基于功能化纳米颗粒的线粒体识别及细胞荧光成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,荧光纳米材料优良的荧光性质使其在细胞及亚细胞层面的生物标记研究中得到了广泛的关注,为生物分析及生物医学领域的研究提供了新的技术手段和方法。本研究小组利用二氧化硅荧光纳米颗粒开展了一系列生物标记研究工作,但二氧化硅纳米颗粒在亚细胞标记中的研究还未有报道,本论文在实验室已有工作基础上,开展了二氧化硅荧光纳米颗粒用于线粒体标记的相关研究,研究发现纳米颗粒粒径较大会影响亚细胞运输的进行,因此选择小粒径荧光材料金纳米簇作为研究对象,考察其作为细胞荧光标记物的可行性。本论文主要从以下三个方面开展工作:
     1.信号肽功能化二氧化硅纳米颗粒的离体线粒体靶向作用研究
     以N-(p-马来酰亚胺基苯基)异氰酸酯(N-(p-Maleimidophenyl)isocyanate,PMPI)为交联剂,将线粒体信号肽分子共价修饰到二氧化硅荧光纳米颗粒表面,构建线粒体信号肽功能化二氧化硅荧光纳米颗粒。采用荧光分光光度计、Zeta电位仪以及透射电子显微镜对修饰前后的二氧化硅纳米颗粒进行表征。在此基础上以分离纯化的细胞核作为对照,采用流式细胞术考察了信号肽功能化二氧化硅荧光纳米颗粒与分离纯化的线粒体间的相互作用。结果表明:信号肽成功修饰在二氧化硅纳米颗粒表面,并且纳米颗粒粒径在信号肽分子修饰前后没有发生明显变化;同时,线粒体信号肽修饰到二氧化硅纳米颗粒表面后依然保持良好的生物活性,能够介导二氧化硅纳米颗粒特异性识别及结合分离纯化的线粒体,从而为线粒体监测以及线粒体功能调控研究提供了新的思路。
     2.信号肽功能化二氧化硅纳米颗粒的活细胞线粒体靶向研究
     在上一章研究工作基础上,以Hela细胞为研究对象,考察了线粒体信号肽功能化二氧化硅荧光纳米颗粒在活细胞内的线粒体靶向情况。将信号肽功能化二氧化硅荧光纳米颗粒和Hela细胞共同培育,并利用Lyso Tracker Green和Mito Tracker Deep Red对细胞内溶酶体及线粒体进行染色,通过激光共聚焦显微镜对纳米颗粒在Hela细胞内的分布情况进行分析。结果表明:功能化二氧化硅荧光纳米颗粒能够通过细胞内吞作用进入细胞,但是未能实现线粒体靶向而是滞留于溶酶体。氯喹处理能够破坏溶酶体膜的完整性,但在氯喹处理后二氧化硅荧光纳米颗粒并未进入细胞质而是粘附于溶酶体膜上,仍滞留于溶酶体中。本章工作为纳米颗粒用于亚细胞标记提供了具有参考价值的信息,荧光纳米颗粒在亚细胞标记领域的进一步应用有赖于发展分散性好、粒径小、非特异吸附小的纳米材料。
     3.牛血清白蛋白介导合成的金纳米簇用于细胞荧光成像研究
     在上一章研究工作中发现纳米颗粒粒径较大不利于亚细胞运输的进行,发展小粒径荧光物质对实现亚细胞标记十分必要。近年来金纳米簇因其荧光特性得到很大改善且具有粒径小、无毒性等优点而成为纳米材料领域科学家们关注的热点并在荧光标记研究中得到了一定应用。本章以牛血清白蛋白介导合成了金纳米簇,并利用荧光分光光度计,纳米粒度及zeta电位仪和非变性聚丙烯酰胺蛋白质电泳进行了表征;在此基础上进一步考察了金纳米簇与Hela细胞间的相互作用,同时将其与生物素相交联考察其用作荧光标记物的可行性。结果表明:牛血清白蛋白介导合成的金纳米簇荧光信号较强且在不同pH值溶液中荧光稳定性好;与细胞共同孵育时可以通过内吞作用进入活细胞内,在优化培育时间和金纳米簇浓度的条件下可实现较好的活细胞荧光标记效果,并且在经过细胞固定化处理后仍可保持其标记形态;此外生物素化的金纳米簇可以识别及标记链霉亲和素包被的微珠。以上研究对于金纳米簇作为一种新型荧光标记物在活细胞荧光成像领域中的进一步应用具有一定的指导意义。
In recent years, fluorescent nanoparticles have been widely used in fluorescence labeling at cellular and subcellular level in cell biology research as it has excellent fluorescence characteristics, which have provided new technological methods for the biological analysis and the biomedical research. Based on the fluorescent silica nanoparticles'platform in our laboratory, we first carried out the study of using fluorescent silica nanoparticles for subcellular labeling. The results showed that the big diameter of nanoparticles was a block for subcellular targeting. Then, gold clusters with small size were also investigated to be used as a potential fluorescence marker for cell labeling.
     1. Study on the target interaction between mitochondria and signal peptide functionalized silica nanoparticles
     The mitochondrial signal peptide functionalized fluorescent silica nanoparticles were prepared by conjugated the mitochondrial signal peptide to the nanoparticles through N-(p-Maleimidophenyl)isocyanate (PMPI). The fluorescence spectrophotometer, zeta sizer and TEM have been used to characterize the fluorescent silica nanoparticles. By using the isolated nucleus as a control, the target interaction between the mitochondrial signal peptides modified fluorescent silica nanoparticles and the isolated mitochondria has been investigated by flow cytometry. The results showed that the signal peptides were successfully conjugated to the surface of fluorescent silica nanoparticles, and the size of the fluorescent silica nanoparticles did not change obviously before and after modification. It was revealed that the bioactivity of the signal peptide was well remained after the conjugation with the silica nanoparticles, and the peptides could facilitate the specific recognition and binding between the silica nanoparticles and the isolated mitochondria, which put forwards a new idea for the monitoring and function controlling of the mitochondria.
     2. Study on the signal peptide functionalized silica nanoparticles targeting of mitochondria in living cells
     Based on the above research work, we investigated the mitochondrial targeting ability of signal peptide functionalized silica nanoparticles in living Hela cells. The functionalized fluorescent silica nanoparticles were incubated with Hela cell, and then the subcellular distribution was studied by cofocal microscopy in the situation that the lysosome and mitochondrion were costained by LysoTracker Green and MitoTracker Deep Red. It was found that the functionalized fluorescent silica nanoparticles can enter cells through endocytosis. However, its further movement was prevented by the lysosome. Although the cells were further treated with chloroquine in order to release the nanoparticles into the cytoplasm, experimental results showed that most of nanoparticles were adsorbed in the lysosomal membrane and retained in the lysosome and could not able to reach the mitochondria. The results indicated that the nanoparticles with smaller size, better dispersion and low specific absorption should be prepared to make better use of fluorescent nanoparticles for subcellular labeling.
     3. Study on the live cells fluorescence imaging by bovine serum albumin-mediated synthesized gold nanoclusters
     As discussed aboved, it is necessary to develope nanoparticles with smaller size for cell labeling. In recent years, gold nanoclusters have attracted the attention of scientists in the field of nano-materials because of its improved fluorescent properties and the advantages of small size and nontoxic. In this chapter, the gold nanocluster was synthesized by bovine serum albumin directing, and was characterized by fluorescence spectrophotometer, zeta sizer and non-denaturing polyacrylamide gel electrophoresis. And further study was carried out to investigate the interaction between gold nanoclusters and Hela cells, and the gold nanoclusters were conjugated with biotin to investigate the feasibility of being used as a fluorescent marker.The results showed that the gold nanocluster's fluorescence signal was strong and stable at different pH. It demonstrated that the gold naoclusters could be successfully uptaken by living cells. The good effects of the fluorescent labeling of living cells can be achieved by using optimal incubation time and gold nanoclusters'concentration. Moreover, the fixation treatment did not change the form of labeling. Furthermore, the gold-nanoclusters can also be used as fluorescent markers to label the biotin and did not affect the interaction between biotin and avidin. These results provide some guidance to the further application of fluorescent gold nanoclusters in the field of live cells labeling.
引文
[1]翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000:1-16
    [2]汪堃仁,薛绍白,柳惠图.细胞生物学.北京:北京师范大学出版社,1998:1-2
    [3]Haraguchi T. Live cell image:approaches for studying protein dynamics in living cells. Cell structure and function,2002,27(5):333-334
    [4]Gerlich D, Mattes J, Eils R. Quantitative motion analysis and visualization of cellular structures. Methods,2003,29(1):3-13
    [5]Perper.放射性同位素.http://baike.baidu.com/view/357582.htm?fr=ala0_1, 2010-02-21
    [6]张晔,郭传嫔,俞光岩.口腔鳞状细胞癌脂肪酸代谢的初步研究.现代口腔医学杂志,2003,17(3):193-195
    [7]白金柱,丁为民,刘忠军等.放射性碘标记转铁蛋白体外示踪脊髓内移植的间充质干细胞.北京大学学报(医学版),2004,36(3):276-280
    [8]于冰,李怀芬.99mTc标记放射性示踪剂的研究进展.天津药学,2005,17(6):43-45
    [9]Hollinshead M, Sanderson J, Vaux D J. Anti-biotin antibodies offer superior organelle-specific labeling of mitochondria over avidin or streptavidin. The Journal of Histochemistry and Cytochemistry,1997,45(8):1053-1057
    [10]Torvinen M, Gines S, Hillion J, et al. Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected-fibroblast cells and neurons. Neuroscience,2002,113(3):709-719
    [11]Hiraoka Y, Haraguchi T. Fluorescence imaging of mammalian living cells. Chromosome Research,1996,4(3):173-176
    [12]Burgess S M, Delannoy M, Jensen R E. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol,1994,126(6):1375-1391
    [13]Foster K A, Galeffi F, Gerich F J, et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Progress in Neurobiology,2006,79(3):136-171
    [14]Cossarizza A, Ceccarelli D, Masini A A. Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Experimental cell research,1996,222(1):84-94
    [15]Lepperdinger G, Strobl B, Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem,1998,273(35):22466-22470
    [16]Palmiter R D, Cole T B, Findley S D. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J,1996,15(8): 1784-1791
    [17]Diwu Z, Chen C S, Zhang C, et al. A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells. Chem Biol,1999, 6(7):411-418
    [18]Terasaki M, Chen L B, Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol,1986,103(4):1557-1568
    [19]Cole L, Davies D, Hyde GJ, et al. ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius. J Microsc, 2000,197(3):239-249
    [20]Johnson I. Fluorescent probes for living cells. Histochemical Journal,1998, 30(3):123-140
    [21]Zhang J, Campbell R E, Ting A. Y, et al. Creating new fluorescent probes for cell biology. Nature reviews,2002,3(12):906-918
    [22]Zaccolo M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circulation Research,2004,94(7): 866-873
    [23]Ehrhardt D. GFP technology for live cell imaging. Current Opinion in Plant Biology,2003,6(6):622-628
    [24]Roessel P V, Brand A H. Imaging into the future:visualizing gene expression and protein interactions with fluorescent proteins. Nature cell biology,2002, 4(1):E15-E20
    [25]Day R N, Schaufele F. Imaging molecular interactions in living cells. Molecular Endocrinology,2005,19(7):1675-1686
    [26]费学宁,刘丽娟,张宝莲等.荧光染料探针分子对变异细胞的识别.化学进展,2006,18(6):801-807
    [27]陈中举,张燕玲,黄金瑛.荧光标记生物大分子及其应用.国外医学生物工程分册,2004,27(6):348-352
    [28]Giepmans B N G, Adams S R, Ellisman M H, et al. The fluorescent toolbox for assessing protein location and function. Science,2006,312(5771):217-224
    [29]Chen F Q, Gerion D. Fluorescent cdse/zns nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett, 2004,4(10):1827-1832
    [30]Koster A J, Klumperman J. Electron microscopy in cell biology:integrating structure and function. Nature Review Molecular Cell Biology,2003,4(Suppl): 6-10
    [31]Birrell G B, Hedberg K K, Griffith H. Pitfalls of immunogold labeling:analysis by light microscopy transmission electron microscopy and photoelectron. The Journal of Histochemistry and Cytochemistry,1987,35(8):843-853
    [32]Kleijmeer M J, Raposo G, Geuze H J. Characterization of MHC class Ⅱ compartments by immunoelectron microscopy. Methods:A Companion to Methods in Enzymology,1996,10(2):191-207
    [33]王宇,沈玉栋,雷红涛等.免疫分析标记技术研究进展.食品工业科技,2007,28(10):221-225
    [34]Roth J. The silver anniversary of gold:25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol, 1996,106(1):1-8
    [35]Martinez-Mena rguez Jose A, Geuze H J, Slot J W, et al. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from copi-coated vesicles. Cell,1999,98(1):81-90
    [36]M(o|¨)bius W, Ohno-Iwashita Y, Donselaar E G V, et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic Perfringolysin O. The Journal of Histochemistry and Cytochemistry,2002, 50(1):43-55
    [37]Mobius W, Donselaar E V, Ohno-Iwashita Y, et al. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic,2003,4(4):222-231
    [38]Tyszka J M, Fraser S E, Jacobs R E. Magnetic resonance microscopy:recent advances and Applications. Current Opinion in Biotechnology,2005,16(1): 93-99
    [39]李祥,漆剑频,朱文珍.超顺磁性氧化铁纳米粒子在细胞标记及细胞成像中的应用.临床放射学杂志,2006,25(2):1075-1077
    [40]Arbab A S, Liu W, Frank J A. Cellular magnetic resonance imaging:current status and future prospects. Expert Rev Med Devices,2006,3(4):426-439
    [41]Endres P J, MacRenaris K W, Vogt S. Cell-permeable MR contrast agents with increased intracellular retention. Bioconjugate Chem,2008,19(10):2049-2059
    [42]Aguayo J B, Blackband S J, Schoeniger J, et al. Nuclear magnetic resonance imaging ofa single cell. Nature,1986,322(6075):190-191
    [43]Ciobanu L, Seeber D A, Pennington C H.3D MR microscopy with resolution 3.7mm by 3.3 mm. J Magn Reson,2002,158(1-3):178-182
    [44]Ciobanu L, Pennington C H.3D micron-scale MRI of single biological cells. Solid State Nuclear Magnetic Resonance,2004,25(1-3):138-141
    [45]Crandall B C. Nanotechnology:molecular speculations on global abundance. Cambridge:The MIT Press,1996:58-70
    [46]谢思深.纳米生物和医药.纳米技术科研发展调研报告汇编.科学技术部基础研究司,2002:15-47
    [47]白春礼.纳米科技及发展前景.微纳电子技术,2002,1(1):2-5
    [48]汪堃仁,薛绍白,柳惠图.细胞生物学.北京:北京师范大学出版社,1998:52-53
    [49]Han R C, Yu M, Zheng Q, et al. A Facile Synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir,2009,25(20):12250-12255
    [50]He H, Xie C, Ren J C. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Analytical Chemistry,2008,80(15): 5951-5967
    [51]Yong K T, Ding H, Roy I, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano,2009,3(3):502-510
    [52]Barat B, Sirk S J, McCabe K E, et al. Cys-diabody quantum dot conjugates (ImmunoQdots) for cancer marker detection. Bioconjugate Chem,2009,20(8): 1474-1481
    [53]Vermes I, Haanen C. Apoptosis and programmed cell-death in health and disease. Advances In Clinical Chemistry,1994,31:177-246
    [54]Shi H, He X X, Wang K M, et al. Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles (RBITC-DSFNPs)-based bioprobes conjugated to Annexin V for apoptosis detection and imaging. Nanomedicine: Nanotechnology, Biology and Medicine,2007,3(4):266-272
    [55]Gac S L, Vermes I, Berg A V D. Quantum dots based probes conjugated to Annexin V for photostable apoptosis detection and imaging. Nano Letters,2006, 6(9):1863-1869
    [56]Triller A, Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes:and yet they do move. Trends in Neurosciences,2005, 28(3):133-139
    [57]Gussin H A, Tomlinson I D, Little D M, et al. Binding of muscimol-conjugated quantum dots to GABAC receptors. J Am Chem Soc,2006,128(49): 15701-15713
    [58]Iyer G, Michalet X, Chang Y P, et al. High affinity scFv-Hapten pair as a tool for quantum dot labeling and tracking of single proteins in live cells. Nano Letters,2008,8(12):4618-4623
    [59]Rajan S S, Vu T Q. Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells. Nano Letters,2006,6(9):2049-2059
    [60]Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology,2004,22(2):198-203
    [61]Bruchez M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998,281(5385):2013-2016
    [62]Wu X Y, Liu H J, Liu J H, et al. Immunofluorescent Labeling of Cancer Marker Her2 and other Cellular Targets with Semiconductor Quantum Dots. Nature Biotechnology,2003,21(1):41-46
    [63]Shi H, He X X, Yuan Y, et al. Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking. Analytical Chemistry,2010,82(6): 2213-2220
    [64]Dubertret B, Skourides P, Norris D J, et al. In Vivo imaging of quantum dots encapsulated in phospholipid micelles. Science,2002,298(5599):1759-1762
    [65]Derfus A M, Chan W C W, Bhatia S N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater,2004,16(12):961-966
    [66]Jablonski A E, Humphries W H, Payne C K. Pyrenebutyrate-mediated delivery of quantum dots across the plasma membrane of living cells. J Phys Chem B, 2009,113(2):405-408
    [67]Duan H W, Nie S M. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc,2007,129(11): 3333-3338
    [68]Neu M, Fischer D, Kissel T J. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. The Journal of Gene Medicine,2005,7(8):992-1009
    [69]Hoshino A, Fujioka K, Oku T, et al. Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol,2004,48(12):985-994
    [70]Jesus M, Berry C C. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjugate Chem,2005,16(5):1176-1180
    [71]Ryan J A, Overton K W, Speight M E, et al. Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Analytical Chemistry,2007,79(23):9150-9159
    [72]Oyelere A K, Chen P C, Huang X, et al. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem,2007,18(5):1490-1497
    [73]Khalil I A, Kogure K, Futaki S, et al. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. The Journal of Biological Chemistry,2006,281(6):3544-3551
    [74]Masuda T, Akita H, Nishio T, et al. Development of lipid particles targeted via sugar-lipid conjugates as novel nuclear gene delivery system. Biomaterials, 2008,29(6):709-723
    [75]Biju V, Muraleedharan D, Nakayama K, et al. Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. Langmuir,2007,23(20):10254-10261
    [76]Courty S, Luccardini C, Bellaiche Y, et al. Tracking Individual Kinesin Motors in Living Cells Using Single Quantum-Dot Imaging. Nano Letters,2006,6(7): 1491-1495
    [77]Okada C Y, Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell,1982,29(1): 33-41
    [78]Qi L F, Gao X H. Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS nano,2008,2(7):1403-1410
    [79]Tekle C, van Deurs B, Sandvig K, et al. Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands. Nano Letters,2008,8(7):1858-1865
    [80]Groc L, Lafourcade M, Heine M, et al. Surface trafficking of neurotransmitter receptor:comparison between single-molecule/quantum dot strategies. J Neurosci,2007,27 (46):12433-12437
    [81]Dif A, Boulmedais F, Pinot M, et al. Small and Stable peptidic pegylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry. J Am Chem Soc,2009,131(41):14738-14746
    [82]O'Hare H M, Johnsson K, Gautier A. Chemical probes shed light on protein function. Curr Opin Struct Biol,2007,17(4):488-494
    [83]Bharali D J, Lucey D W, Jayakumar H, et al. Folate-receptor-mediated delivery of inp quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc,2005,127(32):11364-11371
    [84]Maila¨nder V, Landfester K. Interaction of nanoparticles with cells. Biomacromolecules,2009,10(9):2379-2400
    [85]Lu Y J, Low P S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Del Rev,2002,54(5),675-693
    [86]Chakraborty S K, Fitzpatrick J A J, Phillippi J A, et al. Cholera Toxin B conjugated quantum dots for live cell labeling. Nano Letters,2007,7(9): 2618-2626
    [87]Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature biotechnology,2003, 21(1):47-51
    [88]Martin A L, Bernas L M, Rutt B K, et al. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjugate Chem,2008,19(12):2375-2384
    [89]Babic M, Horak D, Trchova M, et al. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem,2008,19(3):740-750
    [90]Vuu K, Xie J W, McDonald M A, et al. Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjugate Chem,2005,16(4):995-999
    [91]邢新丽.硅壳荧光纳米颗粒与细胞相互作用的研究及其在溶酶体标记中的应用:[湖南大学硕士学位论文].湖南:湖南大学化学化工学院.2005:16-28
    [92]He X X, Wang K M, Tan W H, et al. A novel fluorescent label based on biological fluorescent NPs and its application in cell recognition. Chinese Science Bulletin,2001,46(23):1962-1965
    [93]Peng J F, Wang K M, Tan W H, et al. Identification of live liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles. Talanta, 2007,71(2):833-840
    [94]He X X, Ge J, Wang K M, et al. FSiNPs mediated improved double immunofluorescence staining for gastric cancer cells imaging. Talanta,2008, 76(5):1199-1206
    [95]Josephine S, Napolitanoa M, Aprilleb J R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Advanced Drug Delivery Reviews,2001,49(1):63-70
    [96]Asayama S, Kawamura E, Nagaoka S, et al. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant. Molecular Pharmaceutics,2006,3(4):468-470
    [97]Adlam V J, Harrison J C, Porteous C M, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. The FASEB Journal,2005,19(9):1088-1095
    [98]Green K, Brand M D, Murphy M P. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes,2004,53(suppl): 110-118
    [99]Richard W, Horobin R W, Trapp S, et al. Mitochondriotropics:A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. Journal of Controlled Release,2007,121(8):125-136
    [100]Koya K. MKT-077, A novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Research,1996,56(3):538-543
    [101]Seaton B L, Vickery LE. Expression of human ferredoxin in Saccharomyce cerevisiae:mitochondrial import of-the protein and assembly of the [2Fe-2S] center. Arch Biochem Biophys,1992,294(2):603-608
    [102]Dziubla T D, Shuvaev V V, Hong N K, et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials,2008, 29(2):215-227
    [103]Stover T C, Kim Y S, Lowe T L, et al. Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials,2008,29(3):359-369
    [104]Soppimath K S, Aminabhavi T M, Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release,2001, 70(1-2):1-20
    [105]Boddapati S V, D'Souza G G M, Erdogan S, et al. Organelle-targeted nanocarriers:specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Letters,2008,8(8):2559-2563
    [106]Yamada Y, Akita H, Kamiya H, et al. MITO-Porter:A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochimica et Biophysica Acta,2008,1778(2):423-432
    [107]D'Souza G G M, Rammohan R, Cheng S M, et al. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. Journal of Controlled Release,2003,92(1-2):189-197
    [108]Tan W H, Wang K M, He X X, et al. Bionanotechnology based on silica nanoparticles. Medical Research Reviews,2004,24(5):621-638
    [109]Yao G, Wang L, Wu Y R, et al. FloDots:luminescent nanoparticles. Analytical And Bioanalytical Chemistry,2006,385(3):518-524
    [110]He X X, Wang K M, Tan W H, et al. Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc,2003,125(24):7168-7169
    [111]Ohulchanskyy T Y, Roy I, Goswami L N, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Letters,2007,7(9):2835-2842
    [112]石慧,何晓晓,王柯敏等.二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应.高等学校化学学报,2007,28(9):1690-1695
    [113]Osaki F, Kanamori T, Sando S, et al. A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc,2004,126(21):6520-6521
    [114]邢新丽,何晓晓,王柯敏等.细胞吞噬表面电荷不同的硅纳米颗粒的研究.高等学校化学学报,2006,27(11):2076-2078
    [115]Hurt E C, Hurt B P, Suda K, et al. The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix. The EMBO Journal,1985,4(8):2061-2068
    [116]Spector D L, Goldman R D, Leinward L A. Cell:A Laboratory Manual.北京:科学出版社,2001:356
    [117]Yang S, Coles D J, Esposito A, et al. Cellular uptake of self-assembled cationic peptide-DNA complexes:Multifunctional role of the enhancer chloroquine. Journal of Controlled Release,2009,135(2):159-165
    [118]Duan H W, Nie S M. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers:a new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc,2007,129(9):2412-2413
    [119]Liu X F, Li C H, Xu J L, et al. Surfactant-free synthesis and functionalization of highly fluorescent gold quantum dots. J Phys Chem C,2008,112(29): 10778-10783
    [120]Zheng J, Petty J T, Dickson R M. High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc,2003,125(26),7780-7781
    [121]Yu J H, Choi S, Richards C I, et al. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochemistry and Photobiology,2008,84(6): 1435-1439
    [122]Yu J H, Choi S, Dickson R M. Shuttle-based fluorogenic silver-cluster biolabels. Angew Chem,2009,48(2),318-320
    [123]Lin C A J, Yang T Y, Lee C H, et al. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano,2009,3(2):395-401
    [124]Xie J P, Zheng Y G, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc,2009,131(3):888-889