安吉白茶新梢生育期间蛋白质组学及茶氨酸体外生物合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安吉白茶是在浙江省安吉县山区发现的温度敏感型珍稀茶树资源。在早春季节,新长出的芽叶呈淡绿色,随后叶片逐渐转白,并在完全白化后持续一段时间,然后叶片开始复绿,直至完全恢复正常颜色,这个过程被称为阶段性返白过程。在安吉白茶阶段性返白过程中,随着叶片颜色的变化,氨基酸含量也发生了显著改变。在叶片最白期,氨基酸含量为普通绿茶品种的2-3倍,非常适合于名优绿茶的生产。目前关于安吉白茶的研究大多集中在生理生化和叶绿体结构等方面,关于安吉白茶阶段性返白的分子机理尚缺乏深入研究,在一定程度上限制了安吉白茶的应用发展。另外,由于茶叶中的茶氨酸具有重要的生理功能,茶氨酸的高效制备技术一直被广泛关注。随着生物技术的发展,利用微生物酶定向合成茶氨酸已成为高效制备茶氨酸的发展趋势。本研究首先从建立适合于茶树蛋白质组学研究的双向电泳技术体系着手,成功构建了适用于茶树蛋白质组学研究的双向电泳技术体系,并对安吉白茶新梢生育期间蛋白质表达谱的变化进行了研究;同时,系统分析了安吉白茶阶段性返白过程中叶绿体超微结构的变化。本研究第二部分利用基因工程技术成功构建了催化茶氨酸体外合成的基因工程菌,并对其产酶条件进行了研究。
     1.安吉白茶新梢生育期间叶绿体超微结构的分析
     系统分析了安吉白茶从萌发期到完全复绿期6个不同时期叶片中叶绿体超微结构的变化。研究发现,安吉白茶返白前与复绿后叶片中叶绿体超微结构与正常叶片无明显区别,都具有典型的叶绿体结构。但是,在白化期间叶片中叶绿体数目明显减少且叶绿体超微结构存在严重缺陷,已发育的叶绿体内无基粒结构,嗜锇颗粒较多,有些甚至已经空化,但叶绿体双层膜结构完好;同时,大多数叶绿体发育停滞于前质体阶段,且未发育出明显的片层膜结构。结果表明,安吉白茶白化期叶绿素缺乏是出于低温破坏了已发育的叶绿体中的片层膜结构,使得叶绿素生物合成受阻;而叶绿素的缺乏又影响到质体向叶绿体的发育过程,从而导致白化现象的产生。
     2.茶树蛋白质组学双向电泳技术体系的建立
     通过对双向电泳技术体系中样品制备、IPG预制胶条选择、裂解液配方等关键步骤的优化,构建了一套适合于茶树蛋白质组学研究的双向电泳技术体系。利用此技术体系获得了高质量的蛋白质点1117±9.89个,大部分蛋白质的等电点集中在p15-7之间,分子量集中在15.00KDa-95.00KDa之间,大大提高了双向电泳所获得的茶树蛋白质组信息量。
     3.安吉白茶新梢生育期间差异蛋白质的分离
     首次采用双向电泳技术对安吉白茶新梢生育期间三个典型时期的叶片蛋白质组进行分离。每个时期样品在双向电泳凝胶上能检测到约1000个蛋白质点,且不同时期蛋白质的表达发生了明显改变。在三个时期之间,表达丰度变化均在1.5倍以上、重复性好的差异蛋白质点共计60个。根据差异蛋白质点的表达情况,可将差异蛋白质点分为四个表达模式:模式一,在返白前期和白化期之间上调表达,而在白化期和完全复绿期之间下调表达的蛋白质点,共计30个;模式二,在返白前期和白化期间下调表达,而在白化期和完全复绿期间上调表达的蛋白质点,共计21个;模式三,在返白前期、白化期和完全复绿期间均上调表达的蛋白质点,共计7个。模式四,在返白前期、白化期和完全复绿期间均下调表达的蛋白质点,共计2个。
     4.安吉白茶新梢生育期间差异蛋白质的质谱鉴定及功能分析
     通过MALDI TOF/TOF MS对安吉白茶新梢生育期间30个重复性好,且在不同生育期间表达丰度发生1.5倍以上变化的蛋白质点进行质谱鉴定,其中有26个蛋白质点被成功鉴定。根据其功能,利用生物信息学数据库可将它们分为7类,分别为:与碳、氮、硫代谢相关;与能量代谢相关;与光合作用相关;与蛋白质加工、翻译相关;与RNA加工相关;与植物抗性相关及一些未知功能的蛋白质。其中与代谢及蛋白质加工相关的蛋白质最多,约占所鉴定蛋白质数的二分之一。
     5.安吉白茶新梢生育期间差异蛋白质的实时荧光定量PCR分析
     应用实时荧光定量PCR技术对6个可能与安吉白茶阶段性返白现象及高氨基酸含量相关的差异蛋白质的mRNA表达情况进行分析。研究发现,在不同生育期间仅有2个差异蛋白质的mRNA表达与蛋白质表达的变化相一致。这一研究结果表明,在安吉白茶返白过程中mRNA的表达与蛋白质表达有一定的相关性,但也不完全相符合,说明蛋白质组和转录组的表达之间有一定的差异性及互补性。
     6.催化茶氨酸体外生物合成基因工程菌的构建及产酶条件的优化
     通过基因工程技术成功构建了能高效表达γ-谷氨酰转肽酶的基因工程菌,并对其重组酶的表达条件进行了优化。结果表明,以0.1mmol/L IPTG,于20℃诱导表达6 h时,粗酶液的酶活达(4.4131±0.1658)U/mL,大约是出发菌株E-coliBL21 (DE3)的18.7倍。工程菌粗酶液以200 mmol/L谷氨酰胺、1.5 mol/L乙胺盐酸盐为底物,于pHl0、20℃下反应6 h,茶氨酸的合成量达到12.6 mg/mL,L-谷氨酰胺转化率为41.05%。
Anji white tea is a typical albino tea cultivars found in Anji County, Zhejiang province. The color of its shoot is sensitive to temperature.The new shoot is light green in the early spring, then it gradually change from light green to completely white. After about two weeks at the albinistic stage, the leaves gradually turn as green as those of common tea cultivars. This process is called stage albinism. A significant change of the level of amino acid was occurred during the stage albinism. The level of total amino acid was 2 or 3 times higher than the common green tea cultivars in the albinistic stage. Most previous studies focused on physiology, biochemistry and chloroplast structure of Anji white tea, but little information about molecular mechanism of the stage albinism. To a certain extent, it limit the development of application and theory in Anji white tea. In addition, since a series important physiological functions of theanine were found, the efficient preparation technology of theanine has receive much attention. With a number of advantages of enzymatic reaction, using microbial enzymes synthetize theanine become the mainly methods for the preparation of theanine. In this study, the technical system of 2-DE for the tea leaves was estabilished and was firstly used for the proteomic analysis of Anji white tea during the developmental satges. The ultrastructure of chloroplast in Anji white tea was also studied. In the second part of this paper, a recombinat strain was successful constructed, which could catalyze the synthetic reaction of theanine in vitro and the optimal conditions of the synthetic reaction were studied.
     1. The analysis of chloroplast ultrastructure during the developmetal stages in Anji white tea
     Study on the change of chloroplast ultrastructure during six developmental stages. It is found that there is no significant difference between the pre-albinistic stage and regreening stage compare to the normal tea cultivars. They all have a typical chloroplast structure at the pre-albinistic stage and regreening stage of Anji white tea. However, the number of chloroplast was reduced markly and the ultrastracture of chloroplast was severely damaged at the albinistic stage of Anji white tea. The grana disappeared, more osmiophilic granules appeared and some chloroplasts even cavitated, but the chloroplast membrane structure was still intact. Meanwhile, most of the plasmid development was suppession. The results showed that the lack of chlorophyll may be a consequance of destroying the chloroplast membrane structure at the albinistic stage in Anji white tea. The lack of chlorophyll will retarded the development process of the pre-plastid to chloroplast and resulting albinism.
     2. The technical system of 2-DE for proteomic analysis of tea cultivars
     The system of 2-DE for proteomic analysis of tea cultivars was successful constructed by optimizing the sample preparation method, IPG strips and lysis buffer. Using this system can obtain 1117±9.89 high quality protein spots and their isoelectric points were found to lie between 5-7. The relative molecular weight of proteins was between 15.00 KDa-95.00 KDa. This technical system could greatly increase the proteome information of tea plant obtained by 2-DE.
     3. The seperation of proteins during the developmental stages in Anji white tea
     It is the first time that proteins from Anji white tea during the developmental stages were separated by 2-DE. Among all the tested samples, more than 1000 protein spots were reproducibly detected with PDQuest 8.0.1 software on each CCB G-250-stained gels. Quantitative analysis revealed that 60 protein spots showed a significant (p<0.05) change in intensity by more than 1.5-fold from pre-albinistic stage to albinistic stage and from albinistic stage to regreening stage as well. In total, 60 differentially expressed protein spots could be classified into four expressed patterns:patternⅠ,30 protein spots showed up-regulation from the pre-albinistic stage to the albinistic stage but down-regulation from the albinistic stage to the regreening stage; patternⅡ,21 protein spots showed down-regulation from the pre-albinistic stage to the albinistic stage but up-regulation from the albinistic stage to the regreening stage; patternⅢ, seven protein spots showed up-regulation from the pre-albinistic stage to the albinistic stage also from the albinistic stage to the regreening stage; and pattern IV, two protein spots showed down-regulation from the pre-albinistic stage to the albinistic stage and also from the albinistic stage to the regreening stage.
     4. Identification of differentially expressed preorins during the developmental stages in Anji white tea and their functional analysis
     Thirty differentially expressed protein spots were excised from gels, digested in-gel by trypsin and identified by MALDI-TOF/TOF MS. In total,26 protein spots were successfully identified. According to their fuctions, these identified proteins were involved in seven functional categories including metabolism of carbon, nitrogen and sulfur, metabolism of energy, photosynthesis, protein processing, stress defence, RNA processing and unknow proteins.
     5. Gene expression analysis by qPCR during the deveopmental stages in Anji white tea
     To investigate the changes in gene expression at the mRNA level, qPCR analysis of six identified proteins, which may be related to the albinism phenomena and high level of amino acid, were performed. The result indicated that just two proteins, whose mRNA expression and protein expression were consistent. The mRNA expressed level were not well related to protein expressed level. It suggests the complementary nature of the two methods.
     6. The construction of the recombinat strain for the synthsis of theanine and optimize the expressing conditions of recombinat enzyme
     A recombinant strain, which could highly produce y-glutamyltranspeptidase, was successful constructed and the expressing conditions of recombinat enzyme were studied. The result showed that the recombinant strain incubated with 0.1mmol/L IPTG for 6h at 20℃, the activity of crude extract from recombinant strain was (4.4131±0.1658) U/mL, which was about 18.7 times than the activity of E·coliBL21. When the synthetic reaction condition were 200mmol/L L-glutamine,1.5mol/L ethylamine, pH10, and incubation at 20℃for 6h, the yield of theanine was 12.6mg/mL, and the rate of conversion from L-glutamine to theanine was 41.05%.
引文
[1]Gygi S, Rochon Y, Franza B, et al. Correlation between protein and mRNA abundance in yeast[J]. Molecular and Cellular Biology,1999,19(3):1720.
    [2]Yan S, Zhang Q, Tang Z, et al. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice*[J]. Molecular & Cellular Proteomics,2006,5(3): 484-496.
    [3]Li J,Assmann S. Mass spectrometry. An essential tool in proteome analysis[J]. Plant Physiology,2000,123(3):807.
    [4]Wasinger V, Cordwell S, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J]. Electrophoresis,1995,16(1):1090-1094.
    [5]Rabilloud T. Solubilization of proteins for electrophoretic analyses[J]. Electrophoresis, 1996,17(5):813-829.
    [6]Gorg A, Weiss W,Dunn M. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4(12):3665-3685.
    [7]Damerval C, De Vienne D, Zivy M, et al. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins[J]. Electrophoresis,1986,7(1):52-54.
    [8]Watson B, Asirvatham V, Wang L, et al. Mapping the proteome of barrel medic(Medicago truncatula)[J]. Plant Physiol,2003,131(3):1104-1123.
    [9]Hurkman W,Tanaka C. Protein extraction from whole tissues for isoelectric focusing[J]. Plant Physiol,1986,81(802-806.
    [10]Saravanan RS,Rose JKC. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues[J]. Proteomics,2004,4(9):2522-2532.
    [11]Sheffield J, Taylor N, Fauquet C, et al. The cassava (Manihot esculenta Crantz) root proteome:Protein identification and differential expression[J]. Proteomics,2006,6(5): 1588-1598.
    [12]Wang W, Scali M, Vignani R, et al. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds[J]. Electrophoresis,2003,24(14):2369-2375.
    [13]Wang W, Vignani R, Scali M, et al. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis[J]. Electrophoresis,2006,27(13): 2782-2786.
    [14]Robertson D, Mitchell GP, Gilroy JS, et al. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants[J]. Journal of Biological Chemistry,1997,272(25):15841.
    [15]Molloy MP, Herbert BR, Walsh BJ, et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis[J]. Electrophoresis, 1998,19(5):837-844.
    [16]Ferro M, Seigneurin-Berny D, Rolland N, et al. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins[J]. Electrophoresis, 2000,21(16):3517-3526.
    [17]Prime TA, Sherrier DJ, Mahon P, et al. A proteomic analysis of organelles from Arabidopsis thaliana[J]. Electrophoresis,2000,21(16):3488-3499.
    [18]Shen Y, Zhao R, Belov ME, et al. Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics[J]. Analytical chemistry,2001,73(8):1766-1775.
    [19]Hippler M, Klein J, Fink T, et al. Towards functional proteomics of membrane protein complexes:analysis of thylakoid membranes from Chlamydomonas reinhardtii[J]. Plant J, 2001,28(5):595-606.
    [20]Kleffmann T, Russenberger D, von Zychlinski A, et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions[J]. Current Biology, 2004,14(5):354-362.
    [21]Werhahn W, Niemeyer A, J nsch L, et al. Purification and characterization of the preprotein translocase of the outer mitochondrial membrane from Arabidopsis thaliana:identification of multiple forms of TOM20[J]. Plant Physiol,2001,125(2):943-954.
    [22]Logan D, Millar A, Sweetlove L, et al. Mitochondrial biogenesis during germination in maize embryos[J]. Plant Physiol,2001,125(2):662-672.
    [23]Heazlewood JL, Tonti-Filippini JS, Gout AM, et al. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins[J]. The Plant Cell Online,2004,16(1):241.
    [24]Pendle AF, Clark GP, Boon R, et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions[J]. Molecular biology of the cell,2005,16(1):260.
    [25]Carter C, Pan S, Zouhar J, et al. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins[J]. The Plant Cell Online,2004,16(12): 3285-3303.
    [26]Shimaoka T, Ohnishi M, Sazuka T, et al. Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana[J]. Plant and cell physiology,2004,45(6):672.
    [27]Szponarski W, Sommerer N, Boyer JC, et al. Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography[J]. Proteomics,2004,4(2):397-406.
    [28]Fukao Y, Hayashi M,Nishimura M. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana[J]. Plant and cell physiology,2002,43(7): 689.
    [29]Santoni V, Molloy M,Rabilloud T. Membrane proteins and proteomics:un amour impossible?[J]. Electrophoresis,2000,21(6):1054-1070.
    [30]Chivasa S, Ndimba BK, Simon WJ, et al. Proteomic analysis of the Arabidopsis thaliana cell wall[J]. Electrophoresis,2002,23(11):1754-1765.
    [31]Watson BS, Lei Z, Dixon RA, et al. Proteomics of Medicago sativa cell walls[J]. Phytochemistry,2004,65(12):1709-1720.
    [32]Haslam R, Downie A, Raveton M, et al. The assessment of enriched apoplastic extracts using proteomic approaches[J]. Annals of applied biology,2003,143(1):81-91.
    [33]Herbert BR, Harry JL, Packer NH, et al. What place for polyacrylamide in proteomics?[J]. Trends in biotechnology,2001,19(10 Suppl):S3-9.
    [34]Chen El, Hewel J, Felding-Habermann B, et al. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT)[J]. Molecular & Cellular Proteomics,2006,5(1):53.
    [35]Washburn MP, Wolters D,Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nature biotechnology,2001,19(3): 242-247.
    [36]Koller A, Washburn MP, Lange BM, et al. Proteomic survey of metabolic pathways in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(18):11969.
    [37]Yan S, Tang Z, Su W, et al. Proteomic analysis of salt stress-responsive proteins in rice root[J]. Proteomics,2005,5(1):235-244.
    [38]Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, et al. Plant proteomics update (2007-2008):Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge[J]. J Proteomics,2009,72(3):285-314.
    [39]Heintz D, Wurtz V, High AA, et al. An efficient protocol for the identification of protein phosphorylation in a seedless plant, sensitive enough to detect members of signalling cascades[J]. Electrophoresis,2004,25(7-8):1149-1159.
    [40]Mattei B, Bernalda MS, Federici L, et al. Secondary structure and post-translational modifications of the leucine-rich repeat protein PGIP (polygalacturonase-inhibiting protein) from Phaseolus vulgaris[J]. Biochemistry,2001,40(2):569-576.
    [41]Mathesius U, Imin N, Chen H, et al. Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting[J]. Proteomics,2002, 2(9):1288-1303.
    [42]Hajduch M, Ganapathy A, Stein JW, et al. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database[J]. Plant physiology,2005,137(4):1397.
    [43]Glinski M, Romeis T, Witte CP, et al. Stable isotope labeling of phosphopeptides for multiparallel kinase target analysis and identification of phosphorylation sites[J]. Rapid communications in mass spectrometry,2003,17(14):1579-1584.
    [44]Islam N, Tsujimoto H,Hirano H. Proteome analysis of diploid, tetraploid and hexaploid wheat:towards understanding genome interaction in protein expression[J]. Proteomics, 2003,3(4):549-557.
    [45]Dai S, Li L, Chen T, et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth[J]. Proteomics,2006,6(8): 2504-2529.
    [46]Costa P, Pionneau C, Bauw G, et al. Separation and characterization of needle and xylem maritime pine proteins[J].1999,20(4-5):1098-1108.
    [47]Hoogland C, Mostaguir K, Sanchez JC, et al. SWISS-2DPAGE, ten years later[J]. Proteomics,2004,4(8):2352-2356.
    [48]Pandey A,Mann M. Proteomics to study genes and genomes[J]. Nature,2000,405(6788): 837-846.
    [49]Khan MMK, Jan A, Karibe H, et al. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath[J]. Plant molecular biology,2005,58(1):27-40.
    [50]Unlu M, Morgan ME,Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts[J]. Electrophoresis,1997,18(11):2071-2077.
    [51]Brunner E, Gerrits B, Scott M, et al. Differential display and protein quantification[J]. Plant systems biology,2007,97:115-140.
    [52]Butler GS, Dean RA, Morrison CJ, et al. Identification of cellular MMP substrates using quantitative proteomics:isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ)[J]. Methods Molecular Biology,2010,622:451-470.
    [53]Gygil SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J]. Nature biotechnology,1999,17(10):994-999.
    [54]Boja ES, Phillips D, French SA, et al. Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation[J]. Journal of Proteome Research,2009,8(10):4665-4675.
    [55]Gerber SA, Rush J, Stemman O, et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(12):6940.
    [56]Unwin RD, Griffiths JR, Leverentz MK, et al. Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity[J]. Molecular & Cellular Proteomics,2005, 4(8):1134.
    [57]Wu WW, Wang G, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF[J]. Journal of Proteome Research,2006,5(3):651-658.
    [58]Dunford R,Walden RM. Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture[J]. Current genetics,1991,20(4):339-347.
    [59]Miles D. The role of high chlorophyll fluorescence photosynthesis mutants in the analysis of chloroplast thylakoid membrane assembly and function [maize][J]. Maydica,1994, 39(1):35-45.
    [60]Fluhr R,Cseplo A. Induction and selection of chloroplast-coded mutations in Nicotiana[J]. Methods in Enzymology,1986,118:611-623.
    [61]Sundberg E, Slagter JG, Fridborg I, et al. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria[J]. The Plant Cell,1997, 9(5):717.
    [62]McHale NA, Hanson KR,Zelitch I. A nuclear mutation in Nicotiana sylvestris causing a thiamine-reversible defect in synthesis of chloroplast pigments[J]. Plant physiology,1988, 88(3):930.
    [63]Mascia PN,Robertson DS. Studies of chloroplast development in four maize mutants defective in chlorophyll biosynthesis[J]. Planta,1978,143(2):207-211.
    [64]Long D, Martin M, Sundberg E, et al. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis:identification of an albino mutation induced by Ds insertion[J]. Proceedings of the National Academy of Sciences of the United States of America,1993, 90(21):10370.
    [65]Jacquard C, Nolin F, H" cart C, et al. Microspore embryogenesis and programmed cell death in barley:effects of copper on albinism in recalcitrant cultivars[J]. Plant cell reports,2009, 28(9):1329-1339.
    [66]Bertamini M, Muthuchelian K, Rubinigg M, et al. Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants[J]. Plant Physiology and Biochemistry,2005,43(7):693-699.
    [67]Baker N. Development of chloroplast photochemical functions[J]. Topics in photosynthesis, 1984,5:208-252.
    [68]Feierabend J. Capacity for chlorophyll synthesis in heat-bleached 70S ribosome-deficient rye Ieaves[J]. Planta,1977,135(1):83-88.
    [69]Hodgins R,van Huystee R. Porphyrin metabolism in chill stressed maize (Zea mays L.)[J]. Journal of plant physiology,1986,125(3-4):325-336.
    [70]Maries M, Gruber MY, Scoles GJ, et al. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus[J]. Phytochemistry,2003,62(5):663-672.
    [71]Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, et al. Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression[J]. Planta,2009,229(2): 393-402.
    [72]史典义,刘忠香,金危危.植物叶绿素合成,分解代谢及信号调控[J].遗传,2009, 7(698-704.
    [73]Kumar Tewari A,Charan Tripathy B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant physiology,1998,117(3):851.
    [74]崔海瑞,夏英武,高明尉.温度对水稻突变体W1叶色及叶绿素生物合成的影响[J].核农学报,2001,15(5):269-273.
    [75]Granick S. Magnesium vinyl pheoporphyrin a5, another intermediate in the biological synthesis of chlorophyll[J]. Journal of Biological Chemistry,1950,183(2):713.
    [76]Mc William J,Naylor A. Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn[J]. Plant physiology,1967,42(12):1711.
    [77]HASSELT PR,Strikwerda J. Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors[J]. Physiologia Plantarum,1976,37(4):253-257.
    [78]Guy CL. Cold Accelimation and Freezing Stress Tolerance:Role of Protein Metabolism[J]. Annual Review of Plant Biology,1990,41(1):187-223.
    [79]Mayfield SP,Taylor WC. Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA[J]. European Journal of Biochemistry,1984,144(1):79-84.
    [80]Lee DG, Ahsan N, Lee SH, et al. Chilling stress-induced proteomic changes in rice roots[J]. Journal of Plant Physiology,2009,166(1):1-11.
    [81]Aro EM, Virgin I,Andersson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1993, 1143(2):113-134.
    [82]Erling Tjus S, Lindberg Moller B,Vibe Scheller H. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures[J]. Plant physiology,1998, 116(2):755.
    [83]Oelmuller R. Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels[J]. Photochemistry and Photobiology,1989, 49(2):229-239.
    [84]Sander C, Laber L, Bell W, et al. Light sensitivity of plastids and plastid pigments present in the albescent maize mutant[J]. Plant physiology,1968,43(5):693.
    [85]Pfudel E,Bilger W. Regulation and possible function of the violaxanthin cycle[J]. Photosynthesis Research,1994,42(2):89-109.
    [86]Kumari M, Clarke H, Small I, et al. Albinism in Plants:A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture[J]. Critical Reviews in Plant Sciences,2009,28(6):393-409.
    [87]Havaux M. Carotenoids as membrane stabilizers in chloroplasts[J]. Trends in Plant Science, 1998,3(4):147-151.
    [88]王开荣,梁月荣,张龙杰,等.白化茶种质资源的分类及特性[J].中国茶叶,2008,(8): 9-11.
    [89]成浩,李素芳.安吉白茶特异性状的生理生化本质[J].茶叶科学,1999,19(2):87-92.
    [90]李素芳,陈树尧.茶树阶段性返白现象的初步研究[J].中国茶叶,1994,16(2):26-27.
    [91]李素芳,晏静.安吉白茶阶段性返白过程中氨基酸的变化[J].茶叶科学,1996,16(2):153-154.
    [92]李素芳,陈明.茶树阶段性返白现象的研究——RuBP羧化酶与蛋白酶的变化[J].中国农业科学,1999,32(3):33-38.
    [93]成浩,陈明,虞富莲,等.茶叶片阶段性返白过程中色素蛋白复合体的变化[J].植物生理学通讯,2000,36(4):300-304.
    [94]王新超,赵丽萍,姚明哲,等.安吉白茶正常与白化叶片基因表达差异的初步研究[J].茶叶科学,2008,28(1):50-55.
    [95]李素芳,陈树尧.茶树阶段性返白现象的研究:叶绿体超微结构的变化[J].茶叶科学,1995,15(1):23-26.
    [96]Zubko MK,Day A. Stable albinism induced without mutagenesis:a model for ribosome-free plastid inheritance[J]. Then Plant Journal,1998,15(2):265-271.
    [97]Kumar AM,Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in arabidopsis[J]. Plant Physiol,2000,122(1):49-56.
    [98]Yang M, Chen S, Lin C, et al. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings[J]. Planta,2005,221(3): 374-385.
    [99]Hou DY, Xu H, Du GY, et al. Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (triticum aestivum) FA85[J]. BMB Reports,2009,42(7):450-455.
    [100]Boardman N,Highkin H. Studies on a barley mutant lacking chlorophyl b. I. Photochemical activity of isolated chloroplasts[J]. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis,1966,126(2):189-199.
    [101]林宏辉,汤泽生.叶绿素缺乏大麦突变体叶绿体结构功能及生化特性的研究[J].四川大学学报:自然科学版,2001,38(6):899-904.
    [102]董遵,刘敬阳,马红梅,等.甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J].中国油料作物学报,2000,22(3):27-29.
    [103]孙敬三,朱至清,李守全.烟草缺绿突变体的质体发育和超微结构[J].遗传学报,1982,9(2):147-]50.
    [104]陈湘宁,李玉湘,李继耕.水稻,小麦花药培养白化苗质体亚显微结构和蛋白质的研究[J].遗传学报,1988,15(2):95-101.
    [105]苏小静,赵丽哲.小麦返白系返白机理的研究-返白阶段线粒体超微结构及呼吸作用的变化[J].山西农业科学,1996,24(3):17-20.
    [106]吴殿星,舒庆尧,夏英武,等.水稻转绿型白化突变系W25的叶绿体超微结构研究[J].浙江大学学报:农业与生命科学版,1997,23(4):451-452.
    [107]杨莉,郭蔼光,关旭.小麦突变体返白系返白阶段叶绿体超微结构变化研究[J].西北 农业学报,2003,12(4):64-67.
    [108]王晓萌.拟南芥白化突变体ems15的筛选和基因定位[D].上海:上海师范大学硕士学位论文,2009.
    [109]邱义兰,李红,彭克勤,等.水稻“斑马叶”突变体b411叶绿体超微结构的观察[J].作物学报,2010,36(1):184-190.
    [110]Hasselt PR,Strikwerda J. Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors[J]. Physiologia Plantarum,1976,37(4):253-257.
    [111]Hodgins R,van Huystee R. Porphyrin metabolism in chill stressed maize (Zea mays L.)[J]. Journal of plant physiology,1986,125(3-4):325-336.
    [112]Du YY, Chen H, Zhong WL, et al. Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant[J]. African Journal of Biotechnology,2008,7(12):1881-1885.
    [113]Guy CL. Cold Accelimation and Freezing Stress Tolerance:Role of Protein Metabolism[J]. Annual Review of Plant Biology,1990,41(1):187-223.
    [114]李素芳,陈树尧.茶树阶段性返白现象的初步研究[J].中国茶叶,1994,16(2):26-27.
    [115]Sutton A, Sieburth LE,Bennett J. Light-dependent accumulation and localization of photosystem Ⅱ proteins in maize[J]. European Journal of Biochemistry,1987,164(3): 571-578.
    [116]Gorg A, Weiss W,Dunn M. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics,2004,4(12):3665-3685.
    [117]林金科,郑金贵,袁明,等.茶树蛋白质提取及双向电泳的改良方法[J].茶叶科学,2003,23(1):16-20.
    [118]谷瑞升,蒋湘宁.一种省时高效的木本植物蛋白双向电泳分析方法[J].北京林业大学学报,1999,21(5):7-10.
    [119]Wang W, Vignani R, Scali M, et al. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis[J]. Electrophoresis,2006,27(13):2782-2786.
    [120]Candiano G, Bruschi M, Musante L, et al. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis,2004,25(9):1327-1333.
    [121]曾广娟,李春敏,张新忠,等.苹果叶片蛋白质双向电泳样品制备方法的比较[J].中国农学通报,2008,24(008):105-109.
    [122]Nandakumar M, Shen J, Raman B, et al. Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis[J]. Journal of Proteome Research,2003,2(1):89-93.
    [123]Gorg A, Postel W, Domscheit A, et al. Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare):Method, reproducibility and genetic aspects[J]. Electrophoresis,1988,9(11):681-692.
    [124]Gorg A, Obermaier C, Boguth G, et al. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins[J]. Electrophoresis,1997, 18(3-4):328-337.
    [125]Garfin DE. Two-dimensional gel electrophoresis:an overview[J]. TrAC Trends in Analytical Chemistry,2003,22(5):263-272.
    [126]Salekdeh G. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics,2002,2(9):1131-1145.
    [127]Kubota K, Wakabayashi K,Matsuoka T. Proteome analysis of secreted proteins during osteoclast differentiation using two different methods:Two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography[J]. Proteomics,2003, 3(5):616-626.
    [128]Kang JG, Pyo YJ, Cho JW, et al. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana[J]. Proteomics,2004,4(11): 3549-3559.
    [129]Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings[J]. Proteomics,2005,5(12):3162-3172.
    [130]Dai S, Li L, Chen T, et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth[J]. Proteomics,2006,6(8): 2504-2529.
    [131]Pang Q, Chen S, Dai S, et al. Comparative Proteomics of Salt Tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research,2010,9(5):2584-2599.
    [132]Victor K, Fennell A,Grimplet J. Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines[J]. Proteome Science,2010,8(1):44.
    [133]Gorg A, Obermaier C, Boguth G, et al. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins[J]. Electrophoresis,1997, 18(3-4):328-337.
    [134]Schagger H,Von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa[J]. Analytical Biochemistry,1987, 166(2):368-379.
    [135]Molloy MP, Herbert BR, Walsh BJ, et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis[J]. Electrophoresis, 1998,19(5):837-844.
    [136]Garavito RM,Ferguson-Miller S. Detergents as tools in membrane biochemistry[J]. Journal of Biological Chemistry,2001,276(35):32403.
    [137]Butt SB, Riaz M,Iqbal MZ. Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography[J]. Talanta,2001,55(4):789-797.
    [138]Fountoulakis M, Tak--(?)cs MF, Berndt P, et al. Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography[J]. Electrophoresis,1999,20(11): 2181-2195.
    [139]Fenn J B, Mann M,C.K. M. Eletrospray ionization for the mass spectrometry of large biomolecules[J]. Science,1989,246:64-71.
    [140]Pang Q, Chen S, Dai S, et al. Comparative Proteomics of Salt Tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research,2010,9(5): 2584-2599.
    [141]Kumar AM,Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in arabidopsis[J]. Plant Physiology,2000,122(1):49-56.
    [142]Yang M, Chen S, Lin C, et al. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings[J]. Planta,2005,221(3): 374-385.
    [143]Hou DY, Xu H, Du GY, et al. Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (triticum aestivum) FA85[J], BMB Reports,2009,42(7):450-455.
    [144]王新超,赵丽萍,姚明哲,等.安吉白茶正常与白化叶片基因表达差异的初步研究[J].茶叶科学,2008,28(1):50-55.
    [145]Yan S, Zhang Q, Tang Z, et al. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice*[J]. Molecular & Cellular Proteomics,2006,5(3): 484-496.
    [146]Hashimoto M,Komatsu S. Proteomic analysis of rice seedlings during cold stress[J]. Proteomics,2007,7(8):1293-1302.
    [147]Lee DG, Ahsan N, Lee SH, et al. Chilling stress-induced proteomic changes in rice roots[J]. Journal of Plant Physiology,2009,166(1):1-11.
    [148]Riccardi.F, Gazeau.P, Vienne.D d, et al. Protein changes in response to progressive water deficit in maize[J]. Plant Physiology,1998,117:1253-1263.
    [149]Yan S, Tang Z, Su W, et al. Proteomic analysis of salt stress-responsive proteins in rice root[J]. Proteomics,2005,5(1):235-244.
    [150]Forsthoefel NR, Cushman MA,Cushman JC. Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum Crystallinum L[J]. Plant Physiology,1995,108(3):1185-1195.
    [151]Suzuki.T. The participation of S-adenosylmethionine in the biosynthesus of caffeine in the tea plants[J]. FEBS Letters,1972,24:18-20.
    [152]Hajduch M, Rakwal R, Agrawal G, et al. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves:drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins[J]. Electrophoresis,2001,22(13):2824-2831.
    [153]Agrawal G, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings[J]. Proteomics,2002,2(8):947-959.
    [154]Feder ME,Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annual Review of Physiology,1999, 61:243-282.
    [155]Boston RS, Viitanen PV,Vierling E. Molecular chaperones and protein folding in plants[J]. Plant Molecular Biology,1996,32(1-2):191-222.
    [156]Latijnhouwers M, Xu XM,Moller SG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta,2010,232(3):567-578.
    [157]Owttrim GW, Mandel T, Trachsel H, et al. Characterization of the tobacco eIF-4A gene family[J]. Plant Molecular Biology,1994,26(6):1747-1757.
    [158]Hirsch C, Blom D,Ploegh H. A role for N-glycanase in the cytosolic turnover of glycoproteins[J]. The EMBO journal,2003,22(5):1036-1046.
    [159]Fu Z, Guo M, Jeong B, et al. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity[J]. Nature,2007,447(7142):284-288.
    [160]Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology[J]. J Experimental Botany,2006,57(7): 1537-1546.
    [161]Binyamin L, Falah M, Portnoy V, et al. The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum[J]. Planta,2001,212(4):591-597.
    [162]Hutin C, Nussaume L, Moise N, et al. Early light-induced proteins protect Arabidopsis from photooxidative stress[J]. Proceedings of the National Academy of Sciences,2003, 100(8):4921-4926.
    [163]Yang CP, Wang YC, Liu GF, et al. Study on gene expression of Tamarix under NaHCO3 stress using SSH technology[J]. Yi Chuan Xue Bao,2004,31(9):926-933.
    [164]Wang L, Li X, Zhao Q, et al. Identification of Genes Induced in Response to Low-Temperature Treatment in Tea Leaves[J]. Plant Molecular Biology Reporter,2009, 27(3):257-265.
    [165]Bei-Paraskevopoulou T,Kloppstech K. The expression of early light-inducible proteins (ELIPs) under high-light stress as defense marker in Northern-and Southern European cultivars of barley (Hordeum vulgare)[J]. Physiologia Plantarum,1999,106(1):105-111.
    [166]Paiva NL, Edwards R, Sun YJ, et al. Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis[J]. Plant Molecular Biology,1991,17(4):653-667.
    [167]Du YY, Liang YR, Wang H, et al. A study on the chemical composition of albino tea cultivars[J]. Journal of Horticultural Science and Biotechnology,2006,81(5):809.
    [168]Gorg A, Weiss W,Dunn M. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4(12):3665-3685.
    [169]Hatzimanikatis V, Choe LH,Lee KH. Proteomics:theoretical and experimental considerations[J]. Biotechnology progress,1999,15(3):312-318.
    [170]Hashimoto M,Komatsu S. Proteomic analysis of rice seedlings during cold stress[J]. Proteomics,2007,7(8):1293-1302.
    [171]李娟,刘硕谦,刘仲华,等.一种改良的茶树高质量RNA快速提取方法[J].福建茶叶,2007,(4):34-35.
    [172]Livak K,Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method[J]. Methods,2001,25(4):402-408.
    [173]Yan S, Zhang Q, Tang Z, et al. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice*[J]. Molecular & Cellular Proteomics,2006,5(3):484-496.
    [174]Gygi SP, Rochon Y, Franza BR, et al. Correlation between protein and mRNA abundance in yeast[J]. Molecular and cellular biology,1999,19(3):1720.
    [175]Xia Q, Hendrickson EL, Zhang Y, et al. Quantitative proteomics of the archaeon Methanococcus maripaludis validated by microarray analysis and real time PCR[J]. Molecular & Cellular Proteomics,2006,5(5):868.
    [176]Peso L, Gonzalez-Garc a M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt[J]. Science,1997,278(5338):687.
    [177]宛晓春.茶叶生物化学[M].第三版:中国农业出版社,2003,34.
    [178]Kakuda T, Nozawa A, Unno T, et al. Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat[J]. Bioscience, Biotechnology, and Biochemistry,2000,64(2): 287-293.
    [179]Sadzuka Y, Sugiyama T,Sonobe T. Improvement of idarubicin induced antitumor activity and bone marrow suppression by theanine, a component of tea[J]. Cancer letters,2000, 158(2):119-124.
    [180]Sadzuka Y, Sugiyama T, Suzuki T, et al. Enhancement of the activity of doxorubicin by inhibition of glutamate transporter[J]. Toxicology letters,2001,123(2-3):159-167.
    [181]Sugiyama T, Sadzuka Y, Tanaka K, et al. Inhibition of glutamate transporter by theanine enhances the therapeutic efficacy of doxorubicin[J]. Toxicology letters,2001,121(2): 89-96.
    [182]Kakuda T. Neuroprotective effects of the green tea components theanine and catechins[J]. Biological & pharmaceutical bulletin,2002,25(12):1513-1518.
    [183]Kimura K, Ozeki M, Juneja LR, et al. L-Theanine reduces psychological and physiological stress responses[J]. Biological psychology,2007,74(1):39-45.
    [184]Matsuura T, Kakuda T, Kinoshita T, et al. Theanine formation by tea suspension cells[J]. Bioscience, Biotechnology, and Biochemistry,1992,56(8):1179-1181.
    [185]钟俊辉,陶文沂.茶愈伤组织培养及其茶氨酸的累积[J].无锡轻工大学学报:食品与生物技术,1997,16(3):1-7.
    [186]吕虎,华萍,余继红,等.大规模茶叶细胞悬浮培养茶氨酸合成工艺优化研究[J].广西植物,2007,27(3):457-461.
    [187]Tachiki T, Yamada T, Mizuno K, et al. γ-Glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine and y-glutamylmethylamide[J]. Bioscience, Biotechnology, and Biochemistry,1998,62(7): 1279-1283.
    [188]Tachiki T, Yamada T, Ueda M, et al. Purification and some properties of glutaminase from Pseudomonas nitroreducens IFO 12694[J]. Bioscience, biotechnology, and biochemistry, 1996,60(7):1160-1164.
    [189]太阳化学株式会社.茶氨酸的制造方法[P].国际专利:W02004/0616798,2005:10-26.
    [190]Suzuki H, Izuka S, Miyakawa N, et al. Enzymatic production of theanine, an "umami" component of tea, from glutamine and ethylamine with bacterial γ-glutamyltranspeptidase[J]. Enzyme and Microbial Technology,2002,31(6):884-889.
    [191]王娜,张洁,沈微,等.γ-谷氨酰基转肽酶(GGT)基因工程菌的构建及其发酵条件的初步研究[J].中国生物工程杂志,2006,26(11):48-53.
    [192]王贤波,王丽鸳,成浩,等.茶氨酸生物合成工程菌构建[J].茶叶科学,2007,27(1):61-66.
    [193]王丽鸳,王贤波,成浩,等.基因工程菌生物合成茶氨酸条件研究[J].茶叶科学,2007,27(2):111-116.
    [194]Tachiki T, Suzuki H, Wakisaka S, et al. Production of gamma-glutamylmethylamide and gamma-glutamylethylamide by coupling of baker's yeast preparations and bacterial glutamine synthetase[J]. Journal of General and Applied Microbiology,1986,32(6): 545-548.
    [195]Yamamoto S, Wakayama M,Tachiki T. Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker's yeast cells[J]. Bioscience, biotechnology, and biochemistry,2005,69(4):784-789.
    [196]Yamamoto S, Uchimura K, Wakayama M, et al. Purification and characterization of glutamine synthetase of Pseudomonas taetrolens Y-30:an enzyme usable for production of theanine by coupling with the alcoholic fermentation system of baker's yeast[J]. Bioscience, Biotechnology, and Biochemistry,2004,68(9):1888-1897.
    [197]Yamamoto S, Wakayama M,Tachiki T. Characterization of theanine-forming enzyme from Methylovorus mays No.9 in respect to utilization of theanine production[J]. Bioscience, Biotechnology, and Biochemistry,2007,71(2):545-552.
    [198]Yamamoto S, Morihara Y, Wakayama M, et al. Theanine Production by Coupled Fermentation with Energy Transfer Using y-Glutamylmethylamide Synthetase of Methylovorus mays No.9[J]. Bioscience, Biotechnology, and Biochemistry,2008,72(5): 1206-1211.
    [199]Yamamoto S, Wakayama M,Tachiki T. Cloning and Expression of Methylovorus mays No. 9 Gene Encoding y-Glutamylmethylamide Synthetase:An Enzyme Usable in Theanine Formation by Coupling with the Alcoholic Fermentation System of Baker's Yeast[J]. Bioscience, Biotechnology, and Biochemistry,2008,72(1):101-109.
    [200]Suzuki H, Hashimoto W,Kumagai H. Glutathione metabolism in Escherichia coli[J]. Journal of Molecular Catalysis. B, Enzymatic,1999,6(3):175-184.
    [201]郭亮,沈微,王正祥,等.生物转化法生产茶氨酸的重组大肠杆菌的构建[J].食品与生物技术学报,2005,24(2):41-45.
    [202]王贤波,王丽鸳,成浩,等.茶氨酸生物合成工程菌构建[J].茶叶科学,2007,27(1):61-66.
    [203]郭亮.用于生物转化法生产茶氨酸的重组大肠杆菌的构建[D].无锡:江南大学硕十学位论文,2004.
    [204]龚雨顺,黄建安,崔湘兴,等.离子对色谱法测定茶叶中的茶氨酸[J].茶叶科学,2008,28(2):89-92.
    [205]Suzuki H, Hashimoto W,Kumagai H. Glutathione metabolism in Escherichia coli[J]. Journal of Molecular Catalysis. B, Enzymatic,1999,6(3):175-184.
    [206]Tachiki T, Yamada T, Mizuno K, et al. y-Glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine and y-glutamylmethylamide[J]. Bioscience, Biotechnology, and Biochemistry,1998,62(7): 1279-1283.
    [207]Suzuki H, Izuka S, Miyakawa N, et al. Enzymatic production of theanine, an "umami" component of tea, from glutamine and ethylamine with bacterial γ-glutamyltranspeptidase[J]. Enzyme and Microbial Technology,2002,31(6):884-889.
    [208]郭亮,沈微,王正祥,等.生物转化法生产茶氨酸的重组大肠杆菌的构建[J].食品与生物技术学报,2005,24(2):41-45.
    [209]王娜,张洁,沈微,等.γ-谷氨酰基转肽酶(GGT)基因工程菌的构建及其发酵条件的初步研究[J].中国生物工程杂志,2006,26(11):48-53.
    [210]王贤波,王丽鸳,成浩,等.茶氨酸生物合成工[程菌构建[J].茶叶科学,2007,27(1):1-66.