动物狂犬病弱毒疫苗生产工艺的建立及免疫试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是在前期获得狂犬病弱毒株SRV9的基础上,经小鼠脑内传至5代,将处理过的鼠脑第五代毒种接种BHK-21细胞,经过建立初步生产工艺获得高滴度的狂犬病弱毒疫苗。
     首先分别用10mL的细胞培养瓶、1000mL的方瓶、2000mL的小转瓶、10L的大转瓶培养BHK-21细胞的同时接种狂犬病病毒SRV9弱毒株,经反复确定条件后获得高滴度的狂犬病弱毒疫苗。
     分别对小鼠及犬做了安全性试验,结果表明狂犬弱毒疫苗对犬无论是肌注还是口服均是安全的,对18日龄以上的小鼠不具有致病性。犬的免疫原性试验结果表明,该疫苗对犬具有良好的免疫原性,
     本研究为我国生产具有良好免疫原性和安全性的口服狂犬疫苗奠定了坚实的基础,现在已经可以在实验室自主制备。
BHK-21 cells were cultured in 100ml, 1000ml cell culture bottles and 2000ml, 10L roll cell culture bottles, and simultaneous inoculation proliferative SRV9 low virulent strain from mice brain. Definite culture temperature and vaccination dosage repeatedly, at last gain high titer live attenuated rabies vaccine to establish craft of lab production to finish production of live attenuated rabies vaccine .
     To assure the safety of live attenuated rabies vaccine for animals, eighteen dogs were parted averagely to six groups for immunity, dogs in the first group were immunized by intramuscular with 1milliliter live vaccine and 1 milliliter repeated after 7 days in the second group , and 3 months dogs in the third were immunized by intramuscular with 1 milliliter live vaccine. Fifth group were immunized by mouth with 10 milliliter live vaccine and sixth group is control group. The fifth and six group were bred together.We used the RT-PCR and direct immunofluorescence to examine rabies virus which we collect swab after immunize dogs, used RT-PCR examine dogs which immunized by mouth rabies virus after blind passage three generation in BHK-21 cell, rabies virus was found. In the safety experiment of mice, 1-21 day-aged icr mice were injected inner brain with 30 micromilliter SRV9 low virus. The ice of above 18 day-age were all alive and healthy without any symptoms. And it was confirmed by direct immunofluorescence. The results indicated that live attenuated rabies vaccine made by SRV9 stain for above 18 day-age were safety. We passaged SRV9 stain five generation in icr mice brain, and amplication G gene, amico acids sequence comparison. When compared to isolated five SRV9 low virus strain, primitive SRV9 low virus strain, amino acid was 99.2%, 99.0%, 90.2%, 99.4%, 99.0%.
     For the SRV9 low virulent strain suiting to immune animals by mouth and intramuscular, safety and immunogenicity research were studied in this experiment according to WHO charrette about the field test requirementand standard for inoculating rabies vaccine by mouth to dogs , wildlife and cats which hadn’t be studied in America. To assure immunogenicity of live attenuated rabies vaccine for animals, fifteen dogs were parted averagely to five groups for immunity, dogs in the first group were immunized by intramuscular with 1milliliter live vaccine and 2 milliliter in the second group, and dogs in the third and fourth group were immunized by mouth with 10 and 20 milliliter live vaccine respectively. The first and second group were bred together, meanwhile the third, the fourth and the control group were together. After 7 days, all dogs were alive and healthy. Neutralizing antibody all above 0.5IU/ml were detected in the serum samples by fluorescent antibody virus neutralization test, which arrived to the protective level.
     The results indicated that live attenuated rabies vaccine made by SRV9 stain for dogs and cats was safety, and immunogenicity was wonderful.
引文
[1] 殷 震 , 刘 景 华 主 编 . 动 物 病 毒 学 [M]. 第 二 版 , 北 京 : 科 学 出 版 社 ,1997 329-331,343-348,422-428.777-795.
    [2] http://www.moh.gov.cn/communique.aspx.
    [3] 林放涛,于恩庶主编,狂犬病学[M]. 福州: 福建科学技术出版社,1992, 203-228.
    [4] 俞永新主编. 狂犬病和狂犬病疫苗[M]. 北京: 中国医药科技出版社, 2001.
    [5] Wu X F, Gong X M, Foley HD, et al. Both viral transcription and replication are reduced when the rabies virus nucleoprotein is not phosphorylated[J]. J Virol. 2002, 76(9): 4153-4161.
    [6] Lafon, M., T. J. Wiktor, and R.I. Macfarlan. Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J. Gen. Virol. 1983, (64):843-851.
    [7] Wang YJ, Xiang ZQ, Pasquins, et al. The use of an E1-deleted replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies[J]. Virol. 1997, 72(5):1790-1796.
    [8] Burger S R, Remaley A T, Danley J M, et al. Stable expression of rabies virus glycoprotein in Chinese hamster ovary cells[J]. J. Virol. 1991, 72 (Pt 2):359-367.
    [9] Prehaud C, Takaehara K, Flamand A, et al. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculvurus vectors. Virology. 1989, 173; 390-399.
    [10] Taylor, J.R.Weinberg, B.Languet, et al Recombinant fowlpox virus inducing protective immunity in non-avian species[J].Vaccine.1988, 6:497-503.
    [11] Prevec, L., J.B.Campbell, B.S.Christie, et al. A recombinant human adeovirus vaccine against rabies[J]. Infect.Dis.1990, 161:27-30.
    [12] Brochier B, Kieny, M P, Costy F, et al. Largescale eradication of rabies using recombinant vaccinia-rabies vaccine[J]. Nature, 1991, 354:520-522.
    [13] Barth M, Shaddock J H, Ekstrom J, et al. An immune stimulating complex (ISCOM) subunit rabies vaccine protects dogs and mice against street rabies challenge[J].Vaccine.1992, 10(3):192-197.
    [14] Prehaud N, Poch O, Ermine A, et al. Walking along the rabies genome: is the large G-L intergenic region a remnant gene?[J]. Proc Natl Acad Sci, 1986, 83:3914.
    [15] Reagan J S, King A A. Monoclonal antibodies for the identification of rabies and non- rabies lyssaviruses[J]. Laboratory tech-niques in rabies.Fourth edition. WHO 1985, 145-156.
    [16] Xiang ZQ, Spitalnik S, Tran M, et al. Vaccination with a plasmid vector carring the rabies virus glycoprotein gene induces protective immunity against rabies virus[J].Virology.1994, 199:132-140.
    [17] Xiang ZQ, Spitalnik SL, Cheng J, et al. Immune responses to nucleic acid vaccines to rabies virus[J].Virology.1995, 209(2): 569-579.
    [18] Wang J E, Castaluda D R, Velandia A E, et al. Partial inhibition of the in vitroinfection of adult mouse dorsal root ganglion neurons by rabies virus using nicotinic antaganists. Neurosci 1997, 229(3):198.
    [19] Coulon P. Molecular basis of rabies virus virulence Identification of a sites on the CVS glycoprotein associated with virulence, J Gen Virol, 1983, 64:693.
    [20] Lodmell D L, Ray N B, Ewalt L C. Gene gun particle-mediated vaccination with plasmid DNA confers protective immunity against rabies virus infection. Vaccine. 1998 Jan-Feb, 16(2-3):115-118.
    [21] Ray N B, Ewalt L C, Lodmell D L. Nanogram quantities of plasmid DNA encoding the rabies virus glycoprotein protect mice against lethal rabies virus infection[J]. Vaccine. 1997, 15(8): 892-895.
    [22] Lodmell D L, Ray N B, Ulrich J T, et al. DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL)[J]. Vaccine 2000, 18(11-12): 1059-1066.
    [23] Xiang ZQ, Pasquini S, Ertl H C. Induction of genital immunity by DNA priming and intranasal booster immunization with a replication-defective adenoviral recombinant[J]. J Immunol 1999, 162(11): 6716-6723.
    [24] 李萍,朱家鸿,严家新,等.狂犬病毒糖蛋白及核蛋白在非复制型痘苗病毒天坛株中的共同表达.中华微生物学和免疫学杂志[J].2000, 20:481-484.
    [25] 张茂林, 扈荣良, 余兴龙等. 不同转染介质对狂犬病病毒糖蛋白小鼠基因免疫的效应[J]. 中国兽医学报, 2000, 20(6): 528-531.
    [26] Clark H F, Wiktor T J, Koprowski H. Human vaccination against rabies. In GeogeMbed. The natural history of rabies[J]. Vol.Ⅱ .Academic Press. 1974, 341-369.
    [27] Mendonca R Z, VAZ D L, Lourdes R A . et al. Effect of cell culture system on the production of human viral antigens[J]. J Bra Patol Med Lab, 2004, 40(3): 147-151.
    [28] 张立, 范为民, 严春等. 用国产生物反应器培养 Vero 细胞和狂犬病毒[J]. 高技术通讯, 1999, 3:53-56.
    [29] 罗 明, 张茂林, 涂长春. 我国狂犬病流行状况分析及防治对策[J]. 中国人兽共患病杂志, 2005, 21(2): 188-121.
    [30] 张立, 严春, 范为民等.Vero细胞的微载体培养[J]. 华东理工大学学报,1998, 24(6): 659-673.
    [31] 王继麟,严家新. 人用狂犬病疫苗的过去、现在和未来[J]. 中华流行病学杂志, 2001, 22(1): 23-25.
    [32] 邹寿长,李干祥,杨葆生等.大规模动物细胞培养技术研究进展[J]. 生命科学研究, 2001, 5(6): 176-178.
    [33] Ronaldo Z M,Maria I O,Lourdes R A. et al. Effect of cell culture system on the production of human viral antigens[J]. J Bras Patol Med Lab, 2004, 40(3): 245-246.
    [34] 王树军,代长海,张莹等.用微载体系统培养 Vero 细胞生产高滴度狂犬病液[J].中国生物制品杂志, 2004, 17(6): 543-544.
    [35] 单建林,许建中,周强等. 微载体技术体外扩增人骨髓间质干细胞[J]. 中国矫形外科杂志, 2004, l2(l5): 7-8.
    [36] 王建超,周燕,华平等.应用生物反应器和微载体培养 Vero 细胞生产猪流行性腹泻病毒的研究[J]. 畜牧兽医学报, 2003, 34(6): 573-576.
    [37] 王常勇.采用微载体技术大规模培养组织工程种子细胞[J]. 生物医学工程与临床, 2002, 6(1): 265-266.
    [38] 王建超,周艳,华平等.猪流行性腹泻病毒 Vero 细胞微载体培养条件的优化试验[J].中国兽医科技杂志, 2004, 34(5): 869-870.
    [39] Mendonca R Z, Ioshimoto L M, Mendonca R M. et al. Preparation of human rabies vaccine in VERO cell culture using a microcarrier system[J]. Braz J Med Biol Res, 1993, 26(12), 1305-1317.
    [40] Mendonca R Z, Arrozio S J, Antoniazzi M M,Metabolic active-high density Vero cell cultures on microcarriers following apoptosis prevention by galactose/glutaminefeeding[J]. J Biotechnol. 2002, Jul 17, 97(1): 13-22.
    [41] 陈因良, 李雨田, 张书元等.小牛皮提取的胶原一微载体用于贴壁细胞大规模培养[J].生物工程学报,1992, 8(2): 157-163.
    [42] Robert J. Rudd, Jean S. Smith , Pamela A.A need for standardized rabies-virus diagnostic procedures: Effect of cover-glass mountant on the reliability of antigen detection by the fluorescent antibody test[J]. Virus Research, 2005. 111: (83-88).
    [43] Human Rabies—California, Georgia, Minnesota, NewYork, and Wisconsin, 2000 MMWR. 2000, 49:1111-1115.
    [44] Human Rabies—Quebec, Canada, 2000 MMWR. 2000, 49:1115.
    [45] Towards a vaccine against the European Lyssaviruses -a structural and immunological approach [M]. Berlin university.
    [46] WHO. World survey of rabies No 35 for the year 1999.
    [47] 唐青,谢世宏,郭绶衡,等. 湖南省狂犬病急剧上升原因调查分析[J]. 疾病监测,2002,10: 376-377.
    [48] 伊力军, 陈斌, 胡明兴. 四川省犬只唾液中含狂犬病毒情况的调查[J]. 四川畜牧兽医, 2001, 28 (6): 23-24.
    [49] 余光开,陈小燕,余柯,等. 四川省犬只狂犬病毒携带的流行病学调查[J]. 泸州医学院学报, 2000, 23 (4): 2869-2871.
    [50] Vero-cell rabies vaccine produced using serum-free medium[J]. Vaccine, 2004, (23): 511-517.
    [51] WHO EXPERT CONSULTATION ON RABIES .WHO, 2005, 711-716.
    [52] Smith J S. Manual of Clinical Microbiology[M]. Washington, DC: American Society for Microbiology, 1995, 1997-1003.
    [53] F. Cliquet, A.L. Guiot, M. Munier ,Safety and efficacy of the oral rabies vaccine SAG2 inraccoon dogs[J]. Vaccine, 2006, (24), 4386-4392.
    [54] Bourhy H, Kissi B, Tordo N. Molecular diversity of the Lyssavirus genus[J]. Virology, 1993, 194: 70-81.
    [55] Villa A V, Sierra M G, Rodriguez G H, et al. Antigenic diversity and distribution of rabies virus in Mexico[J]. J Clin Micr, 2002, 40(3): 951-958.
    [56] Arai Y T, Takahashi H, Kameoka Y, et al. Characterization of Sri Lanka rabies virus isolates using nucleotide sequence analysis of nucleoprotein gene[J]. Acta Virol, 2001,45: 327-333.
    [57] Jean S S, Lillian A O, Pamela A Y, et al. Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis[J]. J Infect Diseases, 1992, 166: 296.
    [58] Hela Kallel, Mohamed Fethi Diouani, Houssem Loukil. Immunogenicity and efficacy of an in-house developed cell-culture derived veterinarian rabies vaccine. Vaccine, 2006, (24):4856-4862.
    [59] Hammami S, Schumacher C, Cliquet F, et al. Vaccination of Tunisian dogs with the lyophilised SAG2 oral rabies vaccine incorporated into the DBL2 dog bait[J]. Vet Res. 1999, 30(6): 607-613.
    [60] Brochier B, Kieny, M P, Costy F, et al. Largescale eradication of rabies using recombinant vaccinia-rabies vaccine. Nature, 1991, 354: 520-522.
    [61] Dreesen D W, A global review of rabies vaccines for human use[J]. Vaccine, 1997, 15(suppl): S2-S6.
    [62] Meslin F X, Kaplanm, et al. General consideration in the production and use of brain-tissue and purified chicken-embryo rabies vaccine for human use. Laboratory techniques in rabies (Fourth edition)[J].1996, 223-233.
    [63] Meltzer M I, Rupprecht C E. A review of the economics of the prevention and control of rabies. Partl: Global impact and rabies in humans[J]. Pharmacoeconomics, 1998, 14:365-385.
    [64] Forg P, von Hoegen P, Dalemans W, et al. Superiority of the ear pinna over muscle tissue as site for DNA vaccination[J]. Gene Ther,1998, 5: 789–797.
    [65] Jurianz K, Hoegen P, Schirrmacher V. Superiority of the ear pinna over a subcutaneous tumour inoculation site for induction of a Th1-type cytokine response[J]. Cancer Immunol Immunother,1998, 45: 327–333.
    [66] Condon C, Watkins S C, Celluzzi C M, et al. DNA-based immunization by in vivo transfection of dendritic cells[J]. Nat Med,1996, 2: 1122–1128.
    [67] Peachman K K,Rao M,Alving C R.Immunization with DNA through the skin[J]. Methods,2003,31(3): 232-242.
    [68] Tuting T. The immunology of cutaneous DNA immunization[J]. Curr Opin Mol Ther,1999, 1(2): 216-225.
    [69] Lodmell D L, Parnell M J, Weyhrich J T, et al. Canine rabies DNA vaccination: asingle-dose intradermal injection into ear pinnae elicits elevated and persistent levels of neutralizing antibody[J]. Vaccine. 2003, 21(25-26): 3998-4002.
    [70] Olson C A, Werner P A. Oral rabies vaccine contact by raccoons and nontarget species in a filed trial in Florida[J]. J Wildl Dis.1999, 35(4): 687-695.
    [71] Blancou J and Meslin F X. Modified live-virus rabies vaccine for oral immunization of carnivores. Laboratory techniques in rabies(fourth edition)[M].1996, 324-331.
    [72] Charlton K M, Artois M, Prevec L, et al.Oral rabies vaccination of skunks and foxes with a recombinant human adenovirus vaccine[J]. Arch Virol. 1992, 123(1-2): 169-179.
    [73] Xiang ZQ, Spitalnik SL, Cheng J, et al. Immune response to nucleic acidd vaccines to rabies virus[J].Virology. 1995, 209(2): 569-579.
    [74] Wang Y, Xiang Z, Pasquini S, et al. Immune response to neonatal genetic immunization[J].Virology.1997, 228(2): 278-284.
    [75] Lodmell D L, Ray N B, Ulrich J T, DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL)[J]. Vaccine. 2000, 18(11-12):1059-1066.
    [76] Reagan J S, King A A. Monoclonal antibodies for the identification of rabies and non- rabies lyssaviruses[J]. Laboratory tech-niques in rabies.Fourth edition. WHO 1985, 145-156.
    [77] Lodmell D L, Ray N B, Ulrich J T, et al. DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL)[J]. Vaccine. 2000, 18(11-12): 1059-1066.
    [78] 徐耀先, 周晓峰, 刘利德.分子病毒学[M].湖北科学技术出版社,2000, 341-346
    [79] Cox, J.H., B.Dietzschold, and L.G. Schneider. Rabies virus glycoprotein. Ⅱ . Biological and serological characterization[J].Infect Immune. 1977, 16: 754-759.
    [80] 卢圣栋. 现代分子生物学实验技术[M].第二版. 北京: 高等教育出版社, 1999, 400-403.
    [81] Kieny M.P,R.Lathe,R.Drillien, et al. Expression of rabies virus glycoprotein from a recombinant vaccinia virus[J]. Nature 1984, 312:163-166.
    [82] 侯世宽, 岳军明, 张茂林,等. 狂犬病口服疫苗株的筛选、鉴定和实验免疫研究[J]. 中国人兽共患病杂志,1995, 11(6):145-148.
    [83] 袁慧君, 扈荣良, 张守峰,等. 狂犬病病毒 SRV9 克隆株核蛋白基因的克隆、表达与特性分析[J]. 中国预防兽医学报,2003, 25(1):5-8.
    [84] 袁慧君,张守峰,张茂林,等. 狂犬病病毒 SRV9 疫苗株糖蛋白核酸序列及抗原特性研究[J].中国病毒学,2003, 18(1),63-67.
    [85] F.X..Meslin, M.M.Kaplan, H.Koprowski. Laboratory techniques in rabies[M], World Health Organization,1996,4:55-207.
    [86] Frantisek sokol, Emest kuwert, Tadeusz J. Witore. et al. Purification of rabies virus grown in tissue culture[J]. Journal of virology, 1968, 8: 836-849.