成骨因子NELL1在大鼠股骨牵张成骨中促皮质骨生成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:为了加速四肢长骨牵张成骨(DO)过程中新骨的形成、矿化及塑型改建,将具有特异性促进成骨分化及矿化功能的NELL1因子应用于大鼠股骨牵张成骨模型,通过创新性的外固定架设计及动态Micro-CT观察,研究NELL1因子对股骨牵张成骨的影响,从而为临床上治疗四肢大段骨缺损寻找一种快速有效的治疗方法。方法:构建同时携有绿色荧光蛋白(GFP)报告基因和NELL1基因的重组腺病毒载体Ad-GFP-NELL1,经扩增、纯化后转染大鼠骨髓基质细胞(BMSCs)观察其体外对BMSCs的影响。进一步应用自行研制的大鼠股骨DO外固定架系统将30只SD大鼠随机分为3组,每组于术后14天分别于骨延长局部注射等量Ad-GFP-NELL1、Ad-GFP、生理盐水,术后21、28、42、56天麻醉后行X线及活体Micro-CT检查,并于术后28天,各组取1只采用小动物活体荧光成像系统检测NELL1及GFP表达情况。其余动物于术后56天取材行行生物力学、组织学及免疫组化检测。结果:①成功构建出Ad-GFP-NELL1重组腺病毒,纯化后获得滴度高达1×1011pfu/ml。②用构建好的病毒转染鉴定过的大鼠BMSCs后,NELL1蛋白及GFP均阳性表达,转染后对细胞的生长无明显影响。③Micro-CT动态观察大鼠股骨DO模型显示:在静息期及延长期,延长区无明显新骨形成,延长区内主要为由纤维样组织组成的假性生长板结构。在巩固期前期(术后21~42天)主要为骨量的增加,表现为骨矿含量增加,骨小梁数量增多;巩固后期(术后42~56天),骨量仍持续增加,同时骨的质量也开始明显提高,表现为骨小梁增厚,已矿化组织矿化度提高。在术后56天,延长区内仍处于成骨和骨结构的改建中,假性生长板基本消失,未骨化的软骨组织依然存在。术后56天,DO侧股骨的最大扭矩及失效能量均小于健侧股骨。④Ad-GFP-NELL1局部应用于大鼠DO模型,注射后14天可见延长区NELL1蛋白表达。X线片显示,术后56天,Ad-GFP-NELL1组9只延长区均达到骨性愈合,对照Ad-GFP、生理盐水组分别为4只、5只达到骨性愈合。生物力学测试Ad-GFP-NELL1组明显优于两对照组,与正常股骨的抗扭强度相当。Micro-CT数据显示:巩固期前期3组数据无明显差异;巩固后期Ad-GFP-NELL1组骨痂增速减缓,骨体积分数(BVF)增速由前3周每周10%下降到6%。而两对照组增加到13~14%。到术后56天,Ad-GFP-NELL1组骨体积分数(BVF)、矿化组织密度(BMD)均低于两对照组。Micro-CT三维重建显示:到巩固期后期,Ad-GFP-NELL1组生成的骨痂以皮质骨为主,松质骨较少,骨髓腔贯通,形成了类似长骨管状骨的结构,两对照组形成了较多的骨痂,以松质骨为主,改建较差。组织学切片显示:两对照组延长区中央于术后56天仍有软骨组织结构,而Ad-GFP-NELL1组未见明显软骨组织存留,均为骨痂结构。免疫组化结果显示:3组RUNX2、BMP2、BMP7表达无明显差异,Ad-GFP-NELL1组骨钙素及骨桥蛋白表达高于两对照组。结论:①构建并纯化后的重组腺病毒载体Ad-GFP-NELL1可高效转染大鼠BMSCs,并稳定表达NELL1和GFP两种蛋白;②在大鼠股骨DO延长结束后应用可透X线的高分子材料固定牵引针可以获得稳定的固定并便于采用Micro-CT活体动态观察及评价DO过程中新骨的形成;③长骨牵张成骨中骨量的增加自延长结束后开始,持续5周以上,骨质量的改建在延长结束后2-3周才开始,二者的发生具有时相性,提示相应的干预手段应在不同的时期进行;④NELL1具有促进股骨DO过程中皮质骨生成的作用。在牵张成骨的环境下,NELL1与已应用于临床的BMPs相比,并不是单纯的促进局部新骨形成的量,而是促进缺损局部新骨的形成及骨痂的矿化、改建,形成较少但结构及生物力学强度更佳类似于长骨管状骨结构的骨痂结构,从而加速牵张成骨的愈合。这一结果改变了过去认为NELL1只在颅骨、下颌骨等神经脊来源骨组织中具有促进成骨作用的结论。提示我们,NELL1因子应用于临床可以缩短四肢牵张成骨术后患者携带外固定架的时间,有望使牵张成骨这种治疗大段骨缺损的方法得到更广泛的应用,具有一定的实用价值。
Objective:NELL1 is a cranisynostosis-associated molecule directly regulated by Runx2, the master molecule in controlling osteoblastic differentiation. NELL1 has exhibited potent osteoinductive activity for bone regeneration in several animal models. However, its capacity for promoting repair of long-bone defects remains unknown, In this study, we investigated the osteogenic effects of NELL1 on femoral distraction osteogenesis using adenoviral gene delivery and multiple approaches of in vivo analysis. Materials and Methods:We subcloned a 2.3-kb full-length human NELL1 cDNA and inserted into the pAdxsi vector to package the recombinant adenovirus vector carrying NELL1 and GFP (Ad-GFP-NELL1). Rat bone-marrow-derived stromal cells (BMSCs) were infected with various doses of adenovirus to establish the optimal multiplicity of infection (MOI). NELL1 expression was verified by RT-PCR, and the co-expression of NELL1 with GFP was confirmed by fluoreScent immunocytochemistry. Femur distraction osteogenesis model were made on 30 Sprague-Dawley (SD) rats. After 7 days latency, the femurs were distracted at a speed of 0.25mm every 12 hours for 14 days. At the mid-distraction period (Day 14), each animal received a single dose of 0.2ml injection of either adenovirus Ad-GFP-NELL1 diluted in physiological saline, adenovirus Ad-GFP diluted in physiological saline, or physiological saline into the distraction site. After the distraction completed (Day 21), the steel external fixators were substituted by radio-transparent polymer splint material made fixators, and maintained for another 5 weeks for the distracted zone to consolidate. Healing was assessed with serial radiographs and micro-computed tomography (Micro-CT) of the living animals on Days 21,28,42,56. Animals were killed on Day 56 for biomechanical, histological, and histochemical analysis. Results: Recombinant adenoviral vector Ad-GFP-NELL1, which encodes a fusion protein of human NELL 1, was successfully constructed and amplified with titer of 1×1011 pfu/ml. An MOI of 200 pfu/cell produced optimal effects in transfer efficiency without excessive cell death in vitro. Exogenous NELL1 was expressed in the distracted gap for at least 14 days after Ad-GFP-NELL1 transfection. The bone union rate in the distracted gap was significantly higher with Ad-GFP-NELL1 than with Ad-GFP (9/9 vs. 4/9 rats) or saline alone (5/9 rats) at day 56. The serial 3-D micro-CT images and quantitation obtained with the development and application of radiolucent external fixators showed less callus but more mature cortical bones formed with Ad-GFP-NELL1 than with Ad-GFP transfection and saline administration during distraction osteogenesis. The biomechanical properties of femur samples with Ad-GFP-NELL1 transfection and unoperated femurs were similar. Histology revealed cartilaginous tissues in the middle of distraction gaps with Ad-GFP transfection and saline treatment but only bony bridges with Ad-GFP-NELL1 transfection at the final time point (day 56). Coincidently, the expression of Runx2, BMP2, and BMP7 did not differ among groups at day 56, whereas the expression of osteocalcin and osteopontin was slightly higher with Ad-GFP-NELL1 transfection. Conclusions:Recombinant adenovirus vector Ad-GFP-NELL1 can steady expressing both GFP and NELL1 protein after infected into rat BMSCs. It provided us a useful tool for real time trace the expression of NELL1 and investigate its'function in vitro and in vivo. We developed a method that could serially acquire Micro-CT data during rat femur distraction osteogenesis. By applying this method, we showed the increasing of bone volume began at the end of distraction, lasting at least 5 weeks, while the remodeling of new formed bone began 3 weeks after distraction ended. The increasing and remodeling of new formed bone was not concord. Sustained Ad-NELL1 protein delivery into a local area of a rat femoral distraction osteogenesis model remarkably improved regeneration of good-quality bones and accelerated bone union at high rate. Acquiring serial micro-CT data during rat femur distraction osteogenesis and regional adeno virus delivery of NELL1 may facilitate future in vivo studies.
引文
[1]刘勇.5393例创伤病例的流行病学分析.中国急救复苏与灾害医学杂志.2007.2(05):257-260.
    [2]Yazar S, Lin CH, Wei FC. One-stage reconstruction of composite bone and soft-tissue defects in traumatic lower extremities. Plast Reconstr Surg.2004. 114(6):1457-66.
    [3]Gielkens PF, Bos RR, Raghoebar GM, Stegenga B. Is there evidence that barrier membranes prevent bone resorption in autologous bone grafts during the healing period? A systematic review. Int J Oral Maxillofac Implants.2007. 22(3):390-8.
    [4]DeCoster TA, Gehlert RJ, Mikola EA, Pirela-Cruz MA. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg.2004.12(1): 28-38.
    [5]Abdel-Aal AM. Ilizarov bone transport for massive tibial bone defects. Orthopedics.2006.29(1):70-4.
    [6]Saridis A, Panagiotopoulos E, Tyllianakis M, Matzaroglou C, Vandoros N, Lambiris E. The use of the Ilizarov method as a salvage procedure in infected nonunion of the distal femur with bone loss. J Bone Joint Surg Br.2006.88(2): 232-7.
    [7]Eralp L, Kocaoglu M, Rashid H. Reconstruction of segmental bone defects due to chronic osteomyelitis with use of an external fixator and an intramedullary nail. Surgical technique. J Bone Joint Surg Am.2007.89 Suppl 2 Pt.2:183-95.
    [8]Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res.2007. 25(2):241-51.
    [9]Chen AW, Wei FC, Wang KT, Sun SZ, Liu SH. [Effect of bone morphogenetic proteins-2 on mandibular distraction osteogenesis in rabbits]. Zhonghua Kou Qiang Yi Xue Za Zhi.2007.42(1):15-7.
    [10]Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs Enhance Bone Regeneration Following Distraction Osteogenesis in Rabbits. Bone. 2009.
    [11]林在俊,朱振安,汤亭亭等.HA复合rhBMP-2转染的BMSCs对羊胫骨延长骨愈合的影响.中国修复重建外科杂志.2008.(02).
    [12]Nunotani Y, Abe M, Shirai H, Otsuka H. Efficacy of rhBMP-2 during distraction osteogenesis. J Orthop Sci.2005.10(5):529-33.
    [13]Wang Y, Wan C, Szoke G, Ryaby JT, Li G. Local injection of thrombin-related peptide (TP508) in PPF/PLGA microparticles-enhanced bone formation during distraction osteogenesis. J Orthop Res.2008.26(4):539-46.
    [14]Ducy P, Karsenty G. The family of bone morphogenetic proteins.2000.57: 2207-14.
    [15]Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am.2003.85-A(5): 905-11.
    [16]Bachl N, Derman W, Engebretsen L, et al. Therapeutic use of growth factors in the musculoskeletal system in sports-related injuries. J Sports Med Phys Fitness. 2009.49(4):346-57.
    [17]Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE. Clinical evaluation of recombinant human bone morphogenetic protein-2.2002. 395(395):110-20.
    [18]Presta M, Andres G, Leali D, Dell'era P, Ronca R. Inflammatory cells and chemokines sustain FGF2-induced angiogenesis.2009.20(2):39-50.
    [19]Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans:a prospective, randomized clinical pilot trial:2002 Volvo Award in clinical studies.2002.27(23):2662-73.
    [20]Ting K, Vastardis H, Mulliken JB, et al. Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res.1999.14(1):80-9.
    [21]Zhang X, Kuroda S, Carpenter D, et al. Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest.2002.110(6):861-70.
    [22]Zhang X, Carpenter D, Bokui N, et al. Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. J Bone Miner Res.2003.18(12):2126-34.
    [23]Truong T, Zhang X, Pathmanathan D, Soo C, Ting K. Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res.2007.22(1):7-18.
    [24]Desai J, Shannon ME, Johnson MD, et al. Nell1-deficient mice have reduced expression of extracellular matrix proteins causing cranial and vertebral defects. Hum Mol Genet.2006.15(8):1329-41.
    [25]Aghaloo T, Jiang X, Soo C, et al. A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther. 2007.15(10):1872-80.
    [26]Aghaloo T, Cowan CM, Chou YF, et al. Nell-1-induced bone regeneration in calvarial defects. Am J Pathol.2006.169(3):903-15.
    [27]陈明,张宇,倪龙兴.nell-1基因直接体内转染修复犬下颌骨的缺损.第四军医大学学报.2007.(13).
    [28]Lu SS, Zhang X, Soo C, et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J.2007.7(1):50-60.
    [29]Cowan CM, Cheng S, Ting K, et al. Nell-1 induced bone formation within the distracted intermaxillary suture. Bone.2006.38(1):48-58.
    [30]Meyer U, Meyer T, Wiesmann HP, et al. Mechanical tension in distraction osteogenesis regulates chondrocytic differentiation. Int J Oral Maxillofac Surg. 2001.30(6):522-30.
    [31]Mori S, Akagi M, Kikuyama A, Yasuda Y, Hamanishi C. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res.2006.24(4):653-63.
    [32]Hamanishi C, Yoshii T, Totani Y, Tanaka S. Lengthened callus activated by axial shortening. Histological and cytomorphometrical analysis. Clin Orthop Relat Res.1994.307(307):250-4.
    [33]Lammens J, Liu Z, Aerssens J, Dequeker J, Fabry G. Distraction bone healing versus osteotomy healing:a comparative biochemical analysis. J Bone Miner Res.1998.13(2):279-86.
    [34]Bokui N, Otani T, Igarashi K, et al. Involvement of MAPK signaling molecules and Runx2 in the NELL 1-induced osteoblastic differentiation. FEBS Lett.2008. 582(2):365-71.
    [35]Cowan CM, Jiang X, Hsu T, et al. Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res.2007.22(6): 918-30.
    [36]Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun.2003.309(3):689-94.
    [37]Liu YH, Kundu R, Wu L, et al. Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc Natl Acad Sci U S A.1995.92(13):6137-41.
    [38]Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem.2007.101(5):1266-77.
    [39]Lammens J, Liu Z, Luyten F. Bone morphogenetic protein signaling in the murine distraction osteogenesis model. Acta Orthop Belg.2009.75(1):94-102.
    [40]Yan Z, Hang D, Guo C, Chen Z. Fate of mesenchymal stem cells transplanted to osteonecrosis of femoral head. J Orthop Res.2009.27(4):442-6.
    [41]Douglas JT. Adenoviral vectors for gene therapy. Mol Biotechnol.2007.36(1): 71-80.
    [42]Soboleski MR, Oaks J, Halford WP. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J.2005. 19(3):440-2.
    [43]黄向辉,时志斌,王坤正,党晓谦,杨佩,余鹏博.hVEGF_(165)及hBMP-7双基因共表达腺相关病毒载体的构建及鉴定.中国修复重建外科杂志.2008.(07):807-813.
    [44]Nolta JA. Genetic Engineering of Mesenchymal Stem Cells.2006. The Netherlands. Springer.4.
    [45]Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H,. Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res.2007. 327(3):449-62.
    [46]Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res.1990.250(250):81-104.
    [47]Delloye C, Delefortrie G, Coutelier L, Vincent A. Bone regenerate formation in cortical bone during distraction lengthening. An experimental study. Clin Orthop Relat Res.1990. (250):34-42.
    [48]Pacicca DM, Patel N, Lee C, et al. Expression of angiogenic factors during distraction osteogenesis. Bone.2003.33(6):889-98.
    [49]Cheung LK, Zheng LW, Ma L. Effect of distraction rates on expression of bone morphogenetic proteins in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg.2006.34(5):263-9.
    [50]Schiller JR, Moore DC, Ehrlich MG. Increased lengthening rate decreases expression of fibroblast growth factor 2, platelet-derived growth factor, vascular endothelial growth factor, and CD31 in a rat model of distraction osteogenesis. J Pediatr Orthop.2007.27(8):961-8.
    [51]Mandu-Hrit M, Haque T, Lauzier D, et al. Early injection of OP-1 during distraction osteogenesis accelerates new bone formation in rabbits. Growth Factors.2006.24(3):172-83.
    [52]邹培,李峻辉,周中英,李主一,林月秋,阮默.骨延长区成骨方式的实验观察.中国骨肿瘤骨病.2004.(05):294-298.
    [53]Morgan EF, Mason ZD, Chien KB, et al. Micro-computed tomography assessment of fracture healing:relationships among callus structure, composition, and mechanical function. Bone.2009.44(2):335-44.
    [54]Nyman JS, Munoz S, Jadhav S, et al. Quantitative measures of femoral fracture repair in rats derived by micro-computed tomography. J Biomech.2009.42(7): 891-7.
    [55]Yasui N, Sato M, Ochi T, et al. Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br.1997.79(5):824-30.
    [56]Jacobsen KA, Al-Aql ZS, Wan C, et al. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res.2008.23(5):596-609.
    [57]Wang Y, Ni M, Tang PF, Li G. Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J Orthop Res.2008.
    [58]Ali MN, Ejiri S, Kobayashi T, et al. Histologic study of the cellular events during rat mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2009.107(3):325-35.
    [59]Okafuji N, Liu ZJ, King GJ. Assessment of cell proliferation during mandibular distraction osteogenesis in the maturing rat. Am J Orthod Dentofacial Orthop. 2006.130(5):612-21.
    [60]Moore DC, Ehrlich MG, McAllister SC, et al. Recombinant human platelet-derived growth factor-BB augmentation of new-bone formation in a rat model of distraction osteogenesis. J Bone Joint Surg Am.2009.91(8):1973-84.
    [61]Willie B, Adkins K, Zheng X, Simon U, Claes L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res.2009. 27(5):687-93.
    [62]Virk MS, Conduah A, Park SH, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008.42(5):921-31.
    [63]Jazrawi LM, Majeska RJ, Klein ML, Kagel E, Stromberg L, Einhorn TA. Bone and cartilage formation in an experimental model of distraction osteogenesis. J Orthop Trauma.1998.12(2):111-6.
    [64]Yoshida CA, Furuichi T, Fujita T, et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet.2002.32(4):633-8.
    [65]Amir LR, Everts V, Bronckers AL. Bone regeneration during distraction osteogenesis. Odontology.2009.97(2):63-75.
    [66]Mizumoto Y, Moseley T, Drews M,3rd CVN, Reddi AH. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am.2003.85-A Suppl 3: 124-30.
    [67]Lee M, Li W, Siu RK, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials.2009.30(30): 6094-101.
    [68]Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, Nishihara T. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells:implications for distraction osteogenesis. J Oral Maxillofac Surg.2005.63(4):499-504.
    [69]Qi MC, Hu J, Zou SJ, Chen HQ, Zhou HX, Han LC. Mechanical strain induces osteogenic differentiation:Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral Maxillofac Surg.2008.37(5):453-8.
    [70]Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2:responsiveness to multiple signal transduction pathways. J Cell Biochem.2003.88(3):446-54.
    [71]Schlegel KA, Donath K, Rupprecht S, et al. De novo bone formation using bovine collagen and platelet-rich plasma. Biomaterials.2004.25(23):5387-93.
    [72]Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther.2004.11(17):1312-20.
    [73]Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans:a prospective, randomized clinical pilot trial:2002 Volvo Award in clinical studies. Spine.2002.27(23):2662-73.
    [74]Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE. Clinical evaluation of recombinant human bone moiphogenetic protein-2. Clin Orthop Relat Res.2002.395(395):110-20.
    [75]Zhang X, Kuroda S, Carpenter D, et al. Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest.2002.110(6):861-70.
    [76]Sato M, Ochi T, Nakase T, et al. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res.1999. 14(7):1084-95.
    [77]Sojo K, Sawaki Y, Hattori H, Mizutani H, Ueda M. Immunohistochemical study of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2,-4 (BMP-2,-4) on lengthened rat femurs. J Craniomaxillofac Surg. 2005.33(4):238-45.
    [1]刘勇.5393例创伤病例的流行病学分析.中国急救复苏与灾害医学杂志.2007.2(05):257-260.
    [2]Codivilla A. The classic:On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity.1905. Clin Orthop Relat Res.2008.466(12):2903-9.
    [3]Ombredanne L. Allongement d'un femur sur un membre trop court. Bull Mem Soc Chirur (Paris).1913.39:1177.
    [4]Putti V. The operative lengthening of the femur. J Am Med Assoc.1921.77: 934-935.
    [5]Abbott LC, Saunders JB. The operative lengthening of the tibia and fibula. Ann Surg.1939.110:961-991.
    [6]Aderson WV. Leg lengthening. J Bone Joint Surg.1952.34B:150-157.
    [7]Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part Ⅰ. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res.1989. (238):249-81.
    [8]Ilizarov GA. The tension-stress effect on the genesis and growth of tissues:Part Ⅱ. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989. (239):263-85.
    [9]Abdel-Aal AM. Ilizarov bone transport for massive tibial bone defects. Orthopedics.2006.29(1):70-4.
    [10]Saridis A, Panagiotopoulos E, Tyllianakis M, Matzaroglou C, Vandoros N, Lambiris E. The use of the Ilizarov method as a salvage procedure in infected nonunion of the distal femur with bone loss. J Bone Joint Surg Br.2006.88(2): 232-7.
    [11]Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res.1990. (250):81-104.
    [12]Delloye C, Delefortrie G, Coutelier L, Vincent A. Bone regenerate formation in cortical bone during distraction lengthening. An experimental study. Clin Orthop Relat Res.1990. (250):34-42.
    [13]Lammens J, Liu Z, Aerssens J, Dequeker J, Fabry G. Distraction bone healing versus osteotomy healing:a comparative biochemical analysis. J Bone Miner Res.1998.13(2):279-86.
    [14]Pacicca DM, Patel N, Lee C, et al. Expression of angiogenic factors during distraction osteogenesis. Bone.2003.33(6):889-98.
    [15]Meyer U, Meyer T, Wiesmann HP, et al. Mechanical tension in distraction osteogenesis regulates chondrocytic differentiation. Int J Oral Maxillofac Surg. 2001.30(6):522-30.
    [16]Mori S, Akagi M, Kikuyama A, Yasuda Y, Hamanishi C. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res.2006.24(4):653-63.
    [17]Bouletreau PJ, Warren SM, Longaker MT. The molecular biology of distraction osteogenesis. J Craniomaxillofac Surg.2002.30(1):1-11.
    [18]Kanno T, Takahashi T, Ariyoshi W, Tsujisawa T, Haga M, Nishihara T. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells:implications for distraction osteogenesis. J Oral Maxillofac Surg.2005.63(4):499-504.
    [19]Qi MC, Hu J, Zou SJ, Chen HQ, Zhou HX, Han LC. Mechanical strain induces osteogenic differentiation:Cbfal and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral Maxillofac Surg.2008.37(5):453-8.
    [20]Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2:responsiveness to multiple signal transduction pathways. J Cell Biochem.2003.88(3):446-54.
    [21]Haque T, Hamade F, Alam N, et al. Characterizing the BMP pathway in a wild type mouse model of distraction osteogenesis. Bone.2008.42(6):1144-53.
    [22]Liu Z, Luyten FP, Lammens J, Dequeker J. Molecular signaling in bone fracture healing and distraction osteogenesis. Histol Histopathol.1999.14(2): 587-95.
    [23]Cheung LK, Zheng LW, Ma L. Effect of distraction rates on expression of bone morphogenetic proteins in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg.2006.34(5):263-9.
    [24]Schiller JR, Moore DC, Ehrlich MG. Increased lengthening rate decreases expression of fibroblast growth factor 2, platelet-derived growth factor, vascular endothelial growth factor, and CD31 in a rat model of distraction osteogenesis. J Pediatr Orthop.2007.27(8):961-8.
    [25]Waanders NA, Richards M, Steen H, Kuhn JL, Goldstein SA, Goulet JA. Evaluation of the mechanical environment during distraction osteogenesis. Clin Orthop Relat Res.1998. (349):225-34.
    [26]Carvalho RS, Einhorn TA, Lehmann W, et al. The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone.2004.34(5):849-61.
    [27]Pacicca DM, Patel N, Lee C, et al. Expression of angiogenic factors during distraction osteogenesis. Bone.2003.33(6):889-98.
    [28]Fang TD, Salim A, Xia W, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res.2005.20(7): 1114-24.
    [29]He JF, Xie ZJ, Zhao H, et al. Immunohistochemical and in-situ hybridization study of hypoxia inducible factor-1 alpha and angiopoietin-1 in a rabbit model of mandibular distraction osteogenesis. Int J Oral Maxillofac Surg.2008.37(6): 554-60.
    [30]Mandu-Hrit M, Haque T, Lauzier D, et al. Early injection of OP-1 during distraction osteogenesis accelerates new bone formation in rabbits. Growth Factors.2006.24(3):172-83.
    [31]Mandu-Hrit M, Seifert E, Kotsiopriftis M, et al. OP-1 injection increases VEGF expression but not angiogenesis in a rabbit model of distraction osteogenesis. Growth Factors.2008.26(3):143-51.
    [32]林在俊,朱振安,汤亭亭等.HA复合rhBMP-2转染的BMSCs对羊胫骨延长骨愈合的影响.中国修复重建外科杂志.2008.(02).
    [33]Wang Y, Ni M, Tang PF, Li G. Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. J Orthop Res.2008.
    [34]Wang Y, Wan C, Szoke G, Ryaby JT, Li G. Local injection of thrombin-related peptide (TP508) in PPF/PLGA microparticles-enhanced bone formation during distraction osteogenesis. J Orthop Res.2008.26(4):539-46.
    [35]Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans:a prospective, randomized clinical pilot trial:2002 Volvo Award in clinical studies. Spine.2002.27(23):2662-73.
    [36]Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE. Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop Relat Res.2002.395(395):110-20.
    [1]Bokui N, Otani T, Igarashi K, et al. Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Lett.2008. 582(2):365-71.
    [2]Matsuhashi S, Noji S, Koyama E, et al. New gene, nel, encoding a M(r) 93 K protein with EGF-like repeats is strongly expressed in neural tissues of early stage chick embryos. Dev Dyn.1995.203(2):212-22.
    [3]Watanabe TK, Katagiri T, Suzuki M, et al. Cloning and characterization of two novel human cDNAs (NELL1 and NELL2) encoding proteins with six EGF-like repeats. Genomics.1996.38(3):273-6.
    [4]Maeda K, Matsuhashi S, Tabuchi K, et al. Brain specific human genes, NELL1 and NELL2, are predominantly expressed in neuroblastoma and other embryonal neuroepithelial tumors. Neurol Med Chir (Tokyo).2001.41(12): 582-8; discussion 589.
    [5]Kuroda S, Oyasu M, Kawakami M, et al. Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res Commun.1999.265(1):79-86.
    [6]Luce MJ, Burrows PD. The neuronal EGF-related genes NELL1 and NELL2 are expressed in hemopoietic cells and developmentally regulated in the B lineage. Gene.1999.231(1-2):121-6.
    [7]Ting K, Vastardis H, Mulliken JB, et al. Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res.1999.14(1):80-9.
    [8]Zhang X, Kuroda S, Carpenter D, et al. Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest.2002.110(6):861-70.
    [9]Rodriguez JP, Astudillo P, Rios S, Pino AM. Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr Stem Cell Res Ther.2008.3(3):208-18.
    [10]Takada I, Kouzmenko AP, Kato S. Molecular switching of osteoblastogenesis versus adipogenesis:implications for targeted therapies. Expert Opin Ther Targets.2009.13(5):593-603.
    [11]Zhang X, Carpenter D, Bokui N, et al. Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. J Bone Miner Res.2003.18(12):2126-34.
    [12]Desai J, Shannon ME, Johnson MD, et al. Nell1-deficient mice have reduced expression of extracellular matrix proteins causing cranial and vertebral defects. Hum Mol Genet.2006.15(8):1329-41.
    [13]Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal:a transcriptional activator of osteoblast differentiation. Cell.1997.89(5):747-54.
    [14]Yoshida CA, Furuichi T, Fujita T, et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet.2002.32(4):633-8.
    [15]Truong T, Zhang X, Pathmanathan D, Soo C, Ting K. Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res.2007.22(1):7-18.
    [16]Cowan CM, Cheng S, Ting K, et al. Nell-1 induced bone formation within the distracted intermaxillary suture. Bone.2006.38(1):48-58.
    [17]Calzada MJ, Sipes JM, Krutzsch HC, et al. Recognition of the N-terminal modules of thrombospondin-1 and thrombospondin-2 by alpha6betal integrin. J Biol Chem.2003.278(42):40679-87.
    [18]Salasznyk RM, Klees RF, Boskey A, Plopper GE. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem.2007.100(2):499-514.
    [19]Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem.2007.101(5):1266-77.
    [20]Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell.2002.108(1):17-29.
    [21]Aghaloo T, Cowan CM, Chou YF, et al. Nell-1-induced bone regeneration in calvarial defects. Am J Pathol.2006.169(3):903-15.
    [22]胡镜宙,蒋欣泉,张志愿,李金忠,严明.实时定量PCR检测Nel样Ⅰ型分子基因对大鼠骨髓基质细胞成骨相关基因表达的影响.中国口腔颌面外科杂志.2008.(01):48-53.
    [23]Nishimura R, Hata K, Harris SE, Ikeda F, Yoneda T. Core-binding factor alpha 1 (Cbfal) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone.2002.31(2):303-12.
    [24]Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am.2003.85-A(5): 905-11.
    [25]Cowan CM, Jiang X, Hsu T, et al. Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res.2007.22(6): 918-30.
    [26]Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun.2003.309(3):689-94.
    [27]Liu YH, Kundu R, Wu L, et al. Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc Natl Acad Sci U S A.1995.92(13):6137-41.
    [28]Aghaloo T, Jiang X, Soo C, et al. A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther. 2007.15(10):1872-80.
    [29]Lu SS, Zhang X, Soo C, et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J.2007.7(1):50-60.
    [30]Lee M, Li W, Siu RK, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials.2009.30(30): 6094-101.
    [31]陈明,张宇,倪龙兴.nell-1基因直接体内转染修复犬下颌骨的缺损.第四军医大学学报.2007.(13).
    [32]刘勇.5393例创伤病例的流行病学分析.中国急救复苏与灾害医学杂志.2007.2(05):257-260.
    [33]胡镜宙,蒋欣泉,张志愿,张秀丽.Nell_1型分子基因对大鼠骨髓基质细胞
    成骨分化的影响.中国口腔颌面外科杂志.2009.(01):38-43.
    [34]Franke A, Hampe J, Rosenstiel P, et al. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE.2007.2(1):e691.
    [35]Okamoto K, Matsuzaka Y, Yoshikawa Y, et al. Identification of NAD+-dependent isocitrate dehydrogenase 3 gamma-like (IDH3GL) gene and its genetic polymorphisms. Gene.2003.323:141-8.