高等植物光合系统ⅡQ_B位点电子传递机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合系统Ⅱ(photosystemII, PSII)是光合生物类囊体膜上的色素蛋白复合体,它能够吸收光能,高效而温和地催化水的分解释放氧气,产生电子和质子。它是植物逆境条件下最为敏感的机构,对植物本身发挥着不可替代的作用。光合作用非循环式电子传递起始十PSⅡ,其中QB位点是PSⅡ电子传递的最终位点,也是大多数除草剂作用的位点,因此对QB位点电子传递的研究具有重要意义。
     本研究首先从高等植物菠菜中制备了具有高活性的PSⅡ膜片段,然后筛选了一系列可以维持PSⅡ放氧活性的外源电子受体,分为疏水性和亲水性两类。测定不同疏水和亲水电子受体浓度对PSⅡ放氧活性的不同影响,并通过双倒数作图得到两个动力学参数,Vmax和Km,简单方便地估算电子受体与PSⅡ的相关结合位点及结合亲和力。疏水的醌类电子受体由于其疏水性及与内源质醌(plastoquinone, PQ)结构上的类似性,能够作为PSⅡ的外源电子受体,维持PSⅡ的放氧活性。苯醌上取代基的性质、个数和位置都会影响电子受体与PSⅡ的结合能力及接受PSⅡ电子的能力。动力学分析结果表明,苯基对苯醌(PPBQ)和四氯苯醌(chloranil)倾向于在PSⅡ上的一个位点接受电子,2,6-二氯苯醌(DCBQ)、对苯醌(BQ)和甲基对苯醌(MBQ)可以在PSⅡ的两个位点上接受电子。除此之外,亲水的铁氰化钾(K3[Fe(CN)6])和2,6-二氯酚靛酚(DCIP)也可以作为PSⅡ的外源电子受体,维持PSⅡ的放氧活性,并且亲水性的电子受体K3[Fe(CN)6]和DCIP也可以在PSⅡ的两个位点上接受电子。
     通过测定PSⅡ电子传递抑制剂二氧苯基二甲基脲(DCMU)与电子受体之间的竞争关系,对电子受体的作用位点进行进一步分析,结果表明疏水电子受体可以分为两类,DCBQ、BQ和MBQ在浓度较低时倾向于从PQ位点传递电子,在高浓度时能够进入QB位点传递电子。PPBQ和chloranil倾向于从PQ位点传递电子,较难从QB位点传递电子。亲水的电子受体K3[Fe(CN)6]和DCIP在低浓度时倾向于从PQ位点传递电子,高浓度时也同时从QB位点传递电子,但它们在QB位点传递电子时对PSⅡ放氧活性的影响较小,故它们做外源电子受体时PSⅡ放氧活性较低。
Photosystemll (PSII), a pigment protein complex located in the thylakoid membranes of photosynthetic organisms, performs light-induced electron and proton transfer and efficient water-splitting reactions, leading to the formation of molecular oxygen. It is the most sensitive part of plant under stress conditions and plays an irreplaceable role. Non-cycle electron transfer of photosynthesis began with PSII. The QB site is the final sites of the electron transfer in PSII, and also is the target site of most herbicides, so it is particularly important to research the electron transfer of QB site.
     We first prepared PSII membrane fragments with highly oxygen evolving activity from spinach, then screened a series of electron acceptors which can maintain the oxygen evolving activity of PSII. There are hydrophobic and hydrophilic electron acceptors. Rates of oxygen evolution were determined in the presence of various concentrations of hydrophobic and hydrophilic electron acceptors, and the two kinetic parameters, Vmax and Km, were estimated from double reciprocal plots. These results offer a simple and convenient proceture to estimate the affinities of electron acceptors to the related binding sites of PSII. Because of their hydrophobicity and structural similarities with PQ, the hydrophobic quinones can be used as exogenous electron acceptors of PSII and recover the oxygen evolution activity. The properties, number and position of substituents of benzoquinones had efffect on the ability of electron accept. Results of dynamic analysis showed that PPBQ and chloranil can accept electrons mainly on one site in PSII, while DCBQ, MBQ and BQ can accept electrons on two sites in PSII. The hydrophilic electron acceptors, K.3[Fe(CN)6] and DCIP can also act as exogenous electron acceptors of PSII and maintain the oxygen evolving activity. Results of dynamic analysis showed that the hydrophilic K3[Fe(CN)6] and DCIP can accept electrons on two sites in PSII.
     Investigate the competitive relationship of DCMU and electron acceptors to further analyze the binding sites of electron acceptors. The results showed that the hydrophobic electron acceptors classified into two categories. DCBQ, BQ, MBQ can enter the QB site and accept electrons directly in their high concentrations, while at the low concentrations, they accept electrons mainly from the PQ sites. The other category, PPBQ and chloranil, mainly accept electrons from the PQ sites, and little from QB sites. The hydrophilic electron acceptors, K3[Fe(CN)6] and DCIP, they can accept electrons from both PQ and QB sites. When they act as the exogenous electron acceptors, there is little effect to oxygen evolution activity of PSII, the oxygen evolution activity is low.
引文
[1]Nealson K H, Conrad P G. Life:Past, present and future [J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,1999,354(1392): 1923-1939.
    [2]Bryant D A, Frigaard N U. Prokaryotic photosynthesis and phototrophy illuminated [J]. Trends in Microbiology,2006,14(11):488-496.
    [3]Nelson N, Ben-Shem A. The complex architecture of oxygenic photosynthesis [J]. Nat Rev Mol Cell Biol,2004,5(12):971-982.
    [4]Govindjee, Kern J F, Messinger J, et al. Els [M]. London:John Wiley & Sons, Ltd,2001.
    [5]Rhee K H, Morris E P, Barber J, et al. Three-dimensional structure of the plant photosystem Ⅱ reaction centre at 8 A resolution [J]. Nature,1998,396(6708):283-286.
    [6]Zouni A, Witt H T, Kern J, et al. Crystal structure of photosystem Ⅱ from synechococcus elongatus at 3.8 A resolution [J]. Nature,2001,409(6821):739-743.
    [7]Ferreira K N, lverson T M, Maghlaoui K, et al. Architecture of the photosynthetic oxygen-evolving center [J]. Science,2004,303(5665):1831-1838.
    [8]Loll B, Kern J, Saenger W, et al. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem Ⅱ [J]. Nature,2005,438(7070):1040-1044.
    [9]Guskov A, Kern J, Gabdulkhakov A, et al. Cyanobacterial photosystem Ⅱ at 2.9 A resolution and the role of quinones, lipids, channels and chloride [J]. Nature Structural & Molecular Biology,2009,16(3):334-342.
    [10]Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 A [J]. Nature,2011,473(7345):55-60.
    [11]Barros T, Kuhlbrandt W. Crystallisation, structure and function of plant lightharvesting complex Ⅱ [J]. Biochimica Et Biophysica Acta-Bioenergetics,2009, 1787(6):753-772.
    [12]Ortega J M, Roncel M, Losada M. Light-induced degradation of cytochrome b559 during photoinhibition of the photosystem Ⅱ reaction center [J]. Febs Letters,1999,458(2): 87-92.
    [13]Barber J. Crystal structure of the oxygen-evolving complex of photosystem Ⅱ [J]. Inorganic Chemistry,2008,47(6):1700-1710.
    [14]Shen J R, Inoue Y. Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kda protein, in cyanobacterial photosystem Ⅱ [J]. Biochemistry,1993,32(7):1825-1832.
    [15]Seidler A. The extrinsic polypeptides of photosystem Ⅱ [J]. Biochimica Et Biophysica Acta,1996,1277(1-2):35-60.
    [16]Vandor Meulen K A,Hobson A,Yocum C F. Calcium depletion modifies the structure of the photosystem Ⅱ O2-evolving complex[J]. Biochemistry,2002,41(3):958-966.
    [17]Miyao M,Murata N.Role of the 33一kda polypeptide in preserving mn in the photosynthetic oxygen-evolution system and its replacenlent by chloride ions[J]. Febs Letters,1984, 170(2):350-354.
    [18]Semi n B K,Davletshina L N,Ivanov I I,et al.Decoupling of the processes of molecular oxygen synthesi s and electron transport in Ca2-depleted PSII membranes[J].Photosynth. Res.,2008,98(1-3):235-249.
    [19]Seidler A. The extrinsic polypeptides of photosystem Ⅱ [J]. Biochim. Biophys. Acta-Bioenerg.,1996,1277(1-22):35-60.
    [20]Kern J, Loll B, Zouni A, et al. Cyanobacterial photosystem Ⅱ at 3.2 A resolution the plastoquinone binding pockets[J]. Photosynth.Res.,2005,84(1-3):153-159.
    [21]Kaminskaya O, Shuvalov V A, Renger G. Evidence for a novel quinone-hinding site in the photosystem Ⅱ(PSII)complex that regulates the redox potential of cytochrome b559 [J]. Biochemistry,2007,46(4):1091-1105.
    [22]Van Rensen J J S, Xu C H, Govindjee. Role of bicarbonate in photosystem Ⅱ, the water-plastoquinone oxido-reductase of plant photosynthesis [J]. Physiologia Plantarum,1999,105(3):585-592.
    [23]Baranov S V, Ananyev G M, Klimov V V, et al. Bicarbonate accelerates assembly of the inorganic core of the water-oxidizing complex in manganese-depleted photosystem Ⅱ: A proposed biogeochemical role for atmospheric carbon dioxide in oxygenic photosynthesis(?) [J]. Biochemi stry,2000,39(20):6060-6065.
    [24]Rappaport F, Guergova-Kuras M, Ni xon P J, et al. Kinotics and pathways of charge recombinat ion in photosystem Ⅱ(?) [J]. Biochemistry,20()2,41(26):8518-8527.
    [25]Kok B,Forbush B,McGloin M.Cooperation of charges in photosynthetic O2 cvolution.1. A linear 4step mechanism[J]. Photochemistry and Photohiology,1970, 11(6):457-475.
    [26]Ulas G,Brudvig G W. Zwitterion modulation of O2 evolving activity of cyanobacterial photosystem Ⅱ [J]. Biochemi stry,2010,49(37):8220-8227.
    [27]Sakurai I,Shen J R,Leng J,et al.Lipids in oxygen-evolving photosystem Ⅱ complexes of cyanobacteria and higher plants[J].Journal or Biochemistry,2006, 140(2):201-209.
    [28]Palsdottir H, Hunte C. Lipids i n membrane protein structures [J]. Biochimica Et Biophysica Acta-Biomembranes,2004,1666(1-2):2-18.
    [29]Murray J W, Barber J. Identification of a calcium-binding site in the psbo protein of photosystem Ⅱ[J]. Biochemi stry,2006,45(13):4128-4130.
    [30]Miqyass M, Marosvolgyi M A, Nagel Z, et al. S-state dependence of the calcium requirement and binding characteristics in the oxygen-evolving complex of photosystem Ⅱ [J]. Biochemistry,2008,47(30):7915-7924.
    [31]Tracewell C A, Brudvig G W. Characterization of the secondary electron-transfer pathway intermediates of photosystem Ⅱ containing low-potential cytochrome b(559) [J]. Photosynth. Res.,2008,98(1-3):189-197.
    [32]Hwang H J, Burnap R L. Multiflash experiments reveal a new kinetic phase of photosystem II manganese cluster assembly in synechocystis sp. PCC 6803 in vivo(?) [J]. Biochemistry, 2005,44(28):9766-9774.
    [33]Graan T, Ort D R. Detection of oxygen-evolving photosystem-Ⅱ centers inactive in plastoquinone reduction [J]. Biochimica Et Biophysica Acta,1986,852(2-3):320-330.
    [34]毛海滨,李国富,阮翔等.质体醌库和细胞色素b_6f参与调控蓝细菌 synechocystis sp. PCC 6803 的状态转换 [J]. 生物物理学报,2002,18(3):313-317.
    [35]Dudekula S, Fragata M. Investigation of the electron transfer site of p-benzoquinone in isolated photosystem Ⅱ particles and thylakoid membranes using alpha-and beta-cyclodextrins [J]. Journal of Photochemistry and Photobiology B-Biology,2006, 85(3):177-183.
    [36]Zhang C X. Interaction between tyrosine(z) and substrate water in active photosystem II [J]. Biochimica Et Biophysica Acta-Bioenergetics,2006,1757(7):781-786.
    [37]Satoh K, Katoh S, Donner A, et al. Binding affinities of oxidized and reduced forms of tetrahalogenated benzoquinones to the QB site in oxygen-evolving photosystem Ⅱ particles from Synechococcus elongatus [J]. Plant Cell Physiol.,1994,35(3):461-468.
    [38]Alt H, Binder H, Klempert G, et al. Evaluation of organic battery electrodes: Voltammetric study of the redox behaviour of solid quinones [J]. Journal of Applied Electrochemistry,1972,2(3):193-200.
    [39]Lam K B, Irwin E F, Healy K E, et al. Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications [J]. Sens. Actuator B-Chem.,2006,117(2): 480-487.
    [40]Bowlby N R, Yocum C F. Effects of cholate on photosystem Ⅱ:Selective extraction of a 22 kda polypeptide and modification of QB-site activity [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1993,1144(3):271-277.
    [41]Yamazaki S, Kano K, Ikeda T, et al. Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for nad(p)+regeneration in bif idobacterium longum [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1428(2-3):241-250.
    [42]Amao Y, Takai K, Ohashi A. Effect of manganese and calcium ions on the photo induced water oxidation with photosynthesis organ grana from green plant [J]. Appl ied Catalysis B-Environmental,2010,97(1-2):36-40.
    [43]Li S Q, Tang C Q, Li L B, et al. Effects of a new inhibitor k-23 on electron transport in photosystem Ⅱ of higher plants [J]. Pest icide Biochemistry and Physiology,2005, 82(1):46-51.
    [44]Ulas G, Brudvig G W. Redirecting electron transfer in photosystem Ⅱ from water to redox-active metal complexes [J]. Journal of the American Chemical Society,2011, 133(34):13260-13263.
    [45]Berthold D A, Babcock G T, Yocum C F. A highly resolved, oxygen-evolving photosystem-Ⅱ preparation from spinach thylakoid membranes-electron-paramagnetic-res and electron-transport properties [J]. Febs Letters,1981,134(2):231-234.
    [46]Haag E, Irrgang K D, Boekema E J, et al. Functional and structural analysis of photosystem Ⅱ core complexes from spinach with high oxygen evolution capacity [J]. European Journal of Biochemistry,1990,189(1):47-53.
    [47]Kurreck J, Seeliger A G, Reifarth F, et al. Reconstitution of the endogenous plastoquinone pool in photosystem Ⅱ (PSII) membrane fragments, inside-out-vesicles, and PSII core complexes from spinach [J]. Biochemistry,1995,34(48):15721-15731.
    [48]Gleiter H, Haag E, Inoue Y, et al. Functional characterisation of a purified homogeneous photosystem Ⅱ core complex with high oxygen evolution capacity from spinach [J]. Photosynth. Res.,1993,35(1):41-53.
    [49]Renger G, Hagemann R, Fromme R. The susceptibility of the p-benzoquinone-mediated electron transport and atrazine binding to trypsin and its modification by cac12 in thylakoids and PSII membrane fragments [J]. Febs Letters,1986,203(2):210-214.
    [50]Satoh K, Kashino Y, Koike 11. Electron-transport from QA to thymoquinone in a synechococcus oxygen-evolving photosystem-Ⅱ preparation-role of QB and binding-affinity of thymoquinone to the Q(B) site [J]. Zeitschrift Fur Naturforschung C-a Journal of Biosciences,1993,48(3-4):174-178.
    [51]Tanaka K Y, Satoh K, Katoh S. Interaction of benzoquinones with QA and QB in oxygen-evolving photosystem Ⅱ particles from the thermophilic cyanobacterium synechococcus elongatus [J]. Plant and Cell Physiology,1990,31(7):1039-1047.
    [52]Kashino Y, Yamashita M, Okamoto Y, et al. Mechanisms of electron flow through the Q(B) site in photosystem Ⅱ.3. Effects of the presence of membrane structure on the redox reactions at the q(b) site [J]. Plant and Cell Physiology,1996,37(7):976-982.
    [53]Stein R R, Castellvi A L, Bogacz J P, et al. Herbicide-quinone competition in the acceptor complex of photosynthetic reaction centers from rhodopseudomonas sphaeroides -a bacterial model for PSll-herbicide activity in plants [J]. Journal of Cellular Biochemistry,1984,24(3):243-259.
    [54]Vermaas W F J, Arntzen C J. Synthetic quinones influencing herbicide binding and photosystem II electron-transport-the effects of triazine-resistance on quinone binding-properties in thylakoid membranes [J]. Biochimica Et Biophysica Acta,1983, 725(3):483-491.
    [55]Vermaas W F J, Arntzen C J, Gu L Q, et al. Interactions of herbicides and azidoquinones at a photosystem Ⅱ binding-site in the thylakoid membrane [J]. Biochimica Et Biophysica Acta,1983,723(2):266-275.
    [56]Roberts A G, GregorW, Britt R D, et al. Acceptor and donor-side interactions of phenolic inhibitors in photosystem Ⅱ [J]. Biochimica Et Biophysica Acta-Bioenergetics,2003, 1604(1):23-32.
    [57]Gonzalez V M, Kazimir J, Nimbal C, et al. Inhibition of a photosystem Ⅱ electron transfer reaction by the natural product sorgoleone [J]. Journal of Agricultural and Food Chemistry,1997,45(4):1415-1421.
    [58]Wang J S, Shan J X, Xu Q, et al. Spectroscopic study of trypsin, heat and triton x-100-induced denaturation of the chlorophyll-binding protein cp43 [J]. Journal of Photochemistry and Photobiology B-Biology,2000,58(2-3):136-142.
    [59]Pasco N, Hay J, Scott A, et al. Redox coupling to microbial respiration:An evaluation of secondary mediators as binary mixtures with ferricyanide [J]. Australian Journal of Chemistry,2005,58(4):288-293.