活细胞荧光成像研究蓝藻光合膜蛋白的动态变化和生理功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要分三部分:一是利用激光扫描共聚焦显微镜在蓝藻细胞内建立两种活体内荧光成像技术平台:荧光漂白恢复技术(fluorescence recovery afterphotobleaching, FRAP)和荧光共振能量转移技术(fluorescence resonance energytransfer, FRET);二是利用FRAP技术研究与蓝藻状态转换有关的藻胆体的动态扩散及其驱动力和调控因素;三是利用活体内FRET技术初步探讨了蓝藻NAD(P)H脱氢酶复合物的亚基之间的距离及相互作用。
    后基因组时代的到来要求对生物大分子尤其是蛋白质的结构、特点及其相互作用的研究由体外转向体内。活体内荧光成像技术的出现使得研究活细胞生理状态下蛋白质的动态变化成为可能。本论文分别利用两种模式蓝藻:Synechococcussp. PCC7942和Synechocystis. PCC6803建立了在蓝藻活细胞内进行FRAP和FRET实验的技术平台,用以研究活细胞生理状态下蓝藻光合膜蛋白的动态变化。
    在蓝藻活体内利用FRAP技术的研究已经表明藻胆体可以在类囊体膜上快速的自由扩散,且该动态扩散对蓝藻的状态转换是必需的。但是藻胆体扩散的驱动力及调控因素仍然未知。FRAP是在细胞生物学中被广泛用于测定生物体系动态性包括生物膜组分动态扩散的一种技术,其原理是利用高强度激光将细胞内一小部分区域的荧光分子漂白,然后通过记录该区域随后的荧光恢复,检测周围未漂白区域内的荧光分子与漂白区域荧光分子的交互扩散。本文利用FRAP技术和77K低温荧光发射谱研究了PQ的结构类似物-对苯醌(BQ)对蓝藻Synechococcus sp.PCC7942的状态转换和藻胆体动态扩散的影响。结果表明:BQ在暗中可以诱导蓝藻向状态1转换,且将蓝藻固定在状态1。同时,BQ处理显著影响了藻胆体在类囊体膜上的动态扩散,使多数藻胆体被固定在类囊体膜上,不能进行自由扩散。据此我们推测PQ库的氧化还原状态参与调控藻胆体的动态扩散,并提出了PQ库氧化还原状态调控藻胆体动态扩散及状态转换的假想模型。
    NAD(P)H脱氢酶复合物(NDH)是近年来在蓝藻和高等植物等的类囊体膜上发现的另一类膜蛋白复合体,在蓝藻中参与呼吸和循环电子传递及参与CO2的吸收,对于蓝藻许多重要生理过程是必需的。但蓝藻NDH复合物的体外完整分离尚未实现,其完整的亚基组成也存有争议。本论文利用绿色荧光蛋白(greenfluorescent protein, GFP)的变种黄色荧光蛋白(yellow fluorescent protein, YFP)
This work consists of three parts. Firstly, two types of live cell fluorescentimaging techniques -fluorescence recovery after photobleaching (FRAP) andfluorescence resonance energy transfer (FRET) were developed in livingcyanobacteria cells using laser scanning confocal microscope. Secondly, FRAP wasused to detect the diffusion of phycobilisomes on thylakoid membranes and thedriving force (or the regulatory factors) of this diffusion. Thirdly, FRET was used todetect the interaction of two subunits of NAD(P)H dehydrogenase complex incyanobacteria.
    The arriving of the post-genome era requires the studying of the structures,characteristics and interactions of biological macromolecules especially proteinsturning from in vitro to in vivo. This study used two model cyanobacteria-Synechococcus sp. PCC7942 and Synechocystis. PCC6803 to develop FRAP andFRET techniques in living cyanobacteria cells, which can be used to study thedynamics of photosynthetic membrane proteins.
    Studies using FRAP in living cyanobacteria cells have shown thatphycobilisomes diffuse rapidly on thylakoid membranes, and this diffusion is requiredfor state transitions in cyanobacteria. However, the driving force and the regulatoryfactors of phycobilisome diffusion are yet unknown. FRAP is a technique widely usedin cell biology to observe the dynamics of biological systems, including the diffusionof membrane components. This technique involves the use of a highly-focusedconfocal laser spot to selectively bleach the fluorophores in a small region of the cell.The diffusion of the fluorophores can then be monitored by observing the spread andrecovery of the bleach. In this study, we use FRAP and 77K fluorescence spectra toinvestigate the effects of 1, 4-benzoquinone (BQ), one of the benzoquinone analogues,on state transitions and phycobilisomes mobility in Synechococcus sp. PCC7942. Theresults show that BQ can induce a transition from state 2 to state 1 in the absence ofactinic light and cells treated with BQ were locked in state 1. At the same time, BQaffects the diffusion of phycobilisomes drastically. Most phycobilisomes are
    immobilized on thyalkoid membranes. It is suggested that the redox state of PQ poolcan regulate the phycobilisome diffusion in cyanobacteria.NAD(P)H dehydrogenase complexes(NDH) is another photosynthetic membranecomplex found in thylakoid membranes in cyanobacteria and green plants in recentyears. It has specific functions in respiration and cyclic electron flow as well as inactive CO2 uptake. Attempts to isolate intact NDH complexes from cyanobacteria orplant chloroplasts have met severe difficulties due to the fragility of the enzyme andthe low quantity present in the thylakoid membrane. Also, the intact subunitscomposition is yet unknown. In this work, two variants of green fluorescentprotein(GFP)-yellow fluorescent protein(YFP) and cyan fluorescent protein(CFP)were used to label D4 and CupB subunits of NDH complexes respectively. ThenFRET was used to detect the interactions of these two subunits and theconformational changes of NDH complexes in different physiological conditions.Three different methods including sensitized emission, acceptor photobleaching anddonor photobleaching dynamics were used to detect FRET signals. However, theresults showed that many factors can interfere FRET studies in cyanobacteria. Theautofluorescence of the cell is high and the expression level of the fluorescent proteinsis low relative to the cell autofluorecence, which makes the ratio of signal to noise toolow to be detected. In this study, we also found a photo-activation-like phenomenon inthe range of 465-565 nm using 405 nm laser for XYT scanning. This may be relatedto the activity of carotenoids, which can protect the photosystems in the high lightmenace.
引文
[1] 匡廷云. 光合作用原初光能转化过程的原理与调控. 南京:江苏科学技术出版社, 2003. p1
    [2] Douglas S E. Chloroplast origins and evolution. In: Bryant D A, ed. The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, 1994. 91-118
    [3] Bald D, Kruip J and Rogner M. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth. Res, 1996, 49: 103-118
    [4] Wimotte A. Molecular evolution and taxonomy of the cyanobacteria. In:Bryant D A, ed. The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic publishers, 1994.1-25
    [5] Campbell D, Hurry V, Clarke A K, et al. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev, 1998, 62: 667-683
    [6] Sidler W A. Phycobilisome and phycobiliprotein structures. In: Bryant D A, ed. The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, 1994. 139-216
    [7] Glazer A N. Phycobilisomes: structure and dynamics. Ann. Rev. Microbiol., 1982, 36: 173-198
    [8] Reuter W and Wehrmeyer W. Core substructure in Mastigocladus laminsosus phycobilisomes: II. The central part of the tricylindrical core-ApcM-contains the anchor polypeptide and no allophycocyanin B. Arch Microbiol, 1990, 153: 111-117
    [9] Isono T and Katoh T. Subparticles of Anabaena phycobilisomes. Arch Biochem. Biophys, 1987, 256: 317-324
    [10] Bryant D A, Guglielmi G, Tandeau de Marsac N, et al. The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol, 1979, 123: 113-127
    [11] Guglielmi G, Cohen-Bazire G and Bryant D A. The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol, 1981, 129: 181-189
    [12] Guglielmi G and Cohen-Bazire G.. Taxonomic study of a cyanobacterial genus belonging to Oscillatoriaceae: the genus Pseudanabaena Lauterborn. II. Molecular composition and structure of the phycobilisomes. Protistologica, 1984, 20: 393-413
    [13] Lange W, Wilhelm C and Wehrmeyer W. Supramolecular structure of Photosystem II -Phycobilisome complexes of Porphyridium cruentum. Bot. Acta, 1990, 103: 250-257
    [14] Glazer A N. Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta, 1984, 768: 29-51
    [15] Glazer A N. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem., 1989, 264: 1-4
    [16] de Lorimier R, Bryant D A and Stevens S E J. Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim. Biophys. Acta, 1990, 1019: 29-41
    [17] Lundell D J, Williams R C and Glazer A N. Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J. Biol. Chem., 1981, 256: 3580-3592
    [18] Gottschalk L, Fischer R, Lottspeich F, et al. Origin of the red shifted absorption in phycocyanin 632 from Mastigocladus laminosus. Photochem. Photobiol., 1991, 54: 283-288
    [19] Lundell D J, Yamanaka G and Glazer A N. A terminal energy acceptor of the phycobilisome: The 75000-Dalton polypeptide of Synechococcus 6301 phycobilisome-A new biliprotein. J. Cell Biol., 1981, 91: 315-319
    [20] Fork D C and Satoh K. The control by state transition of the distribution of excitation energy in photosynthesis. Ann. Rev. Plant Physiol., 1986, 37: 335~361
    [21] Allen J F. Protein-Phosphorylation in Regulation of Photosynthesis. Biochim. Biophys. Acta, 1992, 1098: 275~335
    [22] Vener A V, Ohad I and Andersson B. Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr. Opin. Plant Biol., 1998, 1: 217~223
    [23] Allen JF, Forsberg J Molecular recognition in thylakoid structure and function. Trends Plant Sci, 2001, 6: 317–326
    [24] Grossman AR, Schaefer MR, Chiang GG, Collier JL The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev, 1993, 57: 725–749
    [25] MacColl R. Cyanobacterial phycobilisomes. J Struct Biol, 1998, 124: 311–334
    [26] Fork DC, SatohK. State I-state II transitions in the thermophilic blue-green alga (cyanobacterium) Synechococcus lividus. PhotochemPhotobiol, 1983, 37: 421–427
    [27] Mullineaux C W and Allen J F. The State-2 Transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the Plastoquinone Pool. FEBS Lett., 1986, 205: 155-160
    [28] Allen JF, Holmes NG A general model for regulation of photosynthetic unit function by protein phosphorylation. FEBS Lett, 1986, 202: 175-181
    [29] Biggins J, Bruce D Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res, 1989, 20: 1-34
    [30] Bruce D, Brimble S, Bryant DA State transitions in a phycobilisomeless mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta, 1989, 974: 66-73
    [31] Rouag D, Dominy PJ State adaptations in the cyanobacterium Synechococcus 6301 (PCC): dependence on light intensity or spectral composition. Photosynth Res, 1994, 40: 107-117
    [32] Mao haibin, et al. The redox state of plastoquinone pool regulates state transitions via cytochrome b6f complex in Synechocystis sp. PCC 6803. FEBS Letters, 2002, 519: 82-86
    [33] Glazer AN, Gindt YM, Chan CF, Sauer K. Selective disruption of energy flow from phycobilisomes to photosystem I. Photosynth Res, 1994, 40: 167-173
    [34] Mullineaux CW. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta, 1994, 1184: 71-77
    [35] Ashby MK, Mullineaux CW. The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium. Photosynth Res, 1999, 61: 169-179
    [36] Rakhimberdieva MG, Boichenko VA, Karapetyan N, Stadnichuk IN. Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry, 2001, 40: 15780-15788
    [37] Mullineaux CW, Tobin MJ, Jones GR. Mobility of photosynthetic complexes in thylakoid membranes. Nature, 1997, 390: 421-424
    [38] Aspinwall CL, Sarcina M, Mullineaux CW. Phycobilisome mobility in the cyanobacterium Synechococcus sp. PCC7942 is influenced by the trimerisation of Photosystem I. Photosynth Res, 2004, 79: 179-187
    [39] Sarcina M, Tobin MJ, Mullineaux CW. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature and membrane lipid composition. J Biol Chem, 2001, 276: 46830-46834
    [40] Li D, Xie J, Zhao J, Xia A, Li D, Gong Y, et al. Light-induced excitation energy redistribution in Spirulina platensis cells: ‘‘spillover'' or ‘‘mobile PBSs''? Biochim Biophys Acta, 2004, 1608: 114-121
    [41] Joshua S and Mullineaux CW. Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiology, 2004, 135: 2112-2119
    [42] J. L. Schwartz, E. Snapp and A. Kenworthy. Studying protein dynamics in living cells. Nature Review Molecular Biology, 2001, 2(6): 444-456
    [43] 霍霞,徐锡金,陈耀文.激光扫描共聚焦显微镜荧光探针的选择和应用.激光生物学报, 1999,8(2):152-156
    [44] D. J. Stephens and V. J. Allan. Light microscopy techniques for live cell imaging. Science, 2003, 300: 82-86
    [45] 苑晓玲,从玉文,陈家佩.绿色荧光蛋白的特性及其在信号转导中的应用.生命的化学, 2001, 2(16): 525-528
    [46] J. L. Schwartz and G. H. Patterson. Development and use of fluorescent protein markers in living cells. Science, 2003, 300: 87-91
    [47] 孙学刚,张丽华,姜勇. FRET的理论基础及应用.中国病理生理杂志, 2004,20(9):1721-1724
    [48] P. R. Selvin. The renaissance of fluorescent resonance. Nat struct Biol, 2000, 7(9): 730-734
    [49] B.A.Griffin, S. R. Adams, R. Y. Tsien. Specific covalent labeling of recombinant protein molecules inside live cells. Science, 1998, 281: 268-272
    [50] G. Gaietta. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science , 2002, 296(5567): 503-507
    [51] Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016-2018.
    [52] BruchezM, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013-2016.
    [53] Caroline Seydel. Quantum dots get wet. Science, 2003, 300: 80-81
    [54] M. Elangovan et al. Characterization of one-and two-photon excitation fluorescence resonance energy transfer microscopy. Methods, 2003, 29: 58-73
    [55] J. V. Rheenen, M. Langeslag and K. Jalink. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophy J, 2004, 86: 2517-2529
    [56] P. Nagy et al. Intensity-based energy transfer measurements in digital imaging microscopy. Eur Biophys J, 1998, 27: 377-389
    [57] G. W. Gorden et al. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophy J, 1998, 74: 2702-2713
    [58] T. S. Karpova et al. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. Journal of Microscopy, 2003, 209: 56-70
    [59] V. Raicu et al. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J, 2005, 385: 265-277
    [60] K. Truong and M. Ikura. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol, 2001, 11: 573-578
    [61] E. A. J. Reits and J. Neefjes. From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biology, 2001, 3: E145-E147
    [62] B. L. Sprague and J. G. McNally. FRAP analysis of binding: proper and fitting. Trends in Cell Biology, 2005, 15(2): 84-91
    [63] 闫炀.激光扫描共聚焦显微术在生物医学中的研究.生命的化学, 2003, 23(3): 233-235
    [64] Rippka R, Deruelles J, Waterbury J B, et al. Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 1979, 111: 1-61
    [65] R.J. Porra, W.A. Thompson, P.E. Kriedeman, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents;verification of the concentration of chlorophyll standards by absorption spectroscopy, Biochim. Biophys. Acta, 1989, 975: 384-394.
    [66] Fujita Y, Murakami A, Aizawa K, et al. Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant D A, ed. The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers, 1994. 677-692
    [67] Lao K Q and Glazer A N. Ultraviolet-B photodestruction of a light-harvesting complex. Proc. Natl. Acad. Sci. USA, 1996, 93: 5258-5263
    [68] Rajagopal S, Mohanty P and Murthy S D S. Protection of energy transfer process in isolated phycobilisome by "white light" from ultraviolet-B induced damage in the cyanobacterium Spiruline platensis. Photosynthetica, 1999, 36: 617-620
    [69] Fork D C and Satoh K. The control by state transition of the distribution of excitation energy in photosynthesis. Ann. Rev. Plant Physiol., 1986, 37: 335-361
    [70] Allen J F. Protein-Phosphorylation in Regulation of Photosynthesis. Biochim. Biophys. Acta, 1992, 1098: 275-335
    [71] Vener A V, Ohad I and Andersson B. Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr. Opin. Plant Biol., 1998, 1: 217-223
    [72] Shen G Z, Boussiba S and Vermaas W F J. Synechocystis sp. PCC 6803 Strains Lacking Photosystem-I and Phycobilisome Function. Plant Cell, 1993, 5: 1853-1863
    [73] Mullineaux CW. FRAP analysis of photosynthetic membranes. J Exp Bot, 2004, 55: 1207-1211
    [74] Ellenberg J et al. Nuclear membrane dynamics and reassembly in living cells:targeting of an inner nuclear membrane protein in interphase and mitosis. The journal of Cell Biology, 1997, 138:1193-1206
    [75] Sarcina, M. and Mullineaux, C. W. Effects of tubulin assembly inhibitors on cell division in prokayyotes in vivo.FEMS Microbiol. Rev, 2000, 191: 25–29
    [76] Satoh K et al. Binding affinities of benzoquinones to the QB site of photosystem II in synechochoccus oxygen-evolving preparation.Biochim Biophys.Acta, 1992, 1102: 45-52
    [77] TakahashiY., Hirota, K. and Katoh, S. Photosynth. Res, 1985, 6:183-192.
    [78] Berger, S., Ellersiek, U. and Steinmuller, K. Cyanobacteria contain a mitochondrial complex I-Homologoues NADH-dehydrogenase. FEBS Lett, 1991, 286:129-132
    [79] Berger S., Ellersiek, U., Kinzelt, D. and Steinmuller, K. Immunopurification of a subcomplex of the NAD(P)H-plastoquinone-oxidoreductase from the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett, 1993, 326:246-250
    [80] Berger, S., Ellersiek, U., Westhoff, P. and Steinmuller, K. Studies on the expression of NDH-H, a subunit of the NAD(P)H-plastoquinone -oxidoreductase of higher-plant chloroplasts. Planta, 1993b, 190:25-31
    [81] Mi, H., Endo, T., Ogawa, T., and Asada, K. Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase comples mediates cyclic electron transport in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol, 1995, 36:661-668
    [82] Ohkawa, H., Pakrasi, H.B. and Ogawa, T. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J. Biol. Chem, 2000, 275:31630-31634
    [83] Viljoen, C.C., Cloete, F. and Scott, W.E. Isolation and characterization of an NAD(P)H dehydrogenase from the cyanobacterium, Microcystis aeruginosa. Biochim. Biophys. Acta, 1985, 827:247-259
    [84] Howitt, C.A., Mith, G.D. and Day, D.A. Cyanide-insensitive oxygen uptake and pyridine nucleotide dehydrogenase in the cyanobacterium Anabaena PCC7120. Biochim. Biophys. Acta, 1993, 1141:313-320
    [85] Howitt, C.A., Udall, P.K. and Vermaas, W.F. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC6803 are involved in regulation rather than respiration. J. Bacteriol, 1999, 181:3994-4003
    [86] Alpes, I., Scherer, S. and B?ger, P. The respiratory NADH dehydrogenase of the cyanobacterium Anabaena variabilis: purification and characterization. Biochim. Biophys. Acta, 1989, 973:41-46
    [87] Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosama, M., Sugiura,M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S.,Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M. and Tabata, S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803 II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res, 1996, 3:109-136
    [88] Maeda, S., Badger, M.R., Price, G.D. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp.PCC7942. Mol. Microbiol, 2002, 43:425-35
    [89] Friedrich, F., Steinmüller, K. and Weiss, H. The proton-pumping respiratory complex I of bacteria and mitochondrial and its homologue in chloroplast. FEBS Lett, 1995, 367: 107-111
    [90] Zhang PP,et al. Isolation, subunit composition and interaction of the NDH-1 complexes from Thermnosynechococcus elongates BP-1. Biochem J, 2005, 390: 513-520