Perkin Trans II, 1994, 6: 1117~1130
    [63] Beck J. S., Vartuli J. C., Roth W. J. et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., 1992, 114: 10834~ 10843
    [64] 王波, 顾彦龙, 杨立明等. 有机/无机杂化材料负载金属配合物催化剂—Sol-gel技术的新应用. 分子催化, 2003, 17(6): 468~480
    [65] McNamara C. A., Dixon M. J., Bradley M. Recoverable Catalysts and Reagents Using Recyclable Polystyrene-Based Supports. Chem. Rev., 2002, 102: 3275~3300
    [66] 齐兴义, 王国甲, 叶兴凯等. 钴(II)邻菲咯啉、8-羟基喹啉配合物/Y型分子筛的制备、表征及催化苯酚羟化的研究. 高等学校化学学报, 1996, 17(6): 39~943
    [67] 齐兴义, 王国甲, 张伟德等. 铁、钴、铜肽菁/Y型分子筛的制备、表征及催化苯酚羟化的研究. 高等学校化学学报, 1995, 16(5): 791~795
    [68] 刘持标, 叶兴凯, 吴越. 八羟基喹啉铁(III)/MCM-41对苯酚羟化的催化作用. 催化学报, 1997, 18(2): 1402~1431
    [69] Kozheunikov I. V., Sinnema A., Jansen R. J. et al. Study of Catalysts Heteropoly Acid HPW Supported on MCM-41 and Amprphors Silica. Catal. Lett., 1994, 30(1~4): 241~252
    [70] 郑荣辉, 曾金龙. 羧酸和醇类酯化反应的高分子载体催化剂. 精细化工, 1996, 13(6): 43~45
    [71] 黄文强, 杨新林, 李晨曦等. 聚苯乙烯磺酸树脂与三氯化铝复合树脂的合成及其对酯化反应的催化性能. 离子交换与吸附, 1997, 13(2): 160~168
    [72] 尹静波, 陈学思, 张龙等. 钯-高分子载体催化剂对糠醛加氢液相反应的研究. 高等学校化学学报, 2002, 23(7): 1363~1366
    [73] 陈义镛, 魏详, 陈伟国等. 3-氨甲基吡啶树脂的合成及五种氨基吡啶树脂对金铂吸附性的比较. 功能高分子学报, 1994, 7(4): 373~380
    [74] 魏荣宝, 梁娅, 卢世荣. 聚苯乙烯支载N-烷基-N-苄基氨基吡啶的合成及催化活性研究. 离子交换与吸附, 1998, 14(1): 47~52
    [75] 郑晓亮, 曹维孝. 4-乙烯基吡啶-苯乙烯共聚正离子与十二烷基硫酸钠相互作用研究. 高分子学报, 1998, 3: 377~380
    [76] 张春刚, 张邦华, 宋某道等. 苯乙烯-乙烯基吡啶两嵌段共聚物的合成与表征. 高分子学报, 1998, 3: 293~298
    [77] Card R. J., Neckers D. C. Preparation of Polymer-Bound Bipydine and Some of Its Transition Metal Complexes. J. Am. Chem. Soc., 1977, 99: 7733~7734
    [78] Card R. J., Liesner C. E., Neckers D. C. Poly(styryl)bipyridinepalladium Complexes as Heterogeneous Catalyst for Hydrogenation of Alkenes and Alkynes. J. Org. Chem., 1979, 44(7): 1095~1098
    [79] Moreau J. J. E., Michel W. C. M. The Design of Selective Catalysts from Hybrid Silica-Based Materials. Coord. Chem. Rev., 1998, 178~180: 1073~1084
    [80] Ballard R. L., Tuman S. J., Fouquette D. J. et al. Effects of an Acid Catalyst on the Inorganic Domain of Inorganic-Organic Hybrid Materials. Chem. Mater., 1999, 11: 726~735
    [81] Jia M., Seifert A., Thiel W. R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene. Chem. Mater., 2003, 15: 2174~2180
    [82] Lagasi M., Moggi P. Anchoring of Pd on Silica Functionalized with Nitrogen Containing Chelating Groups and Application in Catalysis. J. Mol. Catal. A: Chem., 2002, 182~183: 61~72
    [83] 黄想亮. 氯化钯/三氟甲基磺酸盐/含N 双齿配体催化苯乙烯与CO 交替共聚的研究:[硕士学位论文]. 保存地点:华中科技大学图书馆,2005.
    [84] Lecomte J. P., Mesmaeker A. K. D., Demeunynck M. et al. Synthesis and Characterisation of A DNA-bind Bifunctional Ruthenium(II) Complex. J. Chem. Soc., Faraday Trans, 1993, 89(17): 3261~3269
    [85] 冯亚凯, 孙经武, 朱银邦等. 一氧化碳和苯乙烯类单体交替共聚物的合成与性能. 高分子材料科学与工程, 1997, 13(Suppl): 21~27
    [86] Barbara M., Alessandro S., Ennio Z. et al. Cationtic palladium complexes with mino-and bidentate nitrogen-donor ligands: synthesis, characterization and reactivity in CO/styrene copolymerization reaction. Inorg. Chim. Acta, 2003, 350: 592~602
    [87] 冯亚凯, 孙经武, 朱银邦. 聚(1-氧代-2-苯基丙撑)的热分解动力学研究. 高分子材料科学与工程, 1996, 12(6): 68~73
    [88] 郭锦堂, 刘冰, 李伶等. 钯-稀土催化一氧化碳和苯乙烯交替共聚反应. 催化学报, 2004, 25(3): 231~237
    [89] 冯亚凯, 孙经武, 黄积涛等. 一氧化碳与苯乙烯交替共聚物的合成与表征. 高分子材料科学与工程, 1997, 13(4): 24~28
    [90] 王海君, 王来来. 钯配合物催化的α-烯烃与一氧化碳对映选择性交替共聚反应研 究进展. 分子催化, 2005, 19(3): 230~239
    [91] 北京大学, 吉林大学. 无机化学. 版本(第三版). 北京:高等教育出版社, 1998. 95~503
    [92] 罗河宽, 李达刚, 寇元. 钯催化CO&乙烯共聚配体和阴离子效应. 物理化学学报, 2000, 16(3): 273~278
    [93] 李达刚, 王喜文, 罗河宽. 一氧化碳与乙烯共聚制聚酮高分子. 石油化工, 1998, 27(12): 895~898
    [94] Barbara M., Enzo A., Giovanni M. et al. Synthesis and Characterization of Monochelated Carboxylatopalladium( Ⅱ) Complexes with Nitrogen-donor chelating Ligands. Crystal Structures of Diacetato-(1,10-phenanthroline)-and Diacetato (2,9-dimethyl-1,10-phenanthroline)-palladium( Ⅱ) . J. Chem. Soc. Dalton Tran., 1994, 1903~1911
    [95] Nishigaki S., Yoshioka H., Nakatsu K. The Crystal and Molecular Structure of o-Phenanthroline. Acta Cryst., 1978, B34: 875~879
    [96] Merritt L. L., Schroeder E. D. The Crystal Structure of 2,2’-Bipyridine. Acta Cryst., 1956, 9: 801~804
    [97] Satoshi N., Hiroshi Y., Kazumi N. The Crystal and Molecular Structure of σ-Phenanthroline. Acta Cryst., 1978, B34: 875~879
    [98] 宋之刚, 张玉军, 陈文军. 关于邻菲咯啉分子的量子化学计算. 甘肃教育学院学报, 2003, 17(1): 35~38
    [99] Nakamoto K. Ultraviolet Spectra And Structures of 2,2 ′-Bipyridine and 2,2’,2”-Terpyridine In Aqueous Solution. J. Phy. Chem., 1960, 64: 1420~1425
    [100] Luo H. K., Kou Y., Wang X. W. et al. Studies on palladium-bisphosphine catalyzed alternating copolymerization of CO and ethylene. J. Mol. Catal. A: Chem., 2000, 151: 91~113
    [101] Luo H. K., Li D. G. Studies on new palladium ( Ⅱ) catalyst system for copolymerization of CO with ethylene. J. Mol. Catal. A: Chem., 2001, 171: 23~31
    [102] 王新英, 郭锦堂, 孙经武等. 可降解材料聚酮液相聚合催化体系的研究. 化学工业与工程, 2001, 18(4): 210~214
    [103] Benetollo F., Bertani R., Bombieri G. et al. Synthesis, characterization and X-ray structure of [Pd(dppp)(H2O)(TsO)][TsO]. Inorg. Chim. Acta, 1995, 233: 5~9
    [104] 罗河宽, 李达刚. 钯( Ⅱ) 催化CO/乙烯交替共聚溶剂效应的研究. 高分子学报, 1998, 3: 299~303
    [105] 王新英, 郭锦堂, 许涌深等. 一氧化碳与苯乙烯溶液聚合反应研究. 天津大学学报, 2001, 34(2): 250~251
    [106] 冯亚凯, 孙经武, 朱银邦. 钯( Ⅱ) /2,2’-联吡啶催化一氧化碳和苯乙烯的交替共聚反应. 催化学报, 1996, 17(1): 53~58
    [107] Vavasori L., Toniolo M. Carbon monoxide-ethylene copolymerization catalyzed by a Pd(AcO)_2/dppp/TsOH system: The promoting effect of water and of the acid. J. Mol. Catal. A: Chem., 1996, 110: 13~23
    [108] Barbara M., Gianni C., Giovanni M. Highly Efficient Catalytic System for the CO/Styrene Copolymerization: Toward the Stabilization of the Active Species. Organometallics, 2000, 19: 3435~3441
    [109] Barbara M., Anna A., Lidia V. et al. Bis-Chelated Palladium(II) Complexes with Nitrogen-Donor Chelating Ligands. Organometallics, 1997, 16: 5064~5075
    [110] 许涌深, 孙涛, 曹平等. 钯络合物催化CO/St 共聚合动力学. 化学学报, 2001, 52(9): 793~796
    [111] Forbes M. D. E., Ruberu S. R., Nachtigallova D. et al. Site-Selective Photochemistry in an Alternating 2-Norbornyl-CO Copolymer: Importance of Stereoelectronic Effects. J. Am. Chem. Soc., 1995, 117: 3946~3951
    [112] Bianchini C., Meli A. Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis. Coord. Chem. Rev., 2002, 225: 35~66
    [113] Baldwin M. G. Kinetics of Alternating Copolymerization. J. Poly. Sci.: Part A., 1965, 3: 703~710
    [114] Kawaguchi T., Kanno M., Yanagihara T. et al. Reaction of carbon monoxide with strained alkenes catalyzed by a cationic palladium (Ⅱ) complex. J. Mol. Catal. A: Chem., 1999, 143: 253~262
    [115] Liaw D. J. Copolymerization of Carbon Monoxide with 1,3-Cyclopentadiene by Palladium Complexes. J. Poly. Sci.: Part A., 1993, 31: 309~316
    [116] Drent E. Novel catalyst compositions and process for the copolymerization of ethene with carbon monoxide. EP, 0 229 408, 1986. 1~9
    [117] Liaw D. J. Copolymerization of Carbon Monoxide with 1,3-Cyclopentadiene by Palladium Complexes. J. Poly. Sci.: Part A, 1993, 31: 309~316
    [118] Rix F. C., Brookhart M. Energetics of Migratory Insertion Reactions in Pd (II) Acyl Ethylene, Alkyl Ethylene, and Alkyl Carbonyl Complexes. J. Am. Chem. Soc., 1995, 117: 1137~1138
    [119] Chen J. T., Sen A. Mechanism of Transition-Metal-Catalyzed “Double Carbonylation”Reactions. Synthesis and Reactivity of Benzoylformyl Complexes of Palladium (Ⅱ) and Platinum (Ⅱ). J. Am. Chem. Soc., 1984, 106: 1506~1507
    [120] Liaw D. J., Lay B. F. Copolymerization of Carbon Monoxide and Norbornene with a Palladium Catalyst. Poly. J., 1997, 28(3): 266~271
    [121] Kagiya T., Kondo M., Fukui K. et al. γ-ray-induced copolymerization of carbon monoxide with cyclic hydrocarbons. J. Polym. Sci., A-1, 1969, 7: 2793~2803
    [122] Dean J. A. Ed. Lang’s Handbook of Chemistry, 15th Ed. New York: McGraw-Hill Book Co, 1999: 8.24
    [123] Zhao A. X., Chien J. C. W. Palladium Catalyzed Ethylene-Carbon Monoxide Alternating Copolymerization. J. Polym. Sci. Part A: Polym. Chem., 1992, 30: 2735~2747
    [124] Van Asselt R., Gielens E. G. C., Rulke E. R. et al. Insertion of Carbon Monoxide and Alkenes in Palladium-Carbon Bonds of Complexes Containing Rigid Bidentate Nitrogen Ligands: The First Example of Isolated Complexes in Stepwise Successive Insertion Reactions on the way to Polyketones. J. Am. Chem. Soc., 1994, 116: 977~985
    [125] Groen J. H., Vlaar M. J. M., van Leeuwen P. W. N. M. et al. Insertion reactions into palladium-carbon bonds of complexes containing new rigid bidentate nitrogen ligands. J. Organomet. Chem., 1998, 551: 67~79
    [126] Markies B. A., Kruis D., Rietveld M. H. P. et al. Alkene and Carbon Monoxide Insertion Reactions of Nitrogen-Coordinated Monoorganopalladium(Ⅱ) Complexes: The Stepwise Construction of Alternating Copolymers of CO and Alkenes on a Palladium(Ⅱ) Center. J. Am. Chem. Soc., 1995, 117: 5263~5274
    [127] Peter H. P. B., Gerrit A. L. Effect of phosphine substituents on CO and norbornene insertion rates into (P, N)-Pd-alkyl and –acyl bonds. J. Organometal. Chem., 1999, 572: 193~205
    [128] 穆光照. 实用溶剂手册. 上海:科学技术出版社, 1990. 56~80
    [129] 黄枢, 谢如刚, 田宝芝等. 有机合成试剂制备手册. 四川:四川大学出版社, 1988. 360~361
    [130] Wang R. M., Li S. B., Wang Y. P. et al. Preparation and Catalytic Activity of Polymer-bound 1,10-Phenanthroline and Its Complexes. Reactive & Functional Polymers, 1999, 42: 87~92
    [131] 刘海涛. 聚苯乙烯负载邻菲咯啉/CuCl2配合物的合成及其对羰化反应催化性能研究:[硕士学位论文]. 保存地点:华中科技大学图书馆,2005.
    [132] 孟令枝, 何永炳. 有机波谱分析. 武汉: 武汉大学出版社, 1997. 30~92
    [133] 康世平, 黄金风, 吴颖. MR型PS-CH2-Cl的季铵化及其相转移催化活性的研究. 福建师范大学学报(自然科学版), 1994, 10(2): 41~45
    [134] 毛陆原, 曾翔, 刘六战等. 聚苯乙烯负载交联β-环糊精的合成与表征. 功能高分子学报, 1997, 10(2): 205~212
    [135] 邢其毅, 徐瑞秋, 周政等. 基础有机化学. 版本(第二版). 北京:高等教育出版社, 2000. 727~728
    [136] Ho Y. S., Eun D. P., Jae S. L. Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts. J. Mol. Catal. A: Chem., 2000, 154: 243~250