血小板与纤维蛋白原协同保护肿瘤细胞的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是目前对人类威胁最大的疾病之一,其转移是病人痛苦和致死的主要因素。肿瘤转移是一个多步骤、高度受控的过程,在此过程中,肿瘤细胞在血液中的存活率对其转移效率的影响至关重要。进入血液的肿瘤细胞面临多种免疫攻击,成功逃逸这些攻击的肿瘤细胞才有可能完成转移。自然杀伤细胞(NK细胞)可以发现并杀伤肿瘤细胞,是开启其他免疫系统的关键,其功能的正常发挥对肿瘤免疫至关重要。近年来的研究表明,NK细胞功能的发挥经常受到血小板、纤维蛋白原等凝血因子的阻碍,使得肿瘤细胞有机会逃逸杀伤。为此,研究者做了大量的工作,血小板及纤维蛋白原帮助肿瘤细胞逃逸NK细胞攻击的机制已经被讨论了20多年,然而两者的具体角色和协作机制仍然不清楚。
     在本研究中,我们用黑色素瘤细胞系A375和B16F10及淋巴瘤细胞系YAc-1,通过静止黏附、层流、流式细胞术和细胞毒性杀伤等实验证明,肿瘤细胞与纤维蛋白原的黏附能力大于它与血小板的黏附能力,在较高剪切力下肿瘤细胞与血小板的黏附很难发生。纤维蛋白原可介导肿瘤细胞与血小板的黏附,此过程中表达于肿瘤细胞和血小板表面的β_3整合素发挥了关键的作用。凝血酶存在时,纤维蛋白原可被凝集在肿瘤细胞周围形成一层致密的保护罩。血小板被肿瘤细胞激活后可产生凝血酶,因此血小板可以与凝血酶一样帮助纤维蛋白原保护肿瘤细胞,使其免于NK细胞接触及被杀伤。水蛭素是凝血酶的特异抑制物,可以逆转血小板对纤维蛋白原的作用。这些结果显示在保护肿瘤细胞的过程中,纤维蛋白原帮助血小板黏附到肿瘤细胞上,而血小板则通过形成凝血酶使更多的纤维蛋白原凝集在肿瘤细胞周围,它们在此过程中相互协作。
     在本研究中,我们还探讨了本实验室制备的化学修饰肝素对纤维蛋白原介导的肿瘤细胞.血小板间接黏附的阻断能力。我们通过采用流式细胞术、层流实验等手段发现,肝素及其修饰物可以干扰纤维蛋白原与表达于肿瘤细胞、血小板表面的β_3,整合素的结合,进而阻断纤维蛋白原介导的肿瘤细胞与血小板的间接黏附。不同修饰物的阻断能力也有所差异,这种差异与其不同的修饰结构相关。
Cancer is one of the most danger diseases of human, as its metastasis, patients suffers a lot and died frequently. Metastasis is a multi-step and highly regulated cascade, which effected by the survival rate of tumor cells in blood mostly. Tumor cell escape form the attacks of immunological factors in blood continue the metastasis. Natural killer cells are essential for the tumor immunity as their special ability to recognize tumor cells from normal cells. However, recent studies show that some tumor cell can escape from the recognition by the help of platelet or fibrinogen. The mechanisms of platelets and fibrinogen in protecting tumor cells from NK cytotoxicity have been discussed for more than 20 years. However, the exact roles and relationships of them in the process are still not clear.
     In this study, we demonstrate that tumor cells prefer to adhere to fibrinogen than to platelets, and fibrinogen can enhance the adhesion of tumor cells to platelets.β_3 integrins plays an important role in the adhesion of B16F10 to platelets enhanced by fibrinogen. In the presence of thrombin, fibrinogen forms dense fibrin(ogen) layers around tumor cells. Tumor cells can induce platelets to aggregate and form thrombin. Platelets as well as thrombin can help fibrinogen to protect tumor cells from the lethal contact and NK cytotoxicity. Hirudin, a specific inhibitor of thrombin, can reverse the effect of platelets on fibrinogen in blocking NK cytotoxicity. Our results suggest that fibrinogen help platelets adhere to tumor cells, and platelets in turn promote more fibrinogen to aggregate around tumor cells by forming thrombin. They facilitate each other in protecting tumor cells from NK cytotoxicity.
     In this study, we also detect the ability of chemical modified heparins in abolishing the indirect adhesion of tumor cell and platelet mediated by fibrinogen. By flow cytometry and flow chamber assay, we found that the heparins could effect the adhesion of fibrinogen toβ_3 integrins on the surface of tumor cells or platelets, and inhibit the indirect adhesion. The inhibiting abilities of different heparin are correlated with their structure.
引文
[1] Morgan-Parkes J H. Metastases: mechanisms, pathways, and cascades[J]. AJR Am J Roentgenol. 1995,164:1075-1082.
    [2] Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumorlymphatics[J]. Science, 2002, 296: 1883-1886.
    [3] Carr I. Lymphatic metastasis[J]. Cancer Metastasis Rev. 1983, 2: 307-317.
    [4] Tan D S, Agarwal R, Kaye S B. Mechanisms of transcoelomic metastasis in ovarian cancer[J]. LancetOncol. 2006,7: 925-934.
    [5] Liotta LA. Cancer cell invasion and metastasis [J]. Sci Am, 1992, 266: 54-59, 62-63.
    [6] Fidler I. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 1251-5iodo-2-deoxyuridme[J]. J Natl Cancer Inst,1970, 45: 773-779.
    [7] Chambers A F, Naumov G N, Varghese H J, et al. Critical steps in hematogenous metastasis: anoverview[J]. Surg Oncol Clin N Am, 2001, 10:243-255.
    [8] Morris V L, Schmidt E E, MacDonald I C, et al. Sequential steps in hematogenous metastasis of cancercells studied by in vivo videomicroscopy[J]. Invasion Metastasis, 1997. 17: 281-296.
    [9] Whiteside T L, Herberman R B. The role of natural killer cells in immune surveillance of cancer[J].Curr Opin Immunol, 1995, 7: 704-710.
    [10] Rosenberg E B, Herberman R B, Levine P H, et al. Lymphocyte cytotoxicity reactions toleukemia-associated antigens in identical twins[J]. Int J Cancer, 1972, 9: 648.
    [11] Hanna N, Fidler I J. Role of natural killer cells in the destruction of circulating tumor emboli[J]. J Natl Cancer Inst, 1980, 65: 801-809.
    [12] Hanna N, Burton R C. Definitive evidence that natural killer (NK) cells inhibit experimental tumormetastases mvivo[J]. J Immunol, 1981, 127: 1754-1758.
    [13] Megan A, Cooper, Todd A, and et al. The biology of human natural killer-cell subsets[J]. TrendsImmunol. 2001, 22: 633-640.
    [14] Farag S S, Caligiuri M A. Human natural killer cell development and biology. Blood Rev[J]. 2006, 20:123-137.
    [15] Cerwenka A, Lanier L L. Natural killer cells, viruses and cancer[J]. Nat Rev Immunol, 2001, 1: 41-49.
    [16] Hamerman J A, Ogasawara K, Lanier L L. NK cells in innate immunity[J]. Curr Opin Immunol, 2005,17:29-35.
    [17] Vance R E, Kraft J R, Altman J D, et al. Mouse CD94/NKG2A is a natural killer cell receptor for thenonclassical major histocompatibility complex (MHC) class I molecule Qa-l(b)[J]. J Exp Med, 1998,188: 1841-1848.
    [18] Vance R E, Jamieson A M, Raulet D H. Recognition of the class Ib molecule Qa-l(b) by putativeactivating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells[J]. J Exp Med.1999, 190: 1801-1812.
    [19] Moretta A, Bottino C, Vitale M, et al. Receptors for HLA class-I molecules in human natural killercells[J]. Annu Rev Immunol, 1996, 14: 619-648.
    [20] Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human naturalkiller cell-mediated cytolysis[J]. Annu Rev Immunol, 2001, 19: 197-223.
    [21] Moretta L, Bottino C, Pende D, et al. Human natural killer cells: Molecular mechanisms controllingNK cell activation and tumor cell lysis[J]. Immunol Lett, 2005, 100: 7-13.
    [22] Wallace M E, Smyth M J. The role of natural killer cells in tumor control—effectors and regulators ofadaptive immunity[J]. Springer Semin Immunopathol, 2005, 27: 49-64.
    [23] van den Broek M F, Kagi D, Zinkernagel RM, Hengartner H. Perform dependence of natural killercell-mediated tumor control in vivo[J]. Eur J Immunol, 1995, 25: 3514-3516.
    [24] van den Broek M E, Kagi D, Ossendorp F, et al. Decreased tumor surveillance in perforin-deficientmice[J]. J Exp Med, 1996, 184:1781-1790.
    [25] Pardo J, Balkow S, Anel A, et al. Granzymes are essential for natural killer cell-mediated andperf-facilitated tumor control[J]. Eur J Immunol, 2002, 32: 2881-2887.
    [26] Metkar S S, Wang B, Aguilar-Santelises M, et al. Cytotoxic cell granule-mediated apoptosis: performdelivers granzyme B-serglycin complexes into target cells without plasma membrane poreformation[J]. Immunity, 2002,16: 417-428.
    [27] Fan Z, Beresford P J, Oh D Y, et al. Tumor suppressor NM23-H1 is a granzyme A-activated DNaseduring CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor[J]. Cell,2003, 112:659-672.
    [28] Screpanti V, Wallin R P, Ljunggren H G, et al. A central role for death receptor-mediated apoptosis inthe rejection of tumors by NK cells[J]. J Immunol. 2001, 167: 2068-2073.
    [29] Schnurr M, Scholz C, Rothenfusser S, et al. Apoptotic pancreatic tumor cells are superior to celllysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells[J].Cancer Res, 2002, 62: 2347-2352.
    [30] Loza M J, Zamai L, Azzoni L, et al. Expression of type 1 (interferon gamma) and type 2(interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation fromprogenitor cells[J]. Blood, 2002, 99: 1273-1281.
    [31] Hayakawa Y, Takeda K, Yagita H, et al. IFN-gamma-mediated inhibition of tumor angiogenesis bynatural killer T-cell ligand, alpha-galactosy lceramide[J]. Blood. 2002, 100: 1728-1733.
    [32] Kaplan D H, Shankaran V, Dighe A S, et al. Demonstration of an interferon -dependent tumorsurveillance system in immunocompetent mice[J]. Proc Natl Acad Sci U S A, 1998, 95: 7556-7561.
    [33] Werneburg N, Guicciardi M E, Yin X M, et al. TNF-alpha-mediated lysosomal permeabilization isFAN and caspase 8/Bid dependent[J]. Am J Physiol Gastrointest Liver Physiol. 2004, 287:G436-G443.
    [34] Bogin L, Papa MZ, Polak-Charcon S, et al. TNF-induced modulations of phospholipid metabolism inhuman breast cancer cells[J]. Biochim Biophys Acta, 1998, 1392: 217-232.
    [35] Altairac S, Wright S C, Courtois Y, et al. L-DNase II activation by the 24 kDa apoptotic protease(AP24) in TNF alpha-induced apoptosis[J]. Cell Death Differ, 2003, 10: 1109-1111.
    [36] Jonsson A H, Yokoyama W M. Natural killer cell tolerance licensing and other mechanisms[J]. AdvImmunol. 2009, 101:27-79.
    [37] Arnon T I, Achdout H, Lieberman N, et al. The mechanisms controlling the recognition of tumor- andvirus-infected cells by NKp46[J]. Blood, 2004, 103: 664-672.
    [38] Krzewski K, Chen X, Orange J S, et al. Formation of a WIP-, WASp-, actin-, and myosinIIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitorysignalmg[J]. J Cell Bio, 2006, 173: 121-132.
    [39] Carpen O, Virtanen I, Lehto VP, et al. Polarization of NK cell cytoskeleton upon conjugation withsensitive target cells[J]. J Immunol, 1983, 131: 2695-2698.
    [40] Wallace M E, Smyth MJ. The role of natural killer cells in tumor control—effectors and regulators ofadaptive immunity. Springer Semin Immunopathol. 2005 Jun;27(l):49-64. Epub 2005 Feb 24.
    [41] Kelly J M, Takeda K, Darcy P K, et al. A role for IFN-gamma in primary and secondary immunitygenerated by NK cell-sensitive tumor-expressing CD80 in vivo[J]. J Immunol, 2002, 168: 4472-4479.
    [42] Yuan D, Koh C Y, Wilder J A. Interaction between B lymphocytes and NK cells[J]. FASEB J. 1994, 8:1012-1018.
    [43] Kelly J M, Darcy P K, Markby J L, et al. Induction of tumor-specific T cell memory by NKcell-mediated tumor rejection[J]. Nat Immunol, 2002, 3:83-90.
    [44] Smyth M J, Hayakawa Y, Takeda K, et al. New aspects of natural-killer-cell surveillance and therapyof cancer[J]. Nat Rev Cancer. 2002, 2: 850-861.
    [45] Heiskala M K, Carpen O, Saksela E, et al. Mechanism of cell contact-mediated inhibition of naturalkiller activity[J]. J Immunol, 1987,139: 1414-1418.
    [46] Lapetina E G, Siegel F L. Shape change induced in human platelets by platelet-activating factor.Correlation with the formation of phosphatidic acid and phosphorylation of a 40,000-dalton protein[J].J Biol Chem, 1983, 258:7241-7244.
    [47] Siess W. Molecular mechanisms of platelet activation[J]. Physiol Rev. 1989, 69: 58-178.
    [48] Evensen S A, Jeremic M, Hjort P F. Experimental thrombocytopenia induced by Busulphan (Myleran)in rabbits: extremely low platelet levels and intact plasma clotting system[J]. Thromb Diath Haemorrh.1968, 19:570-577.
    [49] Kato Y, Fujita N, Yano H, Tsuruo T. Suppression of experimental lung colonization of mouse colonadenocarcinoma 26 in vivo by an anti-idiotype monoclonal antibody recognizing a platelet surfacemolecule[J]. Cancer Res, 1997, 57: 3040-3045.
    [50] Pearlstein E, Ambrogio C, Karpatkin S. Effect of antiplatelet antibody on the development ofpulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, andB16 amelanotic melanoma tumor cells into mice[J]. Cancer Res, 1984, 44: 3884-3887.
    [51] Offermanns S, Toombs C F, Hu Y H, et al. Defective platelet activation in Gaq-deficient mice[J].Nature, 1997,389: 183-186.
    [52] Gupta GP, Massague J. Platelets and metastasis revisited: a novel fatty link[J]. J Clin Invest. 2004,114:1691-1693.
    [53] Bikfalvi A, Gimenez-Gallego G. The control of angiogenesis and tumor invasion by platelet factor-4and platelet factor-4-derived molecules[J]. Semin Thromb Hemost. 2004, 30: 137-144.
    [54] Bombeli T, Schwartz B R, Harlan J M. Adhesion of activated Platelets to Endothelial cells :Evidencefor a GPIIbII III a2dependent for Endothelial Adhesion Molecular ( ICAM21)、avB3integrin andGPIba[J]. JExp Med, 1998, 187: 3292339
    [55] Verheul H M, Hoekman K, Luykx-de Bakker S, et al. Platelet: transporter of vascular endothelialgrowth factor[J]. Clin Cancer Res, 1997, 3: 2187-2190.
    [56] Trikha M, and Nakada M T. Platelets and cancer: implications for antiangiogenic therapy[J]. SeminThromb Hemost, 2002, 28: 39-44.
    [57] Jurasz P, Sawicki G, Duszyk M, et al. Matrix metalloproteinase 2 in tumor cell-induced plateletaggregation: regulation by nitric oxide[J]. Cancer Res, 2001, 61: 376-382.
    [58] Masson V, de la Ballina LR, Munaut C, et al. Contribution of host MMP-2 and MMP-9 to promotetumor vascularization and invasion of malignant keratinocytes[J]. FASEB J. 2005, 19:234-236.
    [59] Ishai-Michaeli R, Eldor A, Vlodavsky I. Heparanase activity expressed by platelets, neutrophils, andlymphoma cells releases active fibroblast growth factor from extracellular matrix[J]. Cell Regul. 1990,1:833-42.
    [60] Philippe C , Philippe B , Perez J , et al . Protection from tumor necrosis factor2mediated cytolysis byplatelets[J] . Am J Pathol ,1993 ,143 (6) :171321723.
    [61] Kim S, Iizuka K, Aguila HL, et al. In vivo natural killer cell activities revealed by natural killercell-deficient mice[J]. Proc Natl Acad Sci U S A. 2000, 97: 2731-2736.
    [62] McCarty O J, Mousa S A, Bray P F, et al. Immobilized platelets support human colon carcinoma celltethering, rolling, and firm adhesion under dynamic flow conditions[J]. Blood, 2000, 96: 1789-1797
    [63] Nieswandt B, Hafner M, Echtenacher B, et al. Lysis of tumor cells by natural killer cells in mice isimpeded by platelets[J]. Cancer Res, 1999,59: 1295-1300.
    [64] Moretta A ,Vitale M,Bottino C , et al. P58 molecules as putative receptors for major histocompatibilitycomplex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitutelysis of MHC class I protectedcells in NK
    [65] Bloomston M, Zhou J X, Rosemurgy A S, et al.Fibrinogen {gamma} Overexpression in Pancreatic Cancer Identified by Large-scale ProteomicAnalysis of Serum Samples[J]. Cancer Res, 2006; 66: 2592-2599.
    [66] Yamashita H, Kitayama J, and Nagawa H. Hyperfibrinogenemia is a Useful Predictor for LymphaticMetastasis in Human Gastric Cancer[J]. Jpn J Clin Oncol, 2005, 35: 595-600.
    [67] Brown L F, Asch B, Harvey V S, et al. Fibrinogen influx and accumulation of cross-linked fibrin inmouse carcmomas[J]. Cancer Res, 1988,48: 1920-1925.
    [68] Costantini V, Zacharski L R. The role of fibrin in tumor metastasis. Cancer Metastasis Rev, 1992, 11:283-290.
    [69] Palumbo J S, Potter J M, Kaplan LS, et al. Spontaneous hematogenous and lymphatic metastasis, butnot primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice[J]. Cancer Res,2002; 62: 6966-6972.
    [70] Dvorak H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation andwound healmg[J]. NEngl JMed, 1986, 315: 1650-1659.
    [71] Smiley S T, King J A, Hancock W W. Fibrinogen stimulates macrophage chemokine secretion throughtoll-like receptor 4[J]. J Immunol, 2001, 167: 2887-2894.
    [72] Dvorak H F, Harvey V S, Estrella P, et al. Fibrin containing gels induce angiogenesis. Implications fortumor stroma generation and wound healing[J]. Lab Invest. 1987, 57: 673-686.
    [73] Rubel C, Fernandez G. C, Rosa F. A., et al. Soluble fibrinogen modulates neutrophil functionalitythrough the activation of an extracellular signal-regulated kinase-dependent pathway [J]. J Immunol,2002, 168: 3527-3535.
    [74] Dvorak H F, Nagy J A, Berse B, et al. Vascular permeability factor, fibrin, and the pathogenesis oftumor stroma formation[J]. Ann NY Acad Sci, 1992,667: 101-111.
    [75] Gunji Y, Gorelik E. Role of fibrin coagulation in protection of murine tumor cells from destruction bycytotoxic cells[J]. Cancer Res. 1988,48: 5216-5221.
    [76] Gunji Y, Lewis J, Gorelik E. Fibrin formation inhibits the in vitro cytotoxic activity of human naturaland lymphokine-activated killer cells[J]. Blood Coagul Fibrinolysis. 1990, 1:663-672.
    [77] Atagi S, Sone S, Fukuta K, et al. Inhibition by fibrin coagulation of lung cancer cell destruction byhuman interleukm-2-activated killer cells. Jpn J Cancer Res, 1992, 83:1088-1094.
    [78] Rickles F R, Edwards R L. Activation of blood coagulation in cancer: Trousseau's syndromerevisited[J]. Blood. 1983, 62:14-31.
    [79] Wan Y, Wu N, Wang Z, et al. Relationship between tissue factor expression and hepatic metastasis andprognosis in rectal cancer. Zhonghua Zhong Liu Za Zhi[J]. 2002, 24: 378-380.
    [80] Hamada K, Kuratsu J, Saitoh Y, et al. Expression of tissue factor correlates with grade of malignancyin human glioma[J]. Cancer. 1996,77: 1877-1883.
    [81] Kakkar A K, Lemoine N R, Scully M F, et al. Tissue factor expression correlates with histologicalgrade in human pancreatic cancer. Br J Surg[J]. 1995, 82: 1101-1104.
    [82] Seto S, Onodera H, Kaido T, et al. Tissue factor expression in human colorectal carcinoma: correlationwith hepatic metastasis and impact on prognosis[J]. Cancer, 2000, 88: 295-301.
    [83] Sawada M, Miyake S, Ohdama S, et al. Expression of tissue factor in non-small-cell lung cancers andits relationship to metastasis[J]. Br J Cancer. 1999, 79: 472-477.
    [84] Bromberg M E, Konigsberg W H, Madison J F, et al. Tissue factor promotes melanoma metastasis by apathway independent of blood coagulation[J]. Proc Natl Acad Sci USA, 1995, 92: 8205-8209.
    [85] Ueno T, Toi M, Koike M, et al. Tissue factor expression in breast cancer tissues: its correlation withprognosis and plasma concentration[J]. Br J Cancer, 2000, 83: 164-170.
    [86] Palumbo J S, Talmage K E, Massari J V, et al. Tumor cell-associated tissue factor and circulatinghemostatic factors cooperate to increase metastatic potential through natural killer cell-dependentand-independent mechanisms[J]. Blood, 2007; 110: 133-141.
    [87] Gorelik E, Bere W W, Herberman R B. Role of NK cells in the antimetastatic effect of anticoagulantdrugs[J]. Int J Cancer, 1984, 33: 87-94.
    [88] Nierodzik M L, Kajumo F, Karpatkin S. Effect of thrombin treatment of tumor cells on adhesion oftumor cells to platelets in vitro and metastasis in vivo[J]. Cancer Res, 1992, 52: 3267-3272.
    [89] Klepfish A, Greco MA, Karpatkin S. Thrombin stimulates melanoma tumor cell binding to endothelialcells and subendothelial matrix[J]. Int J Cancer, 1993, 53: 978-982.
    [90] Caunt M, Huang Y-Q, Brooks C, et al. Thrombin induces neoangiogenesis in the chick chorioallantoicmembrane[J]. J Thromb Haemostas, 2003, 1: 1-6.
    [91] Wojtukiewicz M, Tang D, Nelson K, et al. Thrombin enhances tumor cell adhesive and metastaticproperties via increased allb [33 expression on the cell surface[J]. Thromb Res, 1992, 68: 223-245.
    [92] Wojtukiewicz M, Tang D, Ciarelli J, et al. Thrombin increases the metastatic potential of tumor cells[J].Intl J Cancer, 1993, 54: 793-806.
    [93] Hu L, Lee M, Campbell W, et al. Role of endogenous thrombin in tumor implantation, seeding, andspontaneous metastasis[J]. Blood, 2004, 104: 2746-2751.
    [94] Im JH, Fu W, Wang H, et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculatureduring early metastatic colony formation[J]. Cancer Res, 2004, 64: 8613-8619.
    [95] Palumbo J S, Degen J L. Fibrinogen and tumor cell metastasis [J]. Haemostasis. 2001, 31 Suppl 1:11-15.
    [96] Rabenstein D L. Heparin and heparan sulfate: structure and function[J]. Nat Prod Rep, 2002, 19:312-331
    [97] Casu B. Structure of heparin and heparin fragments [J]. Ann N YAcad Sci, 1989, 556: 1-17
    [98] Miralem T, Wang A, Whiteside C I, et al. Heparin inhibits mitogen-activated protein kinase-dependentand -independent c-fos induction in mesangial cells[J]. J Biol Chem, 1996, 271(29): 17100-17106
    [99] Tuazon P T, Traugh J A. CK1 and 11-multipotential serine protein k inas es:structure,function ,andregulation[J]. Adv Second Messenger Phosphoprotein Res, 1991, 23: 124-164.
    [100] Filhol O, Boudier J, Delphin C, et al. Casein kinase 11 and the tumor suppressor protin P53phosphorylation[J]. JBiol Chem,1992, 267: 20577-20583
    [101] Filhol O, Cochet C, Chambaz E M. DNA binding activity of casein kin ase ll.Biochem[J]. BiophysRes Commun, 1990, 173:862-871
    [102] Koochekpour S, Jeffers M, Rulong S, et al. Met and hepatocyte growth factor/scatter factorexpression in human gliomas[J]. Cancer Res, 1997, 57: 5391-5398
    [103] Crawford D, Abinden I, Amstad P, et al. Oxidant stress induces the proto-oncogenes c-fos and c-mycin mouse epidermal cells[J]. Oncogene, 1998, 3: 27-32
    [104] Auvinen M, Paasinen A, Andersson L C, et al. Ornithine decarboxylase activity is critical for celltransformation[J]. Nature, 1992, 360: 355-358.
    [105] Hermanson M, Funa K, Hartman M, et al. Platelet-derived growth factor and its receptors in humanglioma tissue: expression of messenger RNA and protein suggests the presence of autocrine andparacrme loops[J]. Cancer Res, 1992,52: 3213-3219
    [106] Pike DB, Cai S, Pomraning K R, et al. Heparin-regulated release of growth factors in vitro andangiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF[J].Biomatenals, 2006, 27: 5242-5251.
    [107] Liang O D, Rosenblatt S, Chhatwal G S, et al. Identification of novel heparin-binding domains ofvitronectm[J]. FEBS Lett, 1997, 407: 169-172
    [108] Palumbo J S, Talmage KE, Massari JV, et al. Platelets and fibrin(ogen) increase metastatic potentialby impeding natural killer cell-mediated elimination of tumor cells[J]. Blood, 1 January 2005, Vol.105, No. l,pp. 178-185.
    [109] Margaret R. O'Donnell, Sherrill J. et al. Platelet and Fibrinogen Kinetics in Canine Tumors[J]. CancerResearch, 1981, 41: 1379-1383.
    [110] Varki A, Varki N M. P-selectin, carcinoma metastasis and heparin: novel mechanistic connectionswith therapeutic imphcations[J]. Braz J Med Biol Res, 2001 Jun, 34: 711-717.
    [111] Wei M, Tai G, Gao Y, et al. Modified heparin inhibits P-selectin-mediated cell adhesion of humancolon carcinoma cells to immobilized platelets under dynamic flow conditions[J]. J Biol Chem, 2004,279:29202-29210.
    [112] Wei M, Gao Y, Tian M, et al. Selectively desulfated heparin inhibits P-selectin-mediated adhesion ofhuman melanoma cells[J]. Cancer Lett, 2005, 229: 123-126.
    [113] Suehiro K, Gailit J, Plow E F Fibrinogen is a ligand for integrin alpha5betal on endothelial cells[J]. JBiol Chem, 1997, 272: 5360-5366.
    [114] Smith J W, Ruggeri Z M, Kunicki T J, et al. Interaction of integrins alpha v beta 3 and glycoproteinIIb-IIIa with fibrinogen. Differential peptide recognition accounts for distinct binding sites[J]. J BiolChem, 1990, 265: 12267-12271.
    [115] Felding-Habermann B, Ruggeri Z M, Cheresh D A. Distinct biological consequences of integrinalpha v beta 3-mediated melanoma cell adhesion to fibrinogen and its plasmic fragments. J BiolChem[J]. 1992, 267: 5070-5077.
    [116] Ma YQ, Geng JG Heparan sulfate-like proteoglycans mediate adhesion of human malignantmelanoma A375 cells to P-selectin under flow[J]. J Immunol, 2000 Jul 1, 165: 558-565.
    [117] Bennett JS. Platelet-fibrmogen inter actions [J]. Ann N Y Acad Sci, 2001, 936: 340-354.
    [118] Muller B, Zerwes H G, Tangemann K, et al. Two-step binding mechanism of fibrinogen to alpha IIbbeta 3 integrin reconstituted into planar lipid bilayers[J]. J Biol Chem, 1993, 268: 6800-6808.
    [119] Leung L, Nachman R. Molecular mechanisms of platelet aggregation[J]. Annu Rev Med, 1986, 37:179-186.
    [120] Palumbo J S, Barney KA, Blevins EA, et al. Factor XIII transglutaminase supports hematogenoustumor cell metastasis through a mechanism dependent on natural killer cell function[J]. J ThrombHaemost, 2008, 6: 812-819.
    [121] Diamond M S, Alon R, Parkos C A, et al. Heparin is an adhesive ligand for the leukocyte integrinMac-1 (CDllb/CDl)[J]. JCell Biol, 1995, 130: 1473-1482.
    [122] Peter K, Schwarz M, Conradt C, et al. Heparin inhibits ligand binding to the leukocyte integrinMac-1 (CDllb/CD18)[J]. Circulation, 1999, 100:1533-1539.
    [123] Sobel M, Fish W R, Toma N, et al. Heparin modulates integrin function in human platelets[J]. J VaseSurg, 2001,33:587-594.