基于聚合物生物纳米复合材料的电化学生物传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物活性分子的固定是研制生物传感器的关键环节,寻找简便有效的固定方法以及研制具有高生物兼容性的固定材料,对改善生物传感性能至关重要。随着纳米技术的迅速发展,各种纳米材料已广泛用于生物传感器的研制。制备多功能纳米复合材料,并藉此研制具有高灵敏度、高选择性的生物传感方法备受关注。本文中我们制备了几种金属/金属氧化物-聚合物-酶纳米复合材料,并成功用于高敏葡萄糖生物传感和凝血酶适配体传感研究。主要工作如下:
     1.对电化学生物传感器的分类、生物活性物质的固定方法、纳米材料的分类和特性及其在生物传感中的应用进行了简要综述,并在此基础上提出了本论文的基本构思。
     2.采用一锅原位化学氧化法在含葡萄糖氧化酶(GOx)、Fe3O4-Au纳米复合材料和1,6-己二硫醇(HDT)的水相悬浊液中,通过对苯醌(BQ)的氧化作用制备了Fe3O4-Au-poly(HDT) (PHDT)-GOx新型磁性聚合物生物纳米复合材料(MPBNCs),可高活性、高负载量地固定GOx。采用透射电子显微镜、扫描电子显微镜和紫外可见分光光度法表征了所制MPBNCs。采用简便有效的磁性分离/固定法将MPBNCs固定于金磁电极上,所制备的葡萄糖生物传感器灵敏度高(110μA cm-2mM-1),检测限低(0.33μM,S/N=3),响应时间短(<5s),抗干扰能力强,稳定性好。该生物传感器的性能优于常规电聚合法和化学预氧化/电聚合单体法所制备的传感器。
     3.采用一锅原位化学氧化法制备聚多巴胺(PDA)-GOx纳米复合物,通过生化原位合成法在所制PDA-GOx纳米复合物表面修饰金纳米粒子(AuNPs),再藉AuNPs的表面催化作用,以抗坏血酸(AA)作还原剂还原H2PtCl6为铂纳米粒子(PtNPs),制备了新型双金属聚合物生物纳米复合材料:PDA-GOx-AuNPs-PtNPs纳米复合物。将此复合物滴干在金电极表面制备了灵敏度高(195μAcm-2mM-1)、检测限低(0.21 gM,S/N=3)、响应时间短(<5 s)、抗干扰能力强和稳定性好的葡萄糖安培传感器。
     4.利用原位化学氧化/生物化学合成法制备PDA-GOx-AuNPs纳米复合物,将巯基化凝血酶适配体组装固定于该复合物修饰的金电极表面,研制了凝血酶适配体传感器。其基本检测原理是基于凝血酶与其适配体的特异性结合可抑制该GOx电极的响应电流。该传感器的线性范围宽(1-40 nM),检测限低(0.125 nM,S/N=3),响应时间短(<10s)。
The immobilization of biomolecules is the key step in constructing a biosensor. Immobilization of biomolecules with effective methods and highly biocompatible materials is essential to improve the biosensing performance. With the rapid development of nanotechnology, a variety of nanomaterials have been used to construct various biosensors. Preparation of multifunctional nanocomposite materials is important to develop a biosensor with high sensitivity and selectivity. In this thesis, we prepared several metal (or metal oxide)-polymer-enzyme nanocomposite materials for high performance glucose biosensing and thrombin aptasensing. The main contents are as follows,
     1. The classification of electrochemical biosensors, the immobilization method of the biomolecules, the classification and characteristics of nano-materials, as well as their application in biosensing, have been reviewed.
     2. One-pot chemical oxidation of 1,6-hexanedithiol (HDT) in its aqueous suspension containing glucose oxidase (GOx) and Fe3O4-Au nanocomposites by 1,4-benzoquinone yields novel Fe3O4-Au-poly(HDT) (PHDT)-GOx magnetic polymeric bionanocomposites (MPBNCs) with GOx immobilized at high load and high activity. Transmission/scanning electron microscopy and UV-Vis spectrophotometry are used to characterize the prepared MPBNCs. A Fe3O4-Au-PHDT-GOx/Au electrode has been prepared by facile and efficient magnetism separation/immobilization of the MPBNCs onto an Au magnetism-electrode for biosensing of glucose, which exhibits high detection sensitivity (110μA cm-2 mM-1), low detection limit (0.33μM, S/N= 3), rapid response time (< 5 s), and excellent anti-interferent ability and stability. The biosensor performs better than those based on the existing protocols of conventional electropolymerization and chemical preoxidation/electropolymerization of monomer.
     3. Novel bimetallic polymeric bionanocomposites (PBNCs) of polydopamine (PDA), AuNPs-PtNPs bimetallic nanoparticles were prepared. First, We prepared PDA-GOx nanocomposites with high-load/activity GOx entrapped via one-pot chemical protocol, namely, mixing biogenic dopamine (DA) as a monomer, GOx as a model molecule, and BQ as an oxidizing reagent to trigger DA polymerization to allow one-pot chemical synthesis; second, Au nanoparticles (AuNPs) was generated via in situ biochemical generation protocol, yielded PDA-GOx-AuNPs nanocomposites; the last, we synthesized the PDA-GOx-AuNPs-PtNPs nanocomposites by H2PtCl6 reduction onto the AuNPs surfaces with the AuNPs of PDA-GOx-AuNPs as the seed and ascorbic acid as the reductant. The PBNCs based biosensor via dip-dry method exhibits high detection sensitivity (195μA cm-2 mM-1), low detection limit (0.21μM, S/N= 3), rapid response time (< 5 s), and excellent anti-interferent ability and stability.
     4. A thrombin aptasensor was prepared by immobilizing a thiolated thrombin aptamer (TBA) onto the electrode modified with a PDA-GOx-AuNPs nanocomposite material prepared via in situ chemical/biochemical protocol. The measurement of the aptasensor was based on the inhibition of the amperometric response of the GOx-based electrode originated from the specific thrombin-aptamer binding. The aptasensor exhibits wide linear detection range (1-40 nM), low detection limit (0.125 nM, S/N=3), rapid response time (< 10 s), and excellent anti-interferent ability.
引文
[1]L. C. Clark, C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery [J]. Ann. New York Acad. Sci.,1962,102:29-45.
    [2]R. Polsky, R. Gill, L. Kaganovsky, I. Willner. Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules [J]. Anal. Chem.,2006,78(7):2268-2271.
    [3]L. Bahshi, M. Frasconi, R. T. Vered, O. Yehezkeli, I. Willner. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes [J]. Anal. Chem.,2008,80: 8253-8259.
    [4]M. K. Kumar, S. Ramaprabhu. Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor [J]. J. Phys. Chem. B,2006,110: 11291-11298.
    [5]Y. Fu, P. Li, Q. Xie, X. Xu, L. Lei, C. Chen, C. Zou, W. Deng, S. Yao. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose [J]. Adv. Funct. Mater., 2009,19(11):1784-1791.
    [6]H. Gu, K. Xu, C. Xu, B. Xu. Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chem. Commun.,2006:941-949.
    [7]Y C. Fu, C. Chen, Q. J. Xie, X. H. Xu, C. Zou, Q. M. Zhou, L. Tan, H. Tang, Y Y. Zhang, S. Z. Yao. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance [J]. Anal. Chem.,2008,80(15):5829-5838.
    [8]Y C. Fu, C. Zou, Q. J. Xie, X. H. Xu, C. Chen, W. F. Deng, S. Z. Yao. Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension [J]. J. Phys. Chem. B,2009,113(5): 1332-1340.
    [9]H. Patel, X. Li, H. I. Karan. Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report [J]. Biosens.
    Bioelectron.,2003,18:1073-1076.
    [10]S. Koide, K. Yokoyama. Electrochemical. characterization of an enzyme electrode based on a ferrocene-containing redox polymer [J]. J. Electroanal. Chem.,1999,468:193-201.
    [11]D. Pan, J. Chen, L. Nie, W. Tao, S. Yao. An amperometric glucose biosensor based on poly(o-aminophenol) and Prussian blue films at platinum electrode [J]. Anal. Biochem.,2004,324:115-122.
    [12]R. Garjonyte, A. Malinauskas. Amperometric glucose biosensors based on Prussian blue-and polyaniline-glucose oxidase modified electrodes [J]. Biosens. Bioelectron.,2000,15:445-451.
    [13]Y. L. Yao, K. K. Shiu. Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film [J]. Electrochim. Acta,2007,53:278-284.
    [14]C. Cai, J. Chen. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Anal. Biochem.,2004,332:75-83.
    [15]F. Palmisano, P. G. Zambonin. A Disposable, reagentless, third-generation glucose biosensor based on overoxidized poly (pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite [J]. Anal. Chem.,2002,74:5913-5918.
    [16]C. Ruan, L. Yang, Y. Li. Immunobiosensor chips for detection of escherichia coli O157:H7 using electrochemical impedance spectroscopy [J]. Anal. Chem., 2002,74(18):4814-4820.
    [17]H. Dong, C. M. Li, W. Chen, Q. Zhou, H. X. Zeng, J. H. T. Luong. Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization [J]. Anal. Chem.,2006,78(21):7424-7431.
    [18]A. Preechaworapun, T. A. Ivandini, A. Suzuki, A. Fujishima, O. Chailapakul, Y. Einaga. Development of amperometric immunosensor using boron-doped diamond with poly(o-aminobenzoic acid) [J]. Anal. Chem.,2008,80(6): 2077-2083.
    [19]D. Tang, J. Ren. In situ Amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels [J]. Anal. Chem.,2008,80:8064-8070.
    [20]Y. Wu, C. Chen, S. Liu. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing [J]. Anal Chem.,2009,81:1600-1607.
    [21]G. Lai, F. Yan, H. Ju. Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers [J]. Anal. Chem.,2009,81(23):9730-9736.
    [22]R. Cui, H. Huang, Z. Yin, D. Gao, J. J. Zhu. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor [J]. Biosens. Bioelectron.,2008,23:1666-1673.
    [23]Y. Wang, B. Liu. Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform [J]. Langmuir,2009,25(21):12787-12793.
    [24]B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Docto, A. J. Heeger, K. W. Plaxco. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids [J]. J. Am. Chem. Soc.,2006,128:3138-3139.
    [25]M. Zayats, Y. Huang, R. Gill, C. A. Ma, I. Willner. Label-free and reagentless aptamer-based sensors for small molecules [J]. J. Am. Chem. Soc.,2006,128: 13666-13667.
    [26]X. Zuo, S. Song, J. Zhang, D. Pan, L. Wang, C. Fan. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP [J]. J. Am. Chem. Soc.,2007,129:1042-1043.
    [27]P. L. Sazani, R. Larralde, J. W. Szostak. A small aptamer with strong and specific recognition of the triphosphate of ATP [J]. J. Am. Chem. Soc.,2004, 126:8370-8371.
    [28]J. A. Hansen, Joseph Wang, A. N. Kawde, Y. Xiang, K. V. Gothelf, G. Collins. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor [J]. J. Am. Chem. Soc.,2006,128:2228-2229.
    [29]J. H. Choi, K. H. Chen, M. S. Strano. Aptamer-capped nanocrystal quantum dots:a new method for label-free protein detection [J]. J. Am. Chem. Soc., 2006,128:15584-15585.
    [30]A. Heckel, G. Mayer. Light regulation of aptamer activity:an anti-thrombin aptamer with caged thymidine nucleobases [J]. J. Am. Chem. Soc.,2005,127: 822-823.
    [31]C. Deng, J. Chen, Z. Nie, M. Wang, X. Chu, X. Chen, X. Xiao, C. Lei, S. Yao.
    Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles [J]. Anal. Chem.,2009,81:739-745.
    [32]D. Shangguan, L. Meng, Z. C. Cao, Z. Xiao, D. Cardona, R. P. Witek, C. Liu, W. Tan. Identification of liver cancer-specific aptamers using whole live cells [J]. Anal. Chem.,2008,80:721-728.
    [33]Y. F. Huang, H. T. Chang, W. Tan. Cancer cell targeting using multiple aptamers conjugated on nanorods [J]. Anal. Chem.,2008,80:567-572.
    [34]C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, W. Tan. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells [J]. Anal. Chem.,2008,80:1067-1072.
    [35]K. Ikebukuro, C. Kiyohara, K. Sode. Novel electrochemical sensor system for protein using the aptamers in sandwich manner [J]. Biosens. Bioelectron.,2005, 20(10):2168-2172.
    [36]M. Mir, M. Vreeke, I. Katakis. Different strategies to develop an electrochemical thrombin aptasensor [J]. Electrochem. Commun.,2006,8: 505-511.
    [37]S. Centi, G. Messina, S. Tombelli, I. Palchetti, M. Mascini. Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads [J]. Biosens. Bioelectron.,2008,23: 1602-1609.
    [38]Y. Xiao, B. D. Piorek, K. W. Plaxco, A. J. Heeger. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement [J]. J. Am. Chem. Soc.,2005,127:17990-17991.
    [39]Y. L. Zhang, Y. Huang, J. H. Jiang, G. L. Shen, R. Q. Yu. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection [J]. J. Am. Chem. Soc.,2007, 129:15448-15449.
    [40]A. Numnuam, K. Y C. Torres, Y. Xiang, R. Bash, P. Thavarungkul, P. Kanatharana. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes [J]. Anal. Chem.,2008,80(3):707-712.
    [41]X. Zuo, Y. Xiao, K. W..Plaxco. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex Matrices [J]. J. Am. Chem. Soc.,2009,131(20):6944-6945.
    [42]X. Chen, X. Yan, K. A. Khor, B. K. Tay. Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose [J]. Biosens. Bioelectron.,2007,22:3256-3260.
    [43]X. Pang, D. He, S. Luo, Q. Cai. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite [J]. Sens. Actuators B,2009,137:134-138.
    [44]A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, A. P. F. Turner. Ferrocene-mediated enzyme electrode for amperometric determination of glucose [J]. Anal. Chem.,1984, 56(4):667-671.
    [45]S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J]. Anal. Chem., 2004,76:1083-1088.
    [46]Y. C. Fu, Q. J. Xie, X. E. Jia, X. H. Xu, W. H. Meng, S. Z. Yao. Electrosynthesized poly(1,6-hexanedithiol) as a new immobilization matrix for Au-nanoparticles-enhanced piezoelectric immunosensing [J]. J. Electroanal. Chem.,2007,603(1):96-106.
    [47]T. Matsue, N. Kasai, M. Narumi, M. Nishizawa, H. Yamada, I. Uchida. Electron-transfer from NADH dehydrogenase to polypyrrole and its applicability to electrochemical oxidation of NADH [J]. J. Electroanal. Chem., 1991,300:111-118.
    [48]Z. Sun, H. Tachikawa. Enzyme-based bilayer conducting polymer electrodes consisting of polymetallophthalocyanines and polypyrrole-glucose oxidase thin films [J]. Anal. Chem.,1992,64:1112-1117.
    [49]P. N. Bartlett, R. G. Whitaker. Electrochemical immobilization of enzymes:Part Ⅱ. Glucose oxidase immobilized in poly-N-methylpyrrole [J]. J. Electroanal. Chem.,1987,224:37-48.
    [50]H. Shinohara, T. Chiba, M. Aizawa. Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film [J]. Sens. Actuators B, 1988,13:79-86.
    [51]L. J. Murphy. Reduction of interference response at a hydrogen peroxide detecting electrode using electropolymerized films of substituted naphthalenes [J]. Anal. Chem.,1998,70:2928-2935.
    [52]Y. Q. Dai, D. M. Zhou. Permeability and permselectivity of
    polyphenylenediamine films synthesized at a palladium disk electrode [J]. Electrochim. Acta,2006,52:297-303.
    [53]D. Pan, J. Chen, S. Yao, L. Nie, J. Xia, W. Tao. Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode [J]. Sens. Actuators B, 2005,104:68-74.
    [54]X. Jia, L. Tan, Y. Zhou, X. Jiang, Q. Xie, H. Tang, S. Yao. Magnetic immobilization and electrochemical detection of leukemia K562 cells [J]. Electrochem. Commun.,2009,11(1):141-144.
    [55]S. Qu, J. Wang, J. Kong, P. Yang, G. Chen. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing [J]. Talanta,2007, 71:1096-1102.
    [56]D. Yu, O. D. Renedo, B. Blankert, V. Sima, R. Sandulescu, J. Arcos, J. M. Kauffmann. A peroxidase-based biosensor supported by nanoporous magnetic silica microparticles for acetaminophen biotransformation and inhibition studies [J]. Electroanalysis 2006,18(17):1637-1642.
    [57]Y. Zhang, G. M. Zeng, L. Tang, D. L. Huang, X. Y. Jiang, Y. N. Chen. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode [J]. Biosens. Bioelectron.,2007,22: 2121-2126.
    [58]A. Elyacoubi, S. I. M. Zayed, B. Blankert, J. M. Kauffmann. Development of an amperometric enzymatic biosensor based on gold modified magnetic nanoporous microparticles [J]. Electroanalysis,2006,18(4):345-350.
    [59]Z. Liu, Y. Liu, H. Yang, Y. Yang, G. Shen, R. Yu. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode [J]. Anal. Chim. Acta,2005,533:3-9.
    [60]Z. Liu, Y. Liu, H. Yang, Y. Yang, G. Shen, R. Yu. Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force [J]. Biotechnol. Lett.,2006,28:559-565.
    [61]D. Tang, R. Yuan, Y. Chai. Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay [J]. J. Phys. Chem. B,2006,110:11640-11646.
    [62]M. C. Daniel, D. Astruc. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev.,2004,104(1):293-346.
    [63]A. H. Lu, E. L. Salabas, F. Schuth. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angew. Chem. Int. Ed.,2007, 46:1222-1244.
    [64]C. X. Lei, H. Wang, G. L. Shen, R. Q. Yu. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose [J]. Electroanalysis,2004,16(9):736-740.
    [65]J. Das, H. Yang. Enhancement of electrocatalytic activity of DNA-conjugated gold nanoparticles and its application to DNA detection [J]. J. Phys. Chem. C, 2009,113:6093-6099.
    [66]M. A. Rahman, J. I. Son, M. S. Won, Y. B. Shim. Gold nanoparticles doped conducting polymer nanorod electrodes:ferrocene catalyzed aptamer-based thrombin immunosensor [J]. Anal. Chem.,2009,81:6604-6611.
    [67]H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, X. R. Wang. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem.,2004,76(5):1316-1321.
    [68]H. Wei, E. Wang. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection [J]. Anal. Chem.,2008,80(6): 2250-2254.
    [69]J. Morais, R. B. Azevedo, L. P. Silva, Z. G. M. Lacava, S. N. Bao, O. Silva, F. Pelegrini, C. Gansau, N. Buske, I. Safarik, M. Safarikova, P. C. Morais. Magnetic resonance investigation of magnetic-labeled baker's yeast cells [J]. J. Magn. Magn. Mater.,2004,272:2400-2401.
    [70]U. Schoepf, E. M. Marecos, R. J. Melder, R. K. Jain, R. Weissleder. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies [J]. Biotechniques,1998,24(4):642-651.
    [71]D. Tang, R. Yuan, Y. Chai. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer [J]. Anal. Chem.,2008,80: 1582-1588.
    [72]J. Krizova, A. Spanova, B. Rittich, D. Horak. Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation [J]. J. Chromatogr. A,2005,1064(2):247-253.
    [73]O. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Homes, J. Ugelstad, M. Uhlen. Magnetic separation techniques in diagnostic microbiology [J]. Clini. Microbiol. Rev.,1994,7(1):43-54.
    [74]E. B. Altintas, N. Tuezmen, N. Candan, A. Denizli. Use of magnetic poly(glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system [J]. J. Chromatogr. B,2007,853(1-2):105-113.
    [75]L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, X. Y. Yan. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nat. Nanotechnol.,2007,2:577-583.
    [76]L. H. Zhang, Y. M. Zhai, N. Gao, D. Wen, S. J. Dong. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochem. Commun.,2008,10(10):1524-1526.
    [77]F. Mavre, M. Bontemps, S. A. Merah, D. Marchal, B. Limoges. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis [J]. Anal. Chem.,2007, 79:187-194.
    [78]D. Tang, R. Yuan, Y. Cha, H. An. Magnetic-core/porous-shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays [J]. Adv. Funct. Mater.,2007,17:976-982.
    [79]Q. Zhao, X. Lu, C. G. Yuan, X. F. Li, X. C. Le. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection [J]. Anal. Chem.,2009,81:7484-7489.
    [80]A. Higuchi, Y. D. Siao, S. T. Yang, P. V. Hsieh, H. Fukushima, Y Chang, R. C. Ruaan, W. Y. Chen. Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies [J]. Anal. Chem.,2008,80:6580-6586.
    [81]Z. Wen, S. Ci, J. Li. Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors [J]. J. Phys. Chem. C,2009,113: 13482-13487.
    [82]M. Ahmad, C. Pan, L. Gan, Z. Nawaz, J. Zhu. Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres [J].J. Phys.Chem. C,2010,114:243-250.
    [83]E. Granot, E. Katz, B. Basnar, I. Willner. Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes [J]. Chem. Mater.,2005,17(18):4600-4609.
    [84]A. P. O'Mullane, S. E. Dale, J. V. Macpherson, P. R. Unwin. Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites [J]. Chem. Commun.,2004, (14):16Q6-1607.
    [85]Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. T. Li, J. B. Bai. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability [J]. Adv. Funct. Mater.,2008,18(10):1509-1517.
    [86]Y. Shen, Y. H. Lin, C. W. Nan. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles [J]. Adv. Funct. Mater.,2007,17:2405-2410.
    [87]X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, H. Dong. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution [J]. Chem. Mater.,2007,19(15):3773-3779.
    [88]M. J. Ventura, M. Gu. Engineering spontaneous emission in a quantum-dot-doped polymer nanocomposite with three-dimensional photonic crystals [J]. Adv. Mater.,2008,20(7):1329-1332.
    [89]Z. Liu, J. Wang, D. H. Xie, G. Chen. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing [J]. Small,2008,4(4):462-466.
    [90]M. C. Kum, K. A. Joshi, Wilfred Chen, N. V. Myung, A. Mulchandani. Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application [J]. Talanta,2007,74:370-375.
    [91]T. H. Chung, H. C. Pan, W. C. Lee. Preparation and application of magnetic poly(styrene-glycidyl methacrylate) microspheres [J]. J. Magn. Magn. Mater., 2007,311(1):36-40.
    [92]S. S. Wei, Y. F. Zhu, Y. Zhang, J. R. Xu. Preparation and characterization of hyperbranched aromatic polyamides/Fe3O4 magnetic nanocomposite [J]. React. Funct. Polym.,2006,66(11):1272-1277.
    [93]N. A. D. Burke, H. D. H. Stover, F. P. Dawson. Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles [J]. Chem. Mater.,2002,14:4752-4761.
    [94]H. Liu, J. Guo, L. Jin, W. Yang, C. Wang. Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres [J]. J. Phys. Chem. B,2008,112:3315-3321.
    [95]H. Zhang, X. Zhong, J. J. Xu, H. Y. Chen. Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure:synthesis, characterization, and their electrochemical properties [J]. Langmuir,2008,24:13748-13752.
    [96]J. Huang, B. Han, W. Yue, H. Yan. Magnetic polymer microspheres with polymer brushes and the immobilization of protein on the brushes [J]. J. Mater. Chem.,2007,17:3812-3818.
    [97]Z. L. Lei, N. Ren, Y. L. Li, N. Li, B. Mu. Fe3O4/SiO2-g-PSStNa polymer nanocomposite microspheres (PNCMs) from a surface-initiated atom transfer radical polymerization (SI-ATRP) approach for pectinase immobilization [J]. J. Agric. Food Chem.,2009,57(4):1544-1549.
    [98]J. Hong, D. Xu, P. Gong, J. Yu, H. Ma, S. Yao. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels [J]. Micropor. Mesopor. Mater.,2008,109(1-3):470-477.
    [99]J. S. Huang, X. T. Li, Y. H. Zheng, Y. Zhang, R. Y. Zhao, X. C. Gao, H. S. Yan. Immobilization of penicillin G acylase on poly[(glycidyl methacrylate)-co-(glycerol monomethacrylate)]-grafted magnetic microspheres [J]. Macromol. Biosci.,2008,8(6):508-515.
    [100]G. Bayramoglu, M. Yilmaz, A. U. Senel, M. Y. Arica. Preparation of nanofibrous polymer grafted magnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption [J]. Biochem. Eng. J.,2008,40(2): 262-274.
    [101]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides. Self-assembled monolayers of thiolates on metals as a form of nanotechnology [J]. Chem. Rev.,2005,105(4):1103-1170.
    [102]T. Tatsuma, Y. Yokoyama, D. A. Buttry, N. Oyama. Electrochemical polymerization and depolymerization of 2,5-dimercapto-1,3,4-thiadiazole QCM and spectroscopic analysis [J]. J. Phys. Chem. B,1997,101:7556-7562.
    [103]E. Shouji, Y. Yokoyama, J. M. Pope, N. Oyama, D. A. Buttry. Electrochemical and spectroscopic investigation of the influence of acid-base chemistry on the redox properties of 2,5-dimercapto-1,3,4-thiadiazole [J]. J. Phys. Chem. B, 1997,101:2861-2866.
    [104]R. Wilson, A. P. F. Turner. Glucose oxidase:an ideal enzyme [J]. Biosens. Bioelectron.,1992,7(3):165-185.
    [105]Z. Zhao, M. Qiao, F. Yin. Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization [J]. Biosens. Bioelectron.,2007,22:3021-3027.
    [106]X. Zeng, X. Li, L. Xing, X. Liu, S. Luo, W. Wei, B. Kong, Y. Li. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing [J]. Biosens. Bioelectron.,2009,24:2898-2903.
    [107]L. L. Pang, J. S. Li, J. H. Jiang, Y. Le, G. L. Shen, R. Q. Yu. A novel detection method for DNA point mutation using QCM based on Fe3O4/Au core/shell nanoparticle and DNA ligase reaction [J]. Sens. Actuators B,2007,127: 311-316.
    [108]T. T. H. Pham, C. Cao, S. J. Sim. Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations [J]. J. Magn. Magn. Mater.,2008,320:2049-2055.
    [109]J. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding [J]. Nano. Lett.,2004,4(4):719-723.
    [110]Q. H. Lu, K. L. Yao, D. Xi, Z. L. Liu, X. P. Luo, Q. Ning. Synthesis and characterization of composite nanoparticles comprised of gold shell and magnetic core/cores [J]. J. Magn. Magn. Mater.,2006,301:44-49.
    [111]K. R. Brown, D. G. Walter, M. J. Natan. Seeding of colloidal Au nanoparticle solutions.2. Improved control of particle size and shape [J]. Chem. Mater., 2000,12(2):306-313.
    [112]H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles [J]. Nano. Lett.,2005,5(2):379-382.
    [113]A. Kaushika, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, B. D. Malhotra. Iron oxide nanoparticles-chitosan composite based glucose biosensor [J]. Biosens. Bioelectron.,2008,24(4):676-683.
    [114]S. Wang, Y. Tan, D. Zhao, G. Liu. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite [J]. Biosens. Bioelectron.,2008, 23:1781-1787.
    [115]J. Njagi, S. Andreescu. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites [J]. Biosens. Bioelectron.,2007, 23:168-175.
    [116]S. Guo, L. Wang, S. Dong, E. Wang. A novel urchinlike gold/platinum hybrid
    nanocatalyst with controlled size [J]. J. Phys. Chem. C,2008,112: 13510-13515.
    [117]Q. Wen, Y. Huang, J. H. Jiang, G. L. Shen, R. Q. Yu. Gold nanoparticle-mediated biocatalytic deposition of platinum with catalytic hydrogen electrochemical determination for highly sensitive immunoassay [J]. Acta Chim. Sinica,2008,66(3):343-348.
    [118]R. Gangopadhyay, A. De. Conducting polymer nanocomposites:a brief overview [J]. Chem. Mater.,2000,12:608-622.
    [119]J. Li, X. Lin. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode [J]. Biosens. Bioelectron.,2007,22:2898-2905.
    [120]D. Foxx, E. E. Kalu. Amperometric biosensor based on thermally activated polymer-stabilized metal nanoparticles [J]. Electrochem. Commun.,2007,9: 584-590.
    [121]S. H. Stelzig, M. Klapper, K. Mullen. A simple and efficient route to transparent nanocomposites [J]. Adv. Mater.,2008,20:929-932.
    [122]J. P. Lellouche, G. Senthil, E. R. Bauminger, I. Bruce, J. Schlesinge, A. Joseph, L. Buzhansky. Magnetically responsive carboxylated magnetite-polydipyrrole/polydicarbazole nanocomposites of core-shell morphology. Preparation, characterization, and use in DNA hybridization [J]. J. Am. Chem. Soc.,2005,127:11998-12006.
    [123]X. Yang, X. Chen, X. Zhang, W. Yang, D. G. Evans. Direct electrochemistry and electrocatalysis with horseradish peroxidase immobilized in polyquaternium-manganese oxide nanosheet nanocomposite films [J]. Sens. Actuators B,2008,134:182-188.
    [124]Y. T. Zhang, T. T. Zhi, L. Zhang, H. Huang, H. L. Chen. Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite [J]. Polymer,2009,50:5693-5700.
    [125]W. Yan, X. J. Chen, X. H. Li, X. M. Feng, J. J. Zhu. Fabrication of a label-free electrochemical immunosensor of low-density lipoprotein [J]. J. Phys. Chem. B, 2008,112:1275-1281.
    [126]F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerle, J. Raya, B. Bechinger, J. C. Voegel, P. Schaaf, V. Ball. Characterization of dopamine-melanin growth on silicon oxide [J]. J. Phys. Chem. C,2009,113:8234-8242.
    [127]F. M. Raymo, M. A. Cejas. Supramolecular association of dopamine with immobilized fluorescent probes [J]. Org. Lett.,2002,4(19):3183-3185.
    [128]H. He, Q. Xie, S. Yao. An electrochemical quartz crystal impedance study on anti-human immunoglobulin G immobilization in the polymer grown during dopamine oxidation at an Au electrode [J]. J. Colloid Interface Sci.,2005,289: 446-454.
    [129]M. Li, C. Deng, Q. Xie, Y. Yang, S. Yao. Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing [J]. Electrochim. Acta,2006,51:5478-5486.
    [130]M. R. Li, C. Y Deng, C. Chen, L. M. Peng, G. H. Ning, Q. J. Xie, S. Z. Yao. An amperometric hydrogen peroxide biosensor based on a hemoglobin-immobilized dopamine-oxidation polymer/Prussian blue/Au electrode [J]. Electroanalysis,2006,18(22):2210-2217.
    [131]N. R. Jana, L. Gearheart, C. J. Murphy. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles [J]. Chem. Mater., 2001,13:2313-2322.
    [132]N. R. Jana, L. Gearheart, C. J. Murphy. Seeding growth for size control of 5-40 run diameter gold nanoparticles [J]. Langmuir,2001,17:6782-6786.
    [133]B. R. Baker, R. Y Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, K. W. Plaxco. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection [J]. J. Am. Chem. Soc.,2007,129:15448-15449.
    [134]I. Willner, M. Zayats. Electronic aptamer-based sensors [J]. Angew. Chem. Int. Ed.,2007,46:6408-6418.
    [135]A. Bini, M. Minunni, S. Tombelli, S. Centi, M. Mascini. Analytical performances of aptamer-based sensing for thrombin detection [J]. Anal. Chem., 2007,79:3016-3019.
    [136]J. R. Cole. Affinity·capture and detection of immunoglobulin E in human serum using an aptamer-modified surface in matrix-assisted laser desorption/ionization mass spectrometry [J]. Anal. Chem.,2007,79:273-279.
    [137]B. Basnar, R. Elnathan, I. Willner. Following aptamer-thrombin binding by force measurements [J]. Anal. Chem.,2006,78:3638-3642.
    [138]M. Vairamani, M. L. Gross. G-quadruplex formation of thrombin-binding aptamer detected by electrospray ionization mass spectrometry [J]. J. Am. Chem. Soc.,2003,125:42-43.
    [139]H. N. Choi, M. A. Kim, W. Lee. Amperometric glucose biosensor based on sol-gel derived metaloxide/Nafion composite films [J]. Anal. Chim. Acta,2005, 537:179-187.
    [140]S. F. Chen, L. Y. Li, C. L. Boozer, S. Y. Jiang. Controlled chemical and structural properties of mixed self-assembled monolayers by coadsorption of symmetric and asymmetric disulfides on Au(111) [J]. J. Phys. Chem. B,2001, 105:2975-2890.
    [141]A. E. Radi, J. L. A. Sanchez, E. Baldrich. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor [J]. J. Am. Chem. Soc.,2006,128: 117-124.
    [142]R. Nutiu, Y. Li. Structure-switching signaling aptamers [J]. J. Am. Chem. Soc., 2003,125:4771-4778.
    [143]B. Li, H. Wei, S. Dong. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch [J]. Chem. Commun.,2007:73-75.
    [144]V. Pavlov, Y. Xiao, B. Shlyahovsky, I. Willner. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc.,2004,126:11768-11769.
    [145]H. Wei, B. Li, J. Li, E. Wang, S. Dong. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes [J]. Chem. Commun.,2007:3735-3737.