单分子检测结合荧光显微术定量抗体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一章对单分子检测(SMD)的意义进行了介绍。SMD在生命科学中的应用可以在单分子水平上揭示分子的动态行为、动力学过程和机制,并能够获取单个分子的信息和行为。本章对SMD中涉及的检测手段、荧光标记探针、检测环境等方面的内容进行了综述。对与之相对应的激光诱导荧光显微术(LIFM).量子点(QDs)、固相载体表面固定法等相关内容,以及它们在进行定量的SMD分析,即在单分子计数方面的应用进行了详细的综述。
     第二章中我们提出了一种新的、灵敏的利用全内反射荧光显微术(TIRFM)定量基底表面固定了的抗体的分析方法。在我们的工作之前文献用TIRFM结合基底吸附平衡检测了Alexa Fluor标记的抗体溶液,检测限是5.4×10-11 mol L-1。我们用生物素化的单克隆抗体作为模型抗体,选择QDs作为荧光标记探针。首先将抗体固定在环氧基包被的硅烷化基底表面,然后用QDs对其进行荧光标记。采用TIRFM结合电子增强型电感耦合器(EMCCD)对靶分子进行荧光成像检测和信号收集。当溶液的浓度在8.0 X 10-14~5.0×10-12 mol L-1之间时,单分子计数得到的图像中的荧光点数目与抗体溶液浓度有良好的线性关系。线性范围的下限比文献报道的方法低了3个数量级。
     第三章中我们通过单分子计数结合落射荧光显微术(EFM)对荧光染料(或染料-抗体结合物)分子在硅烷化基底表面的非特异性吸附进行了表征。非特异性吸附会引起假阳性信号并影响检测结果的准确性。功能性官能团包被的硅烷化基底被广泛用于生物大分子的固定,但由于其表面的疏水本性往往会引起一个强的非特异性吸附。我们制备了三种具有不同终端官能团的硅烷化基底表面,然后用QDs和QDs-抗体结合物(QDs-Ab)作为模型荧光染料和模型蛋白质对基底抑制非特异性吸附的能力进行表征。通过EFM结合EMCCD对非异性吸附的单个QDs或QDs-Ab分子进行识别和检测。采用单分子计数定量基底表面的非特异性吸附的分子数目,结果表明:相对于环氧基或氨基包被的疏水性的基底表面,羧基包被的亲水性的基底表面具有一个更好的抑制非特异性吸附的能力,也更适合SMD中靶分子的固定。
     在第四章我们使用单分子计数结合EFM对亲水性玻片基底表面固定了的抗体进行定量。在我们的工作之前文献用亲水性的乙烯醇聚合物对二甲基硅醚聚合物(PDMS)基底进行修饰。修饰后的PDMS基底是亲水性的,其即可以有效地抑制疏水性相互作用引起的蛋白质非特异性吸附又可以用于靶蛋白质的超灵敏检测。我们制备了亲水性的羧基包被的硅烷化基底,并利用接触角测量对其亲水性进行了表征。在对基底表面抑制非特异性吸附的能力进行表征之后,利用抗体分子上的的氨基与基底上的羧基之间形成的酰胺键实现抗体在基底表面的固定。选用QDs作为荧光探针用于标记靶蛋白质分子。最后采用EFM结合EMCCD进行单个分子的识别和检测。利用单分子计数得到的方法的检测线性范围为5.0×10-14~3.0×10-12mol L-1。与文献相比,我们采用玻片代替PDMS作为基底可以降低基底噪声水平,简化基底处理过程;采用EFM代替原子力显微术(AFM)进行靶分子的识别和检测可以增加方法的适用性和仪器的性价比。
     第五章构建了一种支持蛋白质多层(SPLs)基底来进行定向的、特异性的抗体分子固定。现有方法大多采用共价键合的方式将抗体固定在基底表面,这会造成抗体固定取向的随机性,降低抗体的生物活性和抗原结合能力。此外在基于固相载体固定的蛋白质检测中,采用BSA封闭未结合的活性位点可以有效地降低非特异性吸附,但这会阻碍结合位点,降低抗体的结合能力。根据这些背景我们进行了下列的研究工作:
     1.通过在基底表面依次包被牛血清白蛋白(BSA)、抗-BSA (Anti-BSA)、G蛋白构建了SPLs玻片基底。SPLs基底上各个蛋白质层的功能如下:底层的BSA作为封闭剂用于抑制非特异性吸附;中间的Anti-BSA作为桥梁连接BSA与G蛋白;最上层的G蛋白通过生物亲和力特异性结合抗体分子的Fc端。与文献相比,这种SPLs基底即可以有效的抑制非特异性吸附,又可以实现靶抗体在固相载体表面的定向取向的生物亲和固定。
     2.对构建的SPLs抑制非特异性吸附的能力进行了表征。我们用两种不同类型的染料-抗体结合物来表征SPLs基底抑制非特异性吸附的能力。采用单分子计数定量荧光结合物分子在基底表面上非特异性吸附的分子数量,结果表明:SPLs基底可以有效的抑制抗体的非特异性吸附,而且不受荧光标记染料类型的影响。
     3.将SPLs基底用于抗体溶液的低浓度检测。通过定向取向的生物亲和力固定可以有效降低抗体分子之间的空间位阻,增加抗体在基底表面的结合数量。在我们的工作之前文献用单分子计数结合TIRFM检测了BSA封闭基底表面的蛋白质溶液,检测限是1.0×10-10mol L-1。我们用单分子计数结合EFM检测了BSA封闭的SPLs基底表面的抗体溶液,检测的线性范围为1.0×10-14到3.0×10-12mol L-1,线性范围的下限比文献报道的方法低了4个数量级。
In chapter one, significance of single-molecule detection (SMD) have been described. SMD, with its ability to detect single molecules, are powerful tools for investigation of dynamic and kinetics of single molecules. The related techniques and methods for SMD analysis have been described here. Corresponding to the mentioned techniques and methods, laser induced fluorescence microscopy (LIFM), quantum dots (QDs) and the strategies for solid-supported immobilization are reviewd. For a further step, a review of their applications for quantitative SMD analysis is provided here.
     In chapter two, we developed a sensitive method for quantitative detection of antibody based on single-molecule counting by total internal reflection fluorescence microscopy (TIRFM) with QDs labeling. Alexa Fluor labeled antibody molecules have been detected using TIRFM with adsorption equibrium in literature. The limit of detection (LOD) was only 5.4×10-11 mol L-1. We chose biotinylated monoclonal anti-human IgG molecules as the model antibody. First, antibody molecules were immobilized on the silanized glass substrate surface. By the strong biotin-streptavidin affinity, streptavidin-coated QDs were labeled to the target molecules as fluorescent probe. Then, images of fluorescent spots in the evanescent wave field were obtained by a high-sensitivity electron multiplying charge coupled device (EMCCD). Finally, the number of fluorescent spots corresponding to single molecules in the subframe images was counted based on a single molecule counting approach, one by one. The linear range of 8.0×10-14 to 5.0×10"12 mol L-1 was obtained between the number of single molecules and the sample concentration. The lower limit of the linear range was 3 orders of magnitude lower than that reported in the literature.
     In chapter three, we characterized nonspecific adsorption of fluorescent dyes (dye-labeled antibody) on silanized substrate surfaces using single-molecule counting with epi-fluorescence microscopy (EFM). Nonspecific adsorption causes false positive events, decreasing the accuracy and sensitivity of the assays. The silanization of substrate surfaces is a widely used method to attach functional groups such as amino, aldehyde, epoxy, or thiol groups for cross-linking antibody molecules onto the glass surface. Since the silanized surfaces are often hydrophobic as a result of their hydrophobic chains, these surfaces are liable to cause protein adsorption through the hydrophobic interaction between them. At first, three different silanized glass substrates with differently terminated-functional groups were obtained. QDs and QDs-Antibody conjugates were selected as the model target analytes for characterizing nonspecific adsorption. Then EFM coupled with EMCCD was used to indentify and detect single adsorped molecules. Finally, the nonspecific adsorption of adsorped molecules is quantified based on the direct counting of individual fluorescent spots. The results demonstrate that a hydrophilic silanized surface has the lowest nonspecific adsorption and is highly suitable for bioassays.
     In chapter four, we described a hydrophilic substrate surface for antibody immobilization and presented a fluorescence single-molecule counting assays for antibody quantification using EFM. The covalent bonding of poly(vinyl alchol) (PVA) on a poly(dimethylsiloxane) (PDMS) surface provided a hydrophilic substrate surface in literature. Nonspecific adsorption of proteins was greatly reduced on the PVA-coated PDMS surface, and target molecules could be immolized with high loading. In our study, nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, QDs were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. EFM coupled with EMCCD was chosen as the tool for single-molecule fluorescence detection here. A linear range of 5.0×10-14 to 3.0×10-12 mol L-1 was obtained between the number of single molecules and sample concentration via a single-molecule counting approach. Compare with the literature, coverslip instead of PDMS as the substrate could reduce the background level; EFM instead of AFM as the detection tool could give a more widely application of the method mentioned here.
     In chapter five, we presented a platform of supported protein layers (SPLs) surface for oriented and specific antibody immobilization. Current methods for antibody immobilization are mainly based on the covalent bonding of them to substrate surfaces, which often results in steric problems and an inevitable loss in binding affinity. A common strategy for preventing nonspecific adsorption is to block the surfaces with bovine serum albumin (BSA), however, this step often hinder access of molecules of interest to binding sites. Here, our work is described as follows:
     1. Constructing the SPLs surface platform for antibody immobilization, which was achieved by attached BSA, anti-BSA, and protein G to carboxyl-terminated substrate surfaces by turns.
     2. Nonspecific adsorption of single molecules on SPLs surfaces was investigated. Two different kinds of dye-antibody conjugates were chosen for the characterization of nonspecific adsorption. The results indicated that SPLs had the ability to resit the nonspecific adsorption of antibody, which did not effecet by the kinds of labeled dyes.
     3. Quantifying the concentration of antibody binding to SPLs substrate. Protein immobilized on the BSA-blocked substrate surface has been detected using TIRFM with single-molecule counting in literature. The LOD was 1.0×10-10 mol L-1. We immobilized the target antibody molecules to the SPLs substrate surface. The oriented antibody immobilization with high affinity could reduce the steric problems and give a high binding capacity. QDs were labeled to the target molecules as fluorescent probe. Then, images of fluorescent spots were obtained using EFM coupled with EMCCD. The linear range of 1.0×10-14 to 3.0×10-12 mol L-1 was obtained via a single-molecule conting approach. The lower limit of the linear range was 4 orders of magnitude lower than that reported in the literature.
引文
[1]H. Gai, Q. Wang, Y. Ma, and B. Lin, Correlations between molecular numbers and molecular masses in an evanescent field and their applications in probing molecular interactions. Angew Chem Int Ed Engl 44 (2005) 5107-10.
    [2]S. Weiss, Fluorescence spectroscopy of single biomolecules. Science 283 (1999) 1676-83.
    [3]WE. Moerner, and M. Orrit, Illuminating single molecules in condensed matter. Science 283 (1999) 1670-6.
    [4]E.M. Peterson, and J.M. Harris, Quantitative detection of single molecules in fluorescence microscopy images. Anal Chem 82 (2010) 189-96.
    [5]D. Jiang, C. Liu, L. Wang, and W. Jiang, Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Anal Chim Acta 662 (2010) 170-176.
    [6]X. Zhang, L. Li, L. Li, J. Chen, G. Zou, Z. Si, and W. Jin, Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification. Anal Chem 81 (2009) 1826-32.
    [7]L.A. Tessler, J.G. Reifenberger, and R.D. Mitra, Protein quantification in complex mixtures by solid phase single-molecule counting. Anal Chem 81 (2009) 7141-8.
    [8]S. Lee, S. Lee, Y.H. Ko, H. Jung, J.D. Kim, J.M. Song, J. Choo, S.K. Eo, and S.H. Kang, Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay. Talanta 78 (2009) 608-12.
    [9]L. Li, X. Tian, G. Zou, Z. Shi, X. Zhang, and W. Jin, Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy. Anal Chem 80 (2008) 3999-4006.
    [10]S. Huang, and Y. Chen, Ultrasensitive fluorescence detection of single protein molecules manipulated electrically on Au nanowire. Nano Lett 8 (2008) 2829-33.
    [11]M. Xiao, A. Phong, C. Ha, T.F. Chan, D. Cai, L. Leung, E. Wan, A.L. Kistler, J.L. DeRisi, P.R. Selvin, and P.Y. Kwok, Rapid DNA mapping by fluorescent single molecule detection. Nucleic Acids Res 35 (2007) el6.
    [12]C.D. McGuinness, A.M. Macmillan, J. Karolin, W.E. Smith, D. Graham, J.C. Pickup, and D.J. Birch, Single molecule level detection of allophycocyanin by surface enhanced resonance Raman scattering. Analyst 132 (2007) 633-4.
    [13]A. Agrawal, C. Zhang, T. Byassee, R.A. Tripp, and S. Nie, Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78 (2006) 1061-70.
    [14]B. Rotman, Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci U S A 47(1961) 1981-91.
    [15]R. Rigler, U. Mets, and J. Widengren, Eur. Biophys. J.22 (1993) 169-75.
    [16]B. Craig, Y. Wong, and J. Dovichi, Detection of attomolar concentrations by capillary electrophoresis using laser-induced fluorescence detection. Anal Chem 68 (1996)697-700.
    [17]D. Chen, and J. Dovichi, Single-molecule detection in capillary electrophoresis:molecular shot noise as a fundamental limit to chemical analysis. Anal Chem 68 (1996) 690-6.
    [18]F. Loscher, S. Bohme, J. Martin, and S. Seeger, Counting of single protein molecules at interfaces and application of this technique in early-stage diagnosis. Anal Chem 70 (1998) 3202-5.
    [19]C. Fister, S. Jacobson, M. Davis, and J.M. Ramsey, Counting single chromophore molecules for ultrasensitive analysis and sepearations on microchip devices. Anal Chem 70 (1998) 431-7.
    [20]S.Y. Chao, Y.P. Ho, V.J. Bailey, and T.H. Wang, Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel. J Fluoresc 17 (2007) 767-74.
    [21]H. Li, L. Ying, J.J. Green, S. Balasubramanian, and D. Klenerman, Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal Chem 75 (2003) 1664-70.
    [22]H. Li, D. Zhou, H. Browne, S. Balasubramanian, and D. Klenerman, Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution. Anal Chem 76 (2004) 4446-51.
    [23]X.H. Xu, and E.S. Yeung, Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science 281 (1998) 1650-3.
    [24]Y. Ma, M.R. Shortreed, and E.S. Yeung, High-throughput single-molecule spectroscopy in free solution. Anal Chem 72 (2000) 4640-5.
    [25]S.H. Kang, and E.S. Yeung, Dynamics of single-protein molecules at a liquid/solid interface:implications in capillary electrophoresis and chromatography. Anal Chem 74 (2002) 6334-9.
    [26]M. Singh-Zocchi, S. Dixit, V. Ivanov, and G. Zocchi, Single-molecule detection of DNA hybridization. Proc Natl Acad Sci U S A 100 (2003) 7605-10.
    [27]S. Donner, H.W. Li, E.S. Yeung, and M.D. Porter, Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films:approach to single-molecule spectroelectrochemistry. Anal Chem 78 (2006) 2816-22.
    [28]L. Wang, G. Xu, Z. Shi, W. Jiang, and W. Jin, Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium. Anal Chim Acta 590 (2007) 104-9.
    [29]J.Y. Lee, J. Li, and E.S. Yeung, Single-molecule detection of surface-hybridized human papilloma virus DNA for quantitative clinical screening. Anal Chem 79 (2007) 8083-9.
    [30]S.H. Kang, Y.J. Kim, and E.S. Yeung, Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy. Anal Bioanal Chem 387 (2007) 2663-71.
    [31]S. Lee, N.P. Cho, J.D. Kim, H. Jung, and S.H. Kang, An ultra-sensitive nanoarray chip based on single-molecule sandwich immunoassay and TIRFM for protein detection in biologic fluids. Analyst 134 (2009) 933-8.
    [32]C.B. Fox, J.R. Wayment, G.A. Myers, S.K. Endicott, and J.M. Harris, Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers. Anal Chem 81 (2009) 5130-8.
    [33]J.R. Wayment, and J.M. Harris, Biotin-avidin binding kinetics measured by single-molecule imaging. Anal Chem 81 (2009) 336-42.
    [34]J.R. Wayment, and J.M. Harris, Controlling binding site densities on glass surfaces. Anal Chem 78 (2006) 7841-9.
    [35]D.C. Hanley, and J.M. Harris, Quantitative dosing of surfaces with fluorescent molecules:characterization of fractional monolayer coverages by counting single molecules. Anal Chem 73 (2001) 5030-7.
    [36]K. Kerman, T. Endo, M. Tsukamoto, M. Chikae, Y. Takamura, and E. Tamiya, Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 71 (2007) 1494-9.
    [37]R. Han, Y. Zhang, X. Dong, H. Gai, and E.S. Yeung, Spectral imaging of single molecules by transmission grating-based epi-fluorescence microscopy. Anal Chim Acta 619 (2008) 209-14.
    [38]Q. Li, and S. Seeger, Label-free detection of single protein molecules using deep UV fluorescence lifetime microscopy. Anal Chem 78 (2006) 2732-7.
    [39]T. Kohl, and P. Schwille, Fluorescence correlation spectroscopy with auto fluorescent proteins. Adv Biochem Eng Biotechnol 95 (2005) 107-42.
    [40]J. Chen, C. Wang, and J. Irudayaraj, Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy. J Biomed Opt 14(2009)040501.
    [41]S. Hagihara, H. Kumasawa, Y. Goto, G Hayashi, A. Kobori, I. Saito, and K. Nakatani, Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res 32 (2004) 278-86.
    [42]Y. Dong, and C. Shannon, Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection. Anal Chem 72 (2000) 2371-6.
    [43]A. Wolter, R. Niessner, and M. Seidel, Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem 79 (2007) 4529-37.
    [44]Y. Zhang, G.J. Phillips, and E.S. Yeung, Quantitative imaging of gene expression in individual bacterial cells by chemiluminescence. Anal Chem 80 (2008) 597-605.
    [45]Y. Zhang, G.J. Phillips, Q. Li, and E.S. Yeung, Imaging localized astrocyte ATP release with firefly luciferase beads attached to the cell surface. Anal Chem 80 (2008) 9316-25.
    [46]X. Fang, and W. Tan, Imaging single fluorescenct molecules at the interface of an optical fiber probe by evanescent wave excitation Anal Chem 71(1999) 3101-5.
    [47]J. Li, J.Y. Lee, and E.S. Yeung, Quantitative screening of single copies of human papilloma viral DNA without amplification. Anal Chem 78 (2006) 6490-6.
    [48]T. Anazawa, H. Matsunaga, and E.S. Yeung, Electrophoretic quantitation of nucleic acids without amplification by single-molecule imaging. Anal Chem 74 (2002) 5033-8.
    [49]W.C. Chan, and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281 (1998) 2016-8.
    [50]I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4 (2005) 435-46.
    [51]M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281 (1998) 2013-6.
    [52]F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, and S. Weiss, Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27 (2006) 1679-87.
    [53]X. Gao, L. Yang, J.A. Petros, F.F. Marshall, J.W Simons, and S. Nie, In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16 (2005) 63-72.
    [54]T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A.M. Seifalian, Biological applications of quantum dots. Biomaterials 28 (2007) 4717-32.
    [55]H.M. Azzazy, M.M. Mansour, and S.C. Kazmierczak, From diagnostics to therapy:prospects of quantum dots. Clin Biochem 40 (2007) 917-27.
    [56]X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, and M.P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21 (2003) 41-6.
    [57]R. Thurer, T. Vigassy, M. Hirayama, J. Wang, E. Bakker, and E. Pretsch, Potentiometric immunoassay with quantum dot labels. Anal Chem 79 (2007) 5107-10.
    [58]S. Wang, N. Mamedova, N.A. Kotov, W. Chen, and J. Studer, Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2 (2002) 817-22.
    [59]L. Zhu, S. Ang, and W.T. Liu, Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 70 (2004) 597-8.
    [60]R. Edgar, M. McKinstry, J. Hwang, A.B. Oppenheim, R.A. Fekete, G. Giulian, C. Merril, K. Nagashima, and S. Adhya, High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci U S A 103 (2006)4841-5.
    [61]M.A. Hahn, J.S. Tabb, and T.D. Krauss, Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77 (2005) 4861-9.
    [62]X.L. Su, and Y. Li, Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76 (2004) 4806-10.
    [63]L. Yang, and Y. Li, Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131 (2006)394-401.
    [64]E. Tully, S. Hearty, P. Leonard, and R. O'Kennedy, The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int J Biol Macromol 39 (2006) 127-34.
    [65]A. Agrawal, R.A. Tripp, L.J. Anderson, and S. Nie, Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J Virol 79 (2005) 8625-8.
    [66]E.L. Bentzen, F. House, T.J. Utley, J.E. Crowe, Jr., and D.W. Wright, Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett 5 (2005) 591-5.
    [67]K. Kampani, K. Quann, J. Ahuja, B. Wigdahl, Z.K. Khan, and P. Jain, A novel high throughput quantum dot-based fluorescence assay for quantitation of virus binding and attachment. J Virol Methods 141 (2007) 125-32.
    [68]E.R. Goldman, A.R. Clapp, G.P. Anderson, H.T. Uyeda, J.M. Mauro, I.L. Medintz, and H. Mattoussi, Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76 (2004) 684-8.
    [69]C. Xie, F. Xu, X. Huang, C. Dong, and J. Ren, Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays. J Am Chem Soc 131 (2009) 12763-70.
    [70]K. Ray, J. Zhang, and J.R. Lakowicz, Fluorophore Conjugated Silver Nanoparticles:A Time-resolved Fluorescence Correlation Spectroscopic Study. Proc Soc Photo Opt Instrum Eng 7185 (2009) 71850C.
    [71]J. Dai, G.L. Baker, and M.L. Bruening, Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption. Anal Chem 78 (2006) 135-40.
    [72]K. Bonroy, F. Frederix, G. Reekmans, E. Dewolf, R. De Palma, G. Borghs, P. Declerck, and B. Goddeeris, Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J Immunol Methods 312 (2006)167-81.
    [73]B. Huang, H. Wu, S. Kim, B.K. Kobilka, and R.N. Zare, Phospholipid biotinylation of polydimethylsiloxane (PDMS) for protein immobilization. Lab Chip 6 (2006) 369-73.
    [74]W.C. Sung, C.C. Chang, H. Makamba, and S.H. Chen, Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem 80 (2008) 1529-35.
    [75]W.C. Sung, H.H. Chen, H. Makamba, and S.H. Chen, Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays. Anal Chem 81 (2009) 7967-73.
    [76]F. Rusmini, Z. Zhong, and J. Feijen, Protein immobilization strategies for protein biochips. Biomacromolecules 8 (2007) 1775-89.
    [77]J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, and J. Emneus, Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem 74 (2002) 2994-3004.
    [78]L. Yu, C.M. Li, and Q. Zhou, Efficient probe immobilization on poly (dimethylsiloxane) for sensitive detection of proteins. Front Biosci 10 (2005) 2848-55.
    [79]G. Festag, A. Steinbruck, A. Wolff, A. Csaki, R. Moller, and W. Fritzsche, Optimization of gold nanoparticle-based DNA detection for microarrays. J Fluoresc 15 (2005) 161-70.
    [80]B. Kersten, A. Possling, F. Blaesing, E. Mirgorodskaya, J. Gobom, and H. Seitz, Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein-DNA interactions. Anal Biochem 331 (2004) 303-13.
    [81]P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov, Protein microchips:use for immunoassay and enzymatic reactions. Anal Biochem 278 (2000) 123-31.
    [82]A.Y. Rubina, E.I. Dementieva, A.A. Stomakhin, E.L. Darii, S.V. Pan'kov, V.E. Barsky, S.M. Ivanov, E.V. Konovalova, and A.D. Mirzabekov, Hydrogel-based protein microchips:manufacturing, properties, and applications. Biotechniques 34 (2003) 1008-14,1016-20,1022.
    [83]V. Afanassiev, V. Hanemann, and S. Wolfl, Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Res 28 (2000) E66.
    [84]L. Yu, C.M. Li, Q. Zhou, and J.H. Luong, Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconjug Chem 18 (2007) 281-4.
    [85]K. Hu, Y. Gao, W. Zhou, J. Lian, F. Li, and Z. Chen, Fluorinated silicon surfaces under mixed surfactants:resistance to nonspecific protein adsorption for biosensing. Langmuir 25 (2009) 12404-7.
    [86]A.S. Anderson, A.M. Dattelbaum, G.A. Montano, D.N. Price, J.G. Schmidt, J.S. Martinez, W.K. Grace, K.M. Grace, and B.I. Swanson, Functional PEG-modified thin films for biological detection. Langmuir 24 (2008) 2240-7.
    [87]Y. Roiter, and S. Minko, Adsorption of polyelectrolyte versus surface charge:in situ single-molecule atomic force microscopy experiments on similarly, oppositely, and heterogeneously charged surfaces. J Phys Chem B 111 (2007) 8597-604.
    [88]M.A. Dyer, K.M. Ainslie, and M.V. Pishko, Protein adhesion on silicon-supported hyperbranched poly(ethylene glycol) and poly(allylamine) thin films. Langmuir 23 (2007) 7018-23.
    [89]J. Dai, Z. Bao, L. Sun, S.U. Hong, G.L. Baker, and M.L. Bruening, High-capacity binding of proteins by poly(acrylic acid) brushes and their derivatives. Langmuir 22 (2006)4274-81.
    [90]P.K. Ajikumar, J.K. Ng, Y.C. Tang, J.Y. Lee, G. Stephanopoulos, and H.P. Too, Carboxyl-terminated dendrimer-coated bioactive interface for protein microarray: high-sensitivity detection of antigen in complex biological samples. Langmuir 23 (2007) 5670-7.
    [91]J. Mehne, G. Markovic, F. Proll, N. Schweizer, S. Zorn, F. Schreiber, and G. Gauglitz, Characterisation of morphology of self-assembled PEG monolayers:a comparison of mixed and pure coatings optimised for biosensor applications. Anal Bioanal Chem 391 (2008) 1783-91.
    [92]A.W. Bosman, H.M. Janssen, and E.W. Meijer, About Dendrimers:Structure, Physical Properties, and Applications. Chem Rev 99 (1999) 1665-1688.
    [93]R. Dylla-Spears, J.E. Townsend, L.L. Sohn, L. Jen-Jacobson, and S.J. Muller, Fluorescent marker for direct detection of specific dsDNA sequences. Anal Chem 81 (2009) 10049-54.
    [94]A. Gunnarsson, P. Jonsson, R. Marie, J.O. Tegenfeldt, and F. Hook, Single-molecule detection and mismatch discrimination of unlabeled DNA targets. Nano Lett 8 (2008) 183-8.
    [95]J. Zhang, Y. Fu, D. Liang, R.Y. Zhao, and J.R. Lakowicz, Fluorescent avidin-bound silver particle:a strategy for single target molecule detection on a cell membrane. Anal Chem 81 (2009) 883-9.
    [96]C.L. Smith, S.G. Milea, and G.H. Nguyen, Top. Cur. Chem 261 (2006) 63-90.
    [97]D. Gao, N. McBean, J.S. Schultz, Y. Yan, A. Mulchandani, and W. Chen, Fabrication of antibody arrays using thermally responsive elastin fusion proteins. J Am Chem Soc 128 (2006) 676-7.
    [98]Y. Jung, J.M. Lee, H. Jung, and B.H. Chung, Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate. Anal Chem 79 (2007) 6534-41.
    [99]Y. Jung, J.M. Lee, J.W. Kim, J. Yoon, H. Cho, and B.H. Chung, Photoactivable antibody binding protein:site-selective and covalent coupling of antibody. Anal Chem 81 (2009)936-42.
    [100]Y.M. Bae, B.K. Oh, W. Lee, W.H. Lee, and J.W. Choi, Study on orientation of immunoglobulin G on protein G layer. Biosens Bioelectron 21 (2005) 103-10.
    [101]H. Neubert, E.S. Jacoby, S.S. Bansal, R.K. Iles, D.A. Cowan, and A.T. Kicman, Enhanced affinity capture MALDI-TOF MS:orientation of an immunoglobulin G using recombinant protein G. Anal Chem 74 (2002) 3677-83.
    [102]Y. Jung, H.J. Kang, J.M. Lee, S.O. Jung, W.S. Yun, S.J. Chung, and B.H. Chung, Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 374 (2008) 99-105.
    [103]R. Danczyk, B. Krieder, A. North, T. Webster, H. HogenEsch, and A. Rundell, Comparison of antibody functionality using different immobilization methods. Biotechnol Bioeng 84 (2003) 215-23.
    [104]K.S. Phillips, J.H. Han, and Q. Cheng, Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Anal Chem 79 (2007) 899-907.
    [105]J.H. Han, J.D. Taylor, K.S. Phillips, X. Wang, P. Feng, and Q. Cheng, Characterizing stability properties of supported bilayer membranes on nanoglassified substrates using surface plasmon resonance. Langmuir 24 (2008) 8127-33.
    [106]K.S. Phillips, J.H. Han, M. Martinez, Z. Wang, D. Carter, and Q. Cheng, Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Anal Chem 78 (2006) 596-603.
    [107]K.S. Phillips, Y. Dong, D. Carter, and Q. Cheng, Stable and fluid ethylphosphocholine membranes in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters. Anal Chem 77 (2005) 2960-5.
    [108]K.S. Phillips, and Q. Cheng, Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly(dimethylsiloxane). Anal Chem 77 (2005) 327-34.
    [1]J. Li, J.Y. Lee, and E.S. Yeung, Quantitative screening of single copies of human papilloma viral DNA without amplification. Anal Chem 78 (2006) 6490-6.
    [2]S. Weiss, Fluorescence spectroscopy of single biomolecules. Science 283 (1999) 1676-83.
    [3]H. Gai, Q. Wang, Y. Ma, and B. Lin, Correlations between molecular numbers and molecular masses in an evanescent field and their applications in probing molecular interactions. Angew Chem Int Ed Engl 44 (2005) 5107-10.
    [4]L. Wang, G. Xu, Z. Shi, W. Jiang, and W. Jin, quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equibrium. Analytica Chimica Acta 590 (2007) 104-9.
    [5]W. Tan, and E.S. Yeung, Monitoring the reactions of single enzyme molecules and single metal ions Anal Chem 69 (1997) 4242-8.
    [6]T. Anazawa, H. Matsunaga, and E.S. Yeung, Electrophoretic quantitation of nucleic acids without amplification by single-molecule imaging. Anal Chem 74 (2002) 5033-8.
    [7]S.Y. Chao, Y.P. Ho, V.J. Bailey, and T.H. Wang, Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel. J Fluoresc 17 (2007) 767-74.
    [8]E.T. Lagally, I. Medintz, and R.A. Mathies, Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem 73 (2001) 565-70.
    [9]B. Sun, and D.T. Chiu, Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Anal Chem 77 (2005) 2770-6.
    [10]H. Li, D. Zhou, H. Browne, S. Balasubramanian, and D. Klenerman, Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution. Anal Chem 76 (2004) 4446-51.
    [11]J. Widengren, V. Kudryavtsev, M. Antonik, S. Berger, M. Gerken, and C.A. Seidel, Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal Chem 78 (2006) 2039-50.
    [12]T. Dewa, R. Sugiura, Y. Suemori, M. Sugimoto, T. Takeuchi, A. Hiro, K. Iida, A.T. Gardiner, R.J. Cogdell, and M. Nango, Lateral organization of a membrane protein in a supported binary lipid domain:direct observation of the organization of bacterial light-harvesting complex 2 by total internal reflection fluorescence microscopy. Langmuir 22 (2006) 5412-8.
    [13]X.H. Xu, and E.S. Yeung, Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science 281 (1998) 1650-3.
    [14]B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem 79 (2007) 4463-70.
    [15]X. Fang, and W. Tan, Imaging single fluorescenct molecules at the interface of an optical fiber probe by evanescent wave excitation Anal Chem 71 (1999) 3101-5.
    [16]J.Y. Lee, J. Li, and E.S. Yeung, Single-molecule detection of surface-hybridized human papilloma virus DNA for quantitative clinical screening. Anal Chem 79 (2007) 8083-9.
    [17]L. Li, X. Tian, G. Zou, Z. Shi, X. Zhang, and W. Jin, Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy. Anal Chem 80 (2008) 3999-4006.
    [18]M.A. Hahn, J.S. Tabb, and T.D. Krauss, Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77 (2005) 4861-9.
    [19]M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281 (1998) 2013-6.
    [20]W.C. Chan, and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281 (1998) 2016-8.
    [21]F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, and S. Weiss, Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(2006)1679-87.
    [22]A. Agrawal, C. Zhang, T. Byassee, R.A. Tripp, and S. Nie, Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78 (2006) 1061-70.
    [23]K. Kerman, T. Endo, M. Tsukamoto, M. Chikae, Y. Takamura, and E. Tamiya, Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 71 (2007) 1494-9.
    [24]S.M. Stavis, J.B. Edel, K.T. Samiee, and H.G. Craighead, Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5 (2005) 337-43.
    [25]G. Festag, A. Steinbruck, A. Wolff, A. Csaki, R. Moller, and W. Fritzsche, Optimization of gold nanoparticle-based DNA detection for microarrays. J Fluoresc 15(2005)161-70.
    [26]S. Wennmalm, L. Edman, and R. Rigler, Conformational fluctuations in single DNA molecules. Proc Natl Acad Sci U S A 94 (1997) 10641-6.
    [27]Y. He, H.W. Li, and E.S. Yeung, Motion of single DNA molecules at a liquid-solid interface as revealed by variable-angle evanescent-field microscopy. J Phys Chem B 109 (2005) 8820-32.
    [1]Y. Jung, H.J. Kang, J.M. Lee, S.O. Jung, W.S. Yun, S.J. Chung, and B.H. Chung, Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 374 (2008) 99-105.
    [2]K. Kerman, T. Endo, M. Tsukamoto, M. Chikae, Y. Takamura, and E. Tamiya, Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 71 (2007) 1494-9.
    [3]S. Lee, S. Lee, Y.H. Ko, H. Jung, J.D. Kim, J.M. Song, J. Choo, S.K. Eo, and S.H. Kang, Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay. Talanta 78 (2009) 608-12.
    [4]E.M. Peterson, and J.M. Harris, Quantitative detection of single molecules in fluorescence microscopy images. Anal Chem 82 (2010) 189-96.
    [5]W.C. Sung, C.C. Chang, H. Makamba, and S.H. Chen, Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem 80 (2008) 1529-35.
    [6]L.A. Tessler, J.G. Reifenberger, and R.D. Mitra, Protein quantification in complex mixtures by solid phase single-molecule counting. Anal Chem 81 (2009) 7141-8.
    [7]J. Widengren, V. Kudryavtsev, M. Antonik, S. Berger, M. Gerken, and C.A. Seidel, Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal Chem 78 (2006) 2039-50.
    [8]A. Wolter, R. Niessner, and M. Seidel, Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem 79 (2007) 4529-37.
    [9]Q. Zhang, and L.H. Guo, Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjug Chem 18 (2007) 1668-72.
    [10]S. Weiss, Fluorescence spectroscopy of single biomolecules. Science 283 (1999) 1676-83.
    [11]L. Wang, G. Xu, Z. Shi, W. Jiang, and W. Jin, Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium. Anal Chim Acta 590 (2007) 104-9.
    [12]H. Li, D. Zhou, H. Browne, S. Balasubramanian, and D. Klenerman, Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution. Anal Chem 76 (2004) 4446-51.
    [13]X. Zhang, L. Li, L. Li, J. Chen, G. Zou, Z. Si, and W. Jin, Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification. Anal Chem 81 (2009) 1826-32.
    [14]S.Y. Chao, Y.P. Ho, V.J. Bailey, and T.H. Wang, Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel. J Fluoresc 17 (2007) 767-74.
    [15]K. Hu, Y. Gao, W. Zhou, J. Lian, F. Li, and Z. Chen, Fluorinated silicon surfaces under mixed surfactants:resistance to nonspecific protein adsorption for biosensing. Langmuir 25 (2009) 12404-7.
    [16]P.K. Ajikumar, J.K. Ng, Y.C. Tang, J.Y. Lee, G. Stephanopoulos, and H.P. Too, Carboxyl-terminated dendrimer-coated bioactive interface for protein microarray: high-sensitivity detection of antigen in complex biological samples. Langmuir 23 (2007) 5670-7.
    [17]L. Li, X. Tian, G. Zou, Z. Shi, X. Zhang, and W. Jin, Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy. Anal Chem 80 (2008) 3999-4006.
    [18]F. Loscher, S. Bohme, J. Martin, and S. Seeger, Counting of single protein molecules at interfaces and application of this technique in early-stage diagnosis. Anal Chem 70 (1998) 3202-5.
    [19]L. Yu, C.M. Li, and Q. Zhou, Efficient probe immobilization on poly (dimethylsiloxane) for sensitive detection of proteins. Front Biosci 10 (2005) 2848-55.
    [20]P. Angenendt, Progress in protein and antibody microarray technology. Drug Discov Today 10 (2005) 503-11.
    [21]A. Gunnarsson, P. Jonsson, R. Marie, J.O. Tegenfeldt, and F. Hook, Single-molecule detection and mismatch discrimination of unlabeled DNA targets. Nano Lett 8 (2008) 183-8.
    [22]G. Festag, A. Steinbruck, A. Wolff, A. Csaki, R. Moller, and W. Fritzsche, Optimization of gold nanoparticle-based DNA detection for microarrays. J Fluoresc 15 (2005) 161-70.
    [23]J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, and J. Emneus, Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem 74 (2002) 2994-3004.
    [24]H.M. Azzazy, M.M. Mansour, and S.C. Kazmierczak, From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40 (2007) 917-27.
    [25]I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4 (2005) 435-46.
    [26]T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A.M. Seifalian, Biological applications of quantum dots. Biomaterials 28 (2007) 4717-32.
    [27]M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281 (1998) 2013-6.
    [28]W.C. Chan, and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281 (1998) 2016-8.
    [29]A. Agrawal, C. Zhang, T. Byassee, R.A. Tripp, and S. Nie, Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78 (2006) 1061-70.
    [30]B.A. Kairdolf, M.C. Mancini, A.M. Smith, and S. Nie, Minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings. Anal Chem 80 (2008) 3029-34.
    [31]S. Taylor, S. Smith, B. Windle, and A. Guiseppi-Elie, Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res 31 (2003) e87.
    [32]T.W. Wang, H.Y. Lu, P.J. Lou, and F.H. Lin, Application of highly sensitive, modified glass substrate-based immuno-PCR on the early detection of nasopharyngeal carcinoma. Biomaterials 29 (2008) 4447-54.
    [33]M. Qin, S. Hou, L. Wang, X. Feng, R. Wang, Y. Yang, C. Wang, L. Yu, B. Shao, and M. Qiao, Two methods for glass surface modification and their application in protein immobilization. Colloids Surf B Biointerfaces 60 (2007) 243-9.
    [34]L.S. Jang, and H.J. Liu, Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer. Biomed Microdevices 11 (2009) 331-8.
    [35]J.Y. Lee, J. Li, and E.S. Yeung, Single-molecule detection of surface-hybridized human papilloma virus DNA for quantitative clinical screening. Anal Chem 79 (2007) 8083-9.
    [36]Y. He, H.W. Li, and E.S. Yeung, Motion of single DNA molecules at a liquid-solid interface as revealed by variable-angle evanescent-field microscopy. J Phys Chem B 109 (2005) 8820-32.
    [1]A. Agrawal, C. Zhang, T. Byassee, R.A. Tripp, and S. Nie, Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78 (2006) 1061-70.
    [2]X.X. Han, G.G. Huang, B. Zhao, and Y. Ozaki, Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal Chem 81 (2009) 3329-33.
    [3]T. Matsunaga, Y. Maeda, T. Yoshino, H. Takeyama, M. Takahashi, H. Ginya, J. Aasahina, and H. Tajima, Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites,'Beads on Beads'. Anal Chim Acta 597 (2007) 331-9.
    [4]T.K. Yung, K.C. Chan, T.S. Mok, J. Tong, K.F. To, and Y.M. Lo, Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 15 (2009) 2076-84.
    [5]Y. Zhang, J.T. Bahns, Q. Jin, R. Divan, and L. Chen, Toward the detection of single virus particle in serum. Anal Biochem 356 (2006) 161-70.
    [6]C.M. D'Antoni, M. Fuchs, J.L. Harris, H.P. Ko, R.E. Meyer, M.E. Nadel, J.D. Randall, J.E. Rooke, and E.A. Nalefski, Rapid quantitative analysis using a single molecule counting approach. Anal Biochem 352 (2006) 97-109.
    [7]H. Li, D. Zhou, H. Browne, S. Balasubramanian, and D. Klenerman, Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution. Anal Chem 76 (2004) 4446-51.
    [8]L. Li, X. Tian, G. Zou, Z. Shi, X. Zhang, and W. Jin, Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy. Anal Chem 80 (2008) 3999-4006.
    [9]M.A. Hahn, J.S. Tabb, and T.D. Krauss, Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77 (2005) 4861-9.
    [10]C.Y. Zhang, and L.W. Johnson, Homogenous rapid detection of nucleic acids using two-color quantum dots. Analyst 131 (2006) 484-8.
    [11]C.Y. Zhang, H.C. Yeh, M.T. Kuroki, and T.H. Wang, Single-quantum-dot-based DNA nanosensor. Nat Mater 4 (2005) 826-31.
    [12]N.G. Walter, C.Y. Huang, A.J. Manzo, and M.A. Sobhy, Do-it-yourself guide:how to use the modern single-molecule toolkit. Nat Methods 5 (2008) 475-89.
    [13]L.A. Tessler, J.G. Reifenberger, and R.D. Mitra, Protein quantification in complex mixtures by solid phase single-molecule counting. Anal Chem 81 (2009) 7141-8.
    [14]S. Lee, S. Lee, Y.H. Ko, H. Jung, J.D. Kim, J.M. Song, J. Choo, S.K. Eo, and S.H. Kang, Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay. Talanta 78 (2009) 608-12.
    [15]F. Loscher, S. Bohme, J. Martin, and S. Seeger, Counting of single protein molecules at interfaces and application of this technique in early-stage diagnosis. Anal Chem 70 (1998) 3202-5.
    [16]C.Y. Zhang, and L.W. Johnson, Simple and accurate quantification of quantum dots via single-particle counting. J Am Chem Soc 130 (2008) 3750-1.
    [17]D.C. Hanley, and J.M. Harris, Quantitative dosing of surfaces with fluorescent molecules:characterization of fractional monolayer coverages by counting single molecules. Anal Chem 73 (2001) 5030-7.
    [18]R. Han, Y. Zhang, X. Dong, H. Gai, and E.S. Yeung, Spectral imaging of single molecules by transmission grating-based epi-fluorescence microscopy. Anal Chim Acta 619 (2008) 209-14.
    [19]A. Wolter, R. Niessner, and M. Seidel, Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem 79 (2007) 4529-37.
    [20]J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, and J. Emneus, Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem 74 (2002) 2994-3004.
    [21]L. Yu, C.M. Li, and Q. Zhou, Efficient probe immobilization on poly (dimethylsiloxane) for sensitive detection of proteins. Front Biosci 10 (2005) 2848-55.
    [22]P.K. Ajikumar, J.K. Ng, Y.C. Tang, J.Y. Lee, G. Stephanopoulos, and H.P. Too, Carboxyl-terminated dendrimer-coated bioactive interface for protein microarray: high-sensitivity detection of antigen in complex biological samples. Langmuir 23 (2007) 5670-7.
    [23]L. Yu, C.M. Li, Q. Zhou, and J.H. Luong, Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay. Bioconjug Chem 18 (2007) 281-4.
    [24]J. Dai, Z. Bao, L. Sun, S.U. Hong, G.L. Baker, and M.L. Bruening, High-capacity binding of proteins by poly(acrylic acid) brushes and their derivatives. Langmuir 22 (2006)4274-81.
    [1]A. Agrawal, C. Zhang, T. Byassee, R.A. Tripp, and S. Nie, Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78 (2006) 1061-70.
    [2]H. Li, D. Zhou, H. Browne, S. Balasubramanian, and D. Klenerman, Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution. Anal Chem 76 (2004) 4446-51.
    [3]L. Li, X. Tian, G. Zou, Z. Shi, X. Zhang, and W. Jin, Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy. Anal Chem 80 (2008) 3999-4006.
    [4]E.M. Peterson, and J.M. Harris, Quantitative detection of single molecules in fluorescence microscopy images. Anal Chem 82 (2010) 189-96.
    [5]F. Loscher, S. Bohme, J. Martin, and S. Seeger, Counting of single protein molecules at interfaces and application of this technique in early-stage diagnosis. Anal Chem 70 (1998) 3202-5.
    [6]S. Lee, S. Lee, Y.H. Ko, H. Jung, J.D. Kim, J.M. Song, J. Choo, S.K. Eo, and S.H. Kang, Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay. Talanta 78 (2009) 608-12.
    [7]L.A. Tessler, J.G. Reifenberger, and R.D. Mitra, Protein quantification in complex mixtures by solid phase single-molecule counting. Anal Chem 81 (2009) 7141-8.
    [8]D. Jiang, C. Liu, L. Wang, and W. Jiang, Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling. Anal Chim Acta 662 (2010) 170-176.
    [9]W.C. Sung, C.C. Chang, H. Makamba, and S.H. Chen, Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Anal Chem 80 (2008) 1529-35.
    [10]W.C. Sung, H.H. Chen, H. Makamba, and S.H. Chen, Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays. Anal Chem 81 (2009) 7967-73.
    [11]J. Dai, G.L. Baker, and M.L. Bruening, Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption. Anal Chem 78 (2006) 135-40.
    [12]W. Liang, W. Yi, S. Li, R. Yuan, A. Chen, S. Chen, G. Xiang, and C. Hu, A novel, label-free immunosensor for the detection of alpha-fetoprotein using functionalised gold nanoparticles. Clin Biochem 42 (2009) 1524-30.
    [13]Q. Ma, T.Y. Song, P. Yuan, C. Wang, and X.G. Su, QDs-labeled microspheres for the adsorption of rabbit immunoglobulin G and fluoroimmunoassay. Colloids Surf B Biointerfaces 64 (2008) 248-54.
    [14]H. Wang, J. Wang, C. Timchalk, and Y. Lin, Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Anal Chem 80 (2008) 8477-84.
    [15]Q. Zhang, and L.H. Guo, Multiple labeling of antibodies with dye/DNA conjugate for sensitivity improvement in fluorescence immunoassay. Bioconjug Chem 18 (2007) 1668-72.
    [16]J.P. Temirov, A.R. Bradbury, and J.H. Werner, Measuring an antibody affinity distribution molecule by molecule. Anal Chem 80 (2008) 8642-8.
    [17]R.A. Vijayendran, and D.E. Leckband, A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal Chem 73 (2001) 471-80.
    [18]D. Gao, N. McBean, J.S. Schultz, Y. Yan, A. Mulchandani, and W. Chen, Fabrication of antibody arrays using thermally responsive elastin fusion proteins. J Am Chem Soc 128 (2006) 676-7.
    [19]Y. Jung, H.J. Kang, J.M. Lee, S.O. Jung, W.S. Yun, S.J. Chung, and B.H. Chung, Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 374 (2008) 99-105.
    [20]Y. Jung, J.M. Lee, H. Jung, and B.H. Chung, Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate. Anal Chem 79 (2007) 6534-41.
    [21]J.M. Lee, H.K. Park, Y. Jung, J.K. Kim, S.O. Jung, and B.H. Chung, Direct immobilization of protein g variants with various numbers of cysteine residues on a gold surface. Anal Chem 79 (2007) 2680-7.
    [22]H.M. Azzazy, M.M. Mansour, and S.C. Kazmierczak, From diagnostics to therapy: prospects of quantum dots. Clin Biochem 40 (2007) 917-27.
    [23]T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A.M. Seifalian, Biological applications of quantum dots. Biomaterials 28 (2007) 4717-32.
    [24]I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4 (2005) 435-46.