苯醌细胞毒性、DNA损伤及修复作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1,4-苯醌(BQ)又称对苯醌,是一种有刺激性气味的黄色晶体物质,是有机合成工业的重要原料,广泛应用于医药、农药、化工、染料等工业。研究表明,BQ是苯在体内毒性最强的一种代谢物。在许多实验系统中均可引起遗传损伤,近年来对其遗传毒性机制的研究取得一些进展。动物实验研究证明,苯醌是一类确认的致白血病物质,但其毒作用机理并不是很清楚。本研究旨在了解BQ的细胞毒性、周期阻滞和DNA损伤及修复情况,试图探讨BQ可能的遗传损伤机制和防护剂,为提出有效保护苯和BQ职业暴露人群健康的措施提供依据。
     方法:本研究通过MTT比色法检测不同浓度的BQ对V79细胞(中国仓鼠肺成纤维细胞)作用后细胞存活率的变化,了解浓度-毒性效应之间的关系;同时采用碘化丙啶( PI)染色观察细胞周期分布状况;用单细胞凝胶电泳技术研究不同浓度BQ对V79细胞的DNA损伤程度及类型,并观察不同时间段细胞的自身修复情况;用DCFH-DA法检测不同浓度BQ处理V79细胞2h后活性氧(ROS)的含量并用激光共聚焦进行形态观察;分别用不同浓度维生素C与BQ共同作用于V79细胞后,用单细胞凝胶电泳技术(SCGE)检测DNA损伤的变化情况,观察维生素C对BQ所致DNA损伤的拮抗作用。
     结果:在2h处理过程中,当BQ终浓度50μmol/L及以上时,各染毒组吸光值与阴性对照组相比,有统计学意义(P < 0.01),并且随着浓度和时间的增加,吸光值逐渐下降,细胞存活率也呈时间和浓度依赖性降低。25~100μmol /L范围内的BQ作用24 h后,V79细胞的细胞周期也发生了明显的改变,表现为S期细胞比例明显增加,G1期细胞的比例下降。单细胞凝胶电泳结果显示,在12.5~100μmol/LBQ作用后,彗星细胞拖尾率随着浓度的增加而增加,且有统计学意义(P < 0.05)。其他分析指标彗星尾长、Olive尾矩和彗尾DAN%也明显高于阴性对照组( P < 0.05) ,且随着BQ浓度的增加,损伤呈上升趋势。经流式细胞仪检测,当BQ终浓度在50~100μmol/L时细胞内ROS含量显著升高,有统计学意义(P < 0.01)。BQ致DNA损伤程度的变化与ROS含量变化存在线性相关(p<0.01)。在本研究中,40、200μmol/L维生素C和BQ同时作用使彗星拖尾率、彗星尾长、Olive尾矩和彗尾DAN%明显低于相应BQ剂量组( P < 0.01)。而1000μmol/L维生素C则加重了BQ的DNA损伤。
     结论:本研究结果认为,①在体外培养条件下,BQ能明显抑制V79细胞的增殖,100μmol/L BQ浓度作用2h,25μmol/L BQ浓度作用24h就对细胞产生明显的毒作用,并呈浓度依赖关系;②流式细胞仪检测发现,25μmol/L的BQ作用24 h后,可引起V79细胞周期也发生明显的改变,表现为S期细胞比例明显增加, G1期细胞的比例下降;③单细胞凝胶电泳实验表明,6.25μmol/L BQ就能引起DNA损伤,主要是单链断裂,这种损伤部分可自身修复;④流式细胞术及激光共聚焦技术检测结果显示,在体外培养条件下,50μmol/L的BQ可引起V79细胞内ROS生成明显增多;BQ致细胞DNA损伤与引起ROS生成增多有关;⑤单细胞凝胶电泳结果显示,一定剂量的维生素C对BQ诱导的V79细胞DNA氧化损伤具有抑制作用。
Objective: 1,4-benzoquinone(BQ) is a yellow crystal-solid, which was an important row material in organic synthesie and was used in medical、chemical and dye industry widely. BQ is one of the main active metabolites of benzene.Some studies demonstrate clearly that BQ is the most potent metabolite in vitro. In recent years, some progresses have been made in the research on genotoxicity mechanism of BQ. Although BQ is a known leukemogen, the basis of its toxicity is not well defined.
     The aim of research is to examine the effect of BQ on cell viability、cell cycle and genetic damage, to explore possible genotoxicity mechanism from DNA damage and DNA repair in order to provide bases of effective protectional measures for occupational exposure benzene and BQ.
     Methods:In this study,the viability of V79 cells was measured by MTT method and the dose-effect relation could be decided;The cell cycle distribution of V79 cells treated with BQ were detected by flowcytometry;Alkli single cell gel electrophoresis (SCGE) was used to study the degree and type of DNA damage induced by BQ in V79 cells, and subsequent self-repair effect; DCFH-DA assay was used to study the content of reactive oxygen species(ROS) after V79 cells stained by the fluorescent probes , which had been treated for 2 hour by BQ; after co-cultured by BQ with various concentration of VitC , SCGE was used to study the DNA damage of V79 cells in order to observe the influence of VitC on BQ induced DNA damage and repair.
     Results: As showed in the MTT assay, V79 cell proliferation was inhibited obviously by BQ (treated 2 hours, from the concentration of 100μmol/L), and concentration-dependent relationship was show. Treated with BQ (25- 100μmol /L) for 24 h, the distribution of cell cycle was changed. Cells in S stage were increased, while the cells in G1 stage were decreased. The comet cells ratio elevated as the concentration increased in SCGE in the range of 12.5~100μmol/L showing significant statisitic differences (P < 0.05). All the analysis indexes including tail length, Olive tail moment and tail DNA % increased in a dose-dependent pattern.
     Levels of ROS induced by 50 and 100μmol/L p-BQ were significantly increased as evidenced by elevated fluorescence intensity (P<0.01). The comet cells ratio ,tail length , Olive tail moment elevated as the concentration increased in SCGE in the range of 12.5-100μmol/L showing significant statisitic differences (P<0.05). There was a linear correlation between the DNA damage and the ROS intensity(P<0.01). Combined treatment of vitamin C(40、200μmol/L)and BQ,the levels of the comet cells ratio ,tail length and Olive tail moment were significant lower than those of correspondent BQ alone treatment(P<0.05). However, 1000μmol/L vitamin C has an aggravation effect on the BQ induced DNA damage.
     Conclusion: The results of this study showed that:the first,conditions in vitro, low concentration BQ could inhibit proliferation of V79 cells and had a concentration-dependent mode; the second,the distribution of cell cycle could be altered by BQ in V79 cell, cells in S stage increased, while the cells in G1 stage decreased ; the third,DNA single strand breaks could induced by BQ and the damage could be self-repaired partly; the fourth,by flow cytometry and confocal laser scanning technology test results showed that, BQ at the concentrations of 50、100μmol/L induced enhanced ROS production. And it indicated that excess production of ROS may be a possible mechanism of the DNA damage induced by BQ; the fifth,Vitamin C at certain concentration(40、200μmol/L)has the antagonistic effects on oxidative stress and DNA damage induced by BQ.
引文
[1] Thomsin R.H、Naturally Occurring Quinones[M ]. Second Edition,Academic Press,London and New York,l97l
    [2] Singh R, Winn LM. The effects of 1,4-benzoquinone on c-Myb and topoisomerase II in K-562 cells[J]. Mutation Research,2008, 645(1-2):33–38.
    [3] Mo′nica Barra, Audrey Tan, Susanna Wong .Hydroxide-catalysed decomposition of benzoquinone-imine dyes [J]. Dyes and Pigments,2004, 61:63–67.
    [4] Smith M T, Wang Y, Skibola C F, et al . Low NAD(P)H:quinine oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children[J].Blood,2002,100:4590–4593.
    [5] Smith M T, Wang Y , Kane E, et al .Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults[J] . Blood,2001,97:1422–1426.
    [6] Misral UK. Toxical ApplPharmacol,1998.151(1):1-8.
    [7] Xie ZW, Zhang YB,Guliaev AB. The p-benzoquinone DNA adducts derived from benzene are highly mutagenic [J].DNA Repair,2005,4(12):1399–1409.
    [8] Whysner J, Reddy MV, Ross PM,et al. Genotoxicity of benzene and its metabolites[J]. Mutat Res, 2004, 566(2):99–130.
    [9]江瑞胜,欧阳高亮,鲍仕登.细胞DNA损伤检控点[J].细胞生物学杂志,2004,26(3):209-215.
    [10] Yves Pommier, Christophe Redon, V. Ashutosh Rao, et al. Repair ofand checkpoint response to topoisomerase I-mediated DNA damage[J]. Mutation Research,2003,532 :173–203
    [11]薛莲,周建华,时锡金,等.氯化镉的体外毒性及锌的拮抗作用[J].工业卫生与职业病, 2005,31(2):79-82.
    [12]Ross D. The role of metabolism and specific metabolites in benzene-induced toxicity:evidence and issues[J]. Journal of Toxicology and Environmental Health,2000,61(5-6):357–372.
    [13]Lee SK, Chung SM, Lee MY,et al. The roles of ATP and calcium in morphological changes and cytotoxicity induced by 1,4-benzoquinone in platelets[J]. Biochimica et Biophysica Acta, 2002, 1569(1-3):159-166.
    [14]Maity A , Mckenna W G, Muschel R J . The molecular basis for cell cycle delays following ionizing radiation : a review. Radiother Oncol , 1994 , 31 (1) : 1-13
    [15]Elledge S J . Cell cycle checkpoints : preventing an identity crisis.Science , 1996 , 274 (5293) : 1664~1683
    [16]Yih LH, Lee TC. Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts, Cancer Res, 2003, 63(20):6680-6688
    [17]Cronkite EP, Drew RT, Inoue T, Hirabayashi Y, Bullis JE (1989) Hematotoxicity and carcinogenicity of inhaled benzene. Environ Health Perspect 82:97
    [18]Farris GM, Robinson SN, Gaido KW, et al. (1997) Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice. FundamAppl Toxicol 36:119
    [19]Dees C, Askari M, Henley D. Carcinogenic potential of benzene and toluene when evaluated using cyclin-dependent kinase activation and p53-DNA binding. Environ Health Perspect 1996;104(Suppl 6):1289–92.
    [20]Rao NR, Snyder R. Oxidative modifications produced in HL-60 cells on exposure to benzene metabolites. J Appl Toxicol.1995;15:403–9.
    [21]Byung-Il Yoona, Yoko Hirabayashia, Yasushi Kawasakia,Yukio Kodamaa, Toyozo Kanekoa, Dae-Yong Kim b, and Tohru Inouea .Mechanism of action of benzene toxicity:Cell cycle suppression in hemopoietic progenitor cells (CFU-GM)[J]. Experimental Hematology 29 (2001) 278–285
    [22]Ruiz.R.R.,Mariano.E.C.,Garridoet.E.2005.Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells. Toxicology 20:279–287
    [23]Melo J,Toczyskid.A unified view of the DNA-damage checkpoint[J].Curr Opin Cell Biol,2002,14:237-245.
    [24]Qin J,Li L.Molecular anatomy of the DNA damage and replication checkpoints[J].Radiat Res,2003,159;139-148
    [25]Sanchez Y, Brain A D , William J J . Regulation of RAD53 by the ATM2like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science , 1996 ,271(5247) : 357~360.
    [26]Lan Qing,Zhang LuoPping,Li GuiLan,et a1.Hematotoxicity in workers exposed to low levels of benzene[J].Science,2004,306(3):1774—1776.
    [27]Snyder R. Overview of the toxicology of benzene[J]. Toxicol Environ Health A,2000, 61(5-6): 339–346.
    [28]R.H. Lindsey Jr., K.D. Bromberg, C.A. Felix, N. Osheroff, 1,4-Benzoquinone is a topoisomerase II poison, Biochemistry. 43 (2004) 7563–7574.
    [29]J. Whysner,M.V. Reddy, P.M. Ross, M. Mohan, E.A. Lax, Genotoxicity of benzene and its metabolites, Mutat. Res. 566 (2004) 99–130.
    [30]R. Tice , E. Agurell , D. Anderson , et al. Single cell gel/comet assay : guidelines for in vitro and in vivo genetictoxicology testing , Environ.Mol.Mutagen ,2000,35(3):206 - 221.
    [31]Singh NP. Microgels for estimation of DNA strand breaks, DNA protein cross links and apoptosis[J].MutationResearch,2000,455(1-2):111–122.
    [32]Konca K, Lankof A, Banasik A, et al. A cross—platform public domain PC image—analysis program for the comet assay[J] . Murat Res, 2003, 534(1-2):15—20.
    [33]Ross D. The role of metabolism and specific metabolites in benzene-Induced toxicity:evidence and issues[J]. Journal of Toxicology and Environmental Health,2000,61(5-6):357–372.
    [34]Yager JW, Eastmond DA, Robertson ML, et al. Characterization of micronuclei induced in human lymphocytes by benzene metabolites[J].Cancer Res ,1990,50(2):393–399.
    [35] Pongracz K, Kaur S, Burlingame AL, et al. Detection of (3-hydroxy)-3, N4-benzetheno-2-deoxycytidine 3-phosphate by 32P-postlabeling of DNA reacted with p-benzoquinone[J].Carcinogenesis,1990,11(9): 1469–1472.
    [36] Yuko I, Rensuke G. Dysregulation of apoptosis by benzene metabolites and their relationships with carcinogenesis [J]. Biochimica et Biophysica Acta, 2004,1690(1):11-21.
    [37] Lee EW, Garner CD. Effects of benzene on DNA strand breaks in vivo versus benzenemetabolite-induced DNA strand breaks in vitro in mouse bone marrow cells[J].Toxicology and Applied Pharmacology,1991,108(3): 497-508.
    [38]C. Kerzendorfer, M. O’Driscoll. Human DNA damage response and repair deficiency syndromes: Linking genomic instability and cell cycle checkpoint proficiency[J].DNA Repair, 2009 (8): 1139–1152.
    [39]A. Nakayama, S. Koyoshi, S. Morisawa, T. Yagi, Comparison of the mutations induced by p-benzoquinone, a benzene metabolite, in humanand mouse cells, Mutat.Res. 470 (2000) 147–153.
    [40]Xie ZW, Zhang YB, Guliaev AB. The p-benzoquinone DNA adducts derived from benzeneare highly mutagenic [J].DNA Repair, 2005, 4(12):1399–1409.
    [41]J.M. Fortune, N. Osheroff, Topoisomerase, II as a target for anticancer drugs:when enzymes stop being nice, Prog. Nucl.Acid. Res. Mol. Biol. 64 (2000) 221–253.
    [42]A.M. Wilstermann, N. Osheroff, Stabilization of eukaryotic topoisomerase II–DNA cleavage complexes, Curr. Top. Med.Chem. 3 (2003) 321–338.
    [43] Norbury CJ, Zhivotovsky B. DNA damage2induced apoptosis[ J ]. Oncogene, 2004,23(16): 2797-2808.
    [44] Halliwell B.Vitamin C and genomicstability[J].MutatRes,2001,475 (1/2):29-35.
    [45] LeBel, C.P., Ischiropoulos, H., Bondy, S.C. Evaluation of the probe2-,7-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress.Chem. Res. Toxicol. 1992.5: 227–231.
    [46]周彦娇.活性氧在线粒体凋亡信号传导中的调节作用[J].中国运动医学杂志.2005,24(6): 746-750.
    [47] Adler, V., Yin, Z., Tew, K.D., Ronai, Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999,18: 6104–6111.
    [48]方允中,郑荣梁.自由基生物学的理论与应用[M] .北京:科学出版社,2002(1):143-147.
    [49] Faber JL. Mechanisms of cell injury by activated oxygenspecies.Environ Health Perspect.1994,102:17–24.
    [50] Edenharder R,Krieg H, Kottgen V,et al.Inhibition of clastogenicity of benzo[a]pyrene and of its trans-7,8-dihydrodiol in mice in vivo by fruits, vegetables, and flavonoids[J].Mutat Res,2003,537(2):169-181.
    [51] Lee SH. Oe T. Blair IA .Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins[J]. Science.2001, 292(5524):2083-6.
    [1] Snyder R. Overview of the toxicology of benzene[J]. Toxicol Environ Health A, 2000, 61(5-6): 339–346.
    [2] Stillman WS, Varella-Garcia M, Irons RD. The benzene matabolite hydroquinone selectively induces 5q31and7, in human CD34 +, CD19 -bone marrow cells[J]. Exp Hematol, 2000, 28(2):169-176.
    [3]万俊香,夏昭林,金锡鹏.与苯血液毒性易感性相关的几种毒物代谢酶多态性研究进展[J].中华劳动卫生职业病杂志,2001,19(1):76-78.
    [4]Jowa L , Witz G, Snyder R. Synthesis and characterization of dexyguanosine benzene adducts[J]. J Appl Toxicol ,1990 ,10(1) :47-54.
    [5]Prema K, Vangal V .Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cell in vitro and in the bone marrow in vivo[J]. Cancer Research ,1993 ,53(10):1023-1026.
    [6]Martnez-Velazquez M, Maldonado V, Ortega A, et al. Benzene metabolites indu-ce apoptosis in lymphocytes [J].Experimental and Toxicologic Pathology 2006,58(1):65–70.
    [7] Zhongwen X, Yangbin Z, Anton B. et al. The p-benzoquinone DNA adducts derived from benzene are highly mutagenic.[J] DNA Repair 2005,4(12): 1399–1409.
    [8] Jowa L , Snyder R. Deoxyguanosine adducts formed from benzoquinone and hydroquinone in biological reaction intermediates[J].Plenum Publishing Corporation,1986, 197(2-3):825-832.
    [9]Pongracz K, Bodell WJ. Detection of (3'-hydroxy)-3, N4-benzetheno-2'-deoxycy tidine-3'-phosphate by 32P-postlabeling of DNA reacted with p-benzoquinone.[J] Carcinogenesis. 1990,11(9):1469-72.
    [10]Kalf GF, Snyder R. Inhibition of RNA synthesis and interleukin-2 production in lymphocytes in vitor by benzene and its hydroquinone and p-benzonquinone[J].Toxicology Letters, 1985,29(2-3):161-167.
    [11] Gaikwad NW, Bodell WJ. Formation of DNA adducts by microsomaland peroxidase activateion of p-cresol: role of quinone methide in DNA adduct formation[J].Chemico-Biological Interactions ,2001,138(3):217–229.
    [12]常平,李桂兰.苯DNA加合物的形成特征、条件和方法探讨[J].中华劳动卫生职业病杂志, 1997,15(3): 142-145.
    [13]张德莉,朱圣姬,罗光富.自由基与DNA氧化损伤的研究进展[J],三峡大学学报,2004,26(6):563-567.
    [14] A Nakayama, S Koyoshi, S Morisawa. Comparison of the mutations induced by p-benzoquinone, a benzene metabolite, in human and mouse cells[J].Mutage-nesis,2000,470(2):147-153.
    [15]方允中,郑荣梁.自由基生物学的理论与应用[M] .北京:科学出版社,2002: 143-147.
    [16] Plappert U , Barthel E ,Seidel HJ ,et al . Reduction of benzene toxicity by toluene [J]. Environ Mol Mut ,1994 ,24(4):283-292.
    [17]Andreoli C ,Leopardi P, Crebelli R. Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene of benzene metabolites[J].Mut Res ,1997 ,377(1):95-104.
    [18]徐国彬,陆建华,周建华,等.苯职业暴露人群遗传损伤效应的标志物研究[J].工业卫生与职业病2006 ,32(6):342-347.
    [19] Lagorio S , Tagesson C, Forastiere F , et al. Exposure to benzene and urinary concentration of 8-hydroxydeoxyguanosie , a biological marker of oxidative dam-age to DNA [J] . Occup Environ Med ,1994 , 51 (11) : 739 - 743.
    [20]Mette Sensen , Henrik Skov , Herman Autrup,et al. Urban benzene exposure and oxidative DNA damage: influence of genetic polymorphisms in metabolism genes[J]. The Science of the Total Environment ,2003,309(1-3):69–80.
    [21]Hiraku Y, Kawanishi S. Oxidative DNA damage and apoptosis inducedby benzene metabolites[J]. Cancer Res ,1996 ,56(22):5172-5178.
    [22]邢彩虹,纪之莹,李桂兰,等.DNA损伤修复与慢性苯中毒关系[J].卫生研究,2006,35(4):423-425.
    [23] Au WW, Wilkinson GS, Tyring SK, et al. Monitoring populations for DNA repairdeficiency and for cancer susceptibility, Environ[J]. Health Perspect. 1996,104 Suppl3:S579–584.
    [24] Sirirat C , Panida N , Potchanee H ,et al .Exposure assessment of benzene in Thai workers, DNA-repaircapacity and influence of genetic polymorphisms[J]. Mutation Research/Genetic Toxicology and Envir-onmental Mutagenesis, 2007, 626(1/2): 79-87.
    [25]陈丽,毕勇毅,陶宁,等.用cDNA微列阵技术探讨苯中毒相关的DNA复制及损伤修复基因表达谱的改变[J].中华劳动卫生职业病杂志,2005;23(4);248-251.
    [26]Wood RD.DNA damage recognition during nucleotide excision repair in mammalian cells[J]. Biochimie 1999;81(1/2):39-44.
    [27] Larry HT, Mary GW. XRCC1 keeps DNA from getting stranded[J]MutationResearch/DNA Repair, 2000,459(1):1-18.
    [28] Hang B , Chenna A ,Sagi J ,et al . Differential cleavage of oligonucleoti descontaining the benzene-derived adduct , 1 , N6-benzetheno-dA , by the major human AP endonuclease HAP1 and Escherichia coli exonucleaseIII and endonuclease IV[J].Carcinogenesis ,1998 19(9):1339-1343.
    [29]Shen MR ,Jones IM,Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes inhealthy humans[J]. Cancer Res ,1998 ,58(4):604-608.
    [30]张忠彬,夏昭林.与苯中毒有关的DNA损伤修复基因[J]中华劳动卫生职业病杂志2004 ,22(3):224-226; 1-15.
    [31]Pilger A, Ruediger HW. 8-Hydroxy-2 '-deoxyguanosine as a marker of oxid-ative DNA damage related to occupational and environmental exposures [J] International Archives of Occupational & Environmental Health.. 2006. 80(1): 1-15.
    [32]Sakumi K,Furuichi M,Tsuzuki T ,et al . Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP ,a mutagenic sub-strate for DNA synthesis[J]. J Biol Chem,1993 ,268(25):23524-23530.
    [33]Amin RP ,Witz G. DNA2protein crosslink and DNA strand break forma-Tion in HL260 cells treated with trans ,trans-Muconaldehyde hydroquinone and their mixtures[J]. Int J Toxicol ,2001 ,20 (2) :69-8