外加低压稳恒直流电场对兔腹主动脉球囊损伤后内皮修复及内膜增生影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.背景与目的:
     迄今靶病变血管再狭窄(RS)仍然是经皮冠状动脉介入(PCI)术后最主要的问题之一。Forrester等提出,支架内RS的主要原因是血管内膜损伤后,自身愈合过程导致的新生内膜增生,是血管内皮修复和内膜增殖的对立平衡失调的结果。当前对于RS的防治主要集中在药物、基因治疗、介入治疗以及外科手术等方面,虽然这些治疗手段从一定程度上减轻了RS所造成的危害,但对于血管损伤处的内皮修复和抑制内膜增生的作用仍难以令人满意。如何寻找一种更佳的方法促进血管损伤后再内皮化和抑制过度的新生内膜增殖,从而达到预防和治疗RS的目的是当今的研究热点。
     众多的研究相继证实内源性电场广泛存在于损伤愈合、组织再生、胚胎发育以及肿瘤的形成等生理或病理生理过程。在机体自身产生的生物电场不足以促进损伤愈合的过程时,在损伤区与非损伤区之间施加直流电场可以增强损伤愈合速率。内皮损伤在增殖性血管疾病发病中起始动和促进作用,平滑肌细胞(VSMCs)的增殖和迁移是构成血管新生内膜增生的直接原因。有研究发现,生理强度直流电场对血管内皮细胞的多种生物学行为产生影响。外加电场还可以诱导血管内皮细胞肌动蛋白细胞骨架F-actin合成和装配,进而影响细胞运动行为。研究表明外加电场可以影响VSMCs的定向迁移,这种作用是与细胞生长相关的一种主动行为,而不是在电场作用下的一种被动的泳动。离体实验发现外加电场也可以影响VSMCs的增殖。内源性电场也存在于血管周围,在体情况下,适宜的外加电场可以改善电场作用局部的动脉粥样硬化程度。因此,在体情况下外加低压稳恒直流电场是否会影响血管周围的内源性电场,是否会影响血管损伤后的修复过程值得探讨。
     本课题小组已在前期研究中初步探讨了稳恒直流电场对培养VSMCs的作用及机制,并设计了电场作用于实验动物的电源装置。在此基础上,本课题进一步将稳恒直流电场作用于血管损伤动物模型,研究其对血管损伤后新生内膜增生以及血管再内皮化的影响及其机制。
     2.方法:
     第一部分初步探讨外加低压稳恒直流电场作用于血管时的可行性及安全有效的方式。
     (1)将自制的铂电极置于家兔腹主动脉两侧腰大肌内,或将铂电极分别置于腹主动脉血管内和家兔颈背部,观察不同电场作用方式、不同电场强度下血管局部损伤情况的变化。
     (2)将两自制铂电极置于家兔腹主动脉两侧腰大肌内作为刺激电极,通过多对测量电极观察不同电压强度下兔腹主动脉周围电势差的变化情况。
     第二部分将健康日本大耳白兔65只,随机分为假手术组、对照组、实验组,其中实验组分为3.0V、4.0V两个亚组。建立兔腹主动脉球囊损伤模型,将自制的铂电极置于家兔腹主动脉两侧腰大肌内,根据分组情况给与实验组相应的稳恒直流电场刺激,于术后1周,术后2周,术后4周处死动物。通过伊文氏蓝染色、CD31免疫组化、扫描电镜来观察血管再内皮化情况;观察各组离体血管环对不同浓度乙酰胆碱的最大舒张反应,判断血管内皮依赖性舒张功能;通过HE染色,天狼猩红染色以及Western-blot来观察血管新生内膜增生情况和Ⅰ型、Ⅲ型胶原蛋白的表达。
     第三部分通过PCNA免疫组化和TUNEL法观察外加稳恒直流电场刺激后血管平滑肌细胞增殖和凋亡情况变化,通过免疫组化、Western-blot和实时定量PCR来观察电场刺激后P27和PTEN的表达变化。
     3.结果
     (1)将铂丝电极置入血管内,连接血管外电极和电源可构成透壁电场。此干预方式使用1.0V电压刺激即可灼伤血管内膜。由于电极置入血管内,极易引起血栓的形成。
     (2)将铂电极置入兔腹主动脉两侧腰大肌,连接电源后构成平面电场,此干预方式比较安全。通电后即刻血管外膜间和血管内外膜间的电势差不会马上发生改变;通电后30分钟,3.0V和4.0V组血管外膜间和血管内外膜间的电势差与通电前相比均显著升高(P<0.01);断开电源30分钟后,3.0V和4.0V组血管内外膜间的电势差仍高于通电前(P<0.01),两刺激电极间仍能保持较高的电势差。
     (3)伊文氏蓝染色结果显示3.0V组和4.0V组各时间点内皮再生面积/损伤总面积比值与对照组相比均无显著差异(P>0.05)。4.0V电场干预4周后血管环对Ach的最大舒张反应高于对照组和3.0V组(P<0.05),其余时间点血管环对Ach的最大舒张反应与对照组和3.0V组比较均无显著差异。
     (4)在球囊损伤后2周和4周,3.0V组和4.0V组内/中膜面积比值均显著小于对照组,3.0V组和4.0V组之间比较无显著差异(P>0.05)。天狼猩红染色显示3.0V组和4.0V组血管新生内膜中Ⅰ型、Ⅲ型胶原蛋白的表达低于对照组。
     (5)在兔腹主动脉球囊损伤模型,血管内膜损伤后血管壁的细胞凋亡水平较低,3.0V或4.0V外加稳恒直流电场干预后细胞凋亡未见增加;
     (6)在球囊损伤后2周,3.0V组和4.0V组PCNA阳性增殖细胞指数均显著小于对照组(P<0.01),球囊损伤后4周电场干预组与对照组相比增殖细胞指数间均无显著差异(P>0.05);
     (7) 3.0V和4.0V外加稳恒直流电场均可以上调血管损伤后P27的表达;
     (9)血管球囊损伤后,PTEN的表达下降,给予3.0V或4.0V外加稳恒直流电场干预后,血管壁内PTEN蛋白的表达上调。
     4.结论
     (1)外加稳恒直流电场干预不会影响血管损伤后的再内皮化速度,4.0V电场干预4周后血管内皮依赖性舒张功能较对照组和3.0V组有改善,提示适宜的外加电场可能有利于内皮功能的恢复。
     (2)适宜的外加稳恒直流电场可以抑制血管损伤后新生内膜的增生,同时也抑制了新生内膜内Ⅰ型、Ⅲ型胶原蛋白的表达。
     (3)外加稳恒直流电场抑制新生内膜的增生可能是通过影响VSMCs增殖来实现的,而不是通过促进细胞的凋亡。
     (4)外加3.0V和4.0V稳恒直流电场均可以上调血管损伤后血管壁内P27和PTEN的表达,提示在体情况下,外加电场抑制新生内膜增生的机制可能是通过PTEN-P27途径而发挥作用的。
1. Background and Objective:
     Vascular restenosis is still one of the major problems after percutaneous coronary intervention (PCI). Forrester suggested that the main reason responsible for in-stent restenosis was the hyperplasia of new intima resulted from the process of self-healing after injury of vascular endothelium, and was the result of the contrary balance between endothelial repair and intimal hyperplasia. At present, the prevention of restenosis mainly focuses on the aspects including drug therapy, gene therapy, interventional therapy and surgery. Although these measures alleviate harms caused by restenosis to some extent, their effects on the endothelial recovery and the inhibition of intimal hyperplasia at the injury sites of vessels are still not satisfying. Therefore, it is the hotspot of present researches how to find out a better method to promote reendothelialization after vessel injury and inhibit excessive neointimal hyperplasia, so as to achieve the prevention and treatment purposes of restenosis.
     It has been approved that the endogenous electrical field widely exists in the physiological or pathophysiological processes, such as injury healing, tissue regeneration, embryonic development and tumor formation. The injury healing rate can be enhanced by applying direct current electrical fields between the injury zone and the non-injury zone when the bioelectrical field generated by the body itself is not enough to induce the injury to heal. Endothelial injury plays the start-up and promotion role in the pathogenesy process of proliferative vessel diseases, and the proliferation and migration of vascular smooth muscle cells(VSMCs) are the immediate reason responsible for intimal hyperplasia of vessels. Some researches indicated that direct current electrical fields with physiological intensity could influence a plurality of biological behaviors of vascular endothelial cells. The applied electrical fields could also induce the synthesis and assembly of F-actin in vascular endothelial cells, and further affect their motion behaviors. Researches suggested that the directional migration of VSMCs could be affected by the applied electrical fields, which was an initiative activity related to the cell growth rather than a passive swimming motility under the influence of electrical fields. Experiments in vitro revealed that the proliferation of VSMCs could also be affected by the applied electrical fields. The endogenous electrical field existed around the vessels as well, and suitable applied electrical fields could improve the extent of local atherosclerosis around the electrical field in vivo. Therefore, it was worthy of investigating whether the endogenous electrical field around vessels and the repair process after vessel injury could be influenced by the applied steady direct current electrical fields.
     The effects and mechanism of the applied weak steady direct current electrical fields on VSMCs were preliminarily studied by our research group, and a power device used for applying the electrical fields to experimental animals was designed. Based on the researches mentioned above, the steady direct current electrical fields were further applied to the animals with injured vessel in this thesis to investigate its roles and mechanisms on neointimal hyperplasia and vascular reendothelialization after vessel injury.
     2. Methods
     (1) In section 1, the feasibility of applying steady direct current electrical fields to vessels as well as its safety and efficiency were investigated.
     ①Two self-made platinum electrodes were placed in the psoas major muscles at both sides of the abdominal aorta of rabbit, or in the lumens of the abdominal aorta and nape part of the rabbit, respectively. Then, the local injury of the vessel was observed under the condition of the plane electrical field or the transmural electrical field.
     ②Two self-made platinum electrodes used as the stimulating electrode were placed in the psoas muscles at both sides of the abdominal aorta of rabbit, and variations of the potential difference around the abdominal aorta of rabbit under different voltage intensities were observed using several couples of measuring electrodes.
     (2) In section 2, the model of balloon injury abdominal aorta of rabbit was established. 65 healthy Japanese white rabbits were randomly divided into sham group, control group and experiment group. And the experiment group was further divided into 3.0V group and 4.0V group, in which corresponding interventions of direct current electrical fields were applied to the rabbits. The rabbits were sacrificed on 1st, 2nd, 4th week. Vascular reendothelialization was observed using evans blue staining, CD31 immunohistochemistry and SEM; while neointimal hyperplasia and extracellular matrix were observed through HE staining, sirius red staining and western-blot.
     (3) In section 3,cell proliferation and apoptosis were observed using the methods of PCNA immunohistochemistry and TUNEL,while variations of P27 and PTEN were observed through immunohistochemistry, western-blot and quantitative real-time PCR.
     3. Results
     (1) After the platinum wire electrode was implanted in the lumens of vessel, it connected with the electrode and power supply outside the vessel, then constituted the transmural electric field. With the stimulation of just 1.0V voltage, the vascular intima could be burned by this kind of intervention. As the electrode was placed in the lumens of vessel, the formation of thrombosis could be easily produced.
     (2) The platinum wire electrode was placed in the psoas major muscle in the two sides of abdominal aorta of rabbit, and with the connection of the power supply, the electric field in the plane was formed. This kind of intervention method was safe relatively. The electric potential difference between exterior and interior vascular tunic didn’t have changes immediately after the power supply was connected. After the connection with the power supply for 30min, the electric potential difference between exterior and interior vascular tunic both in the 3.0V and 4.0V groups increased significantly compared with that of pre-therapy (P <0.01). When there was no electric supply for 30min, the electric potential difference between exterior and interior vascular tunic both in the 3.0V and 4.0V group was still higher than that with no electric supply(P <0.01), and the high electric potential difference could be found between the two stimulating electrodes as well.
     (3) The result of Evans blue staining indicated that the ratio between the area with endothelium regeneration and the total injured area in the 3.0V and 4.0V groups had no significant difference compared with that of the control group (P> 0.05) on all time points. After 4 weeks of electric field intervention, the largest vasorelaxation reactivity of vascular ring towards Ach of 4.0V group was greater than that of the control group and 3.0V group (P <0.05). But there were no significant difference among all these groups on other time point.
     (4) After 2 weeks and 4 weeks of the balloon injury, the ratio between the vascular intima and tunica media in the 3.0V and 4.0V groups was smaller than that of control group, and it had no significant difference between the 3.0V and 4.0V groups (P>0.05). The Sirius red staining showed that the expression of type-I and type-Ⅲcollagen protein in the vascular neointimal was lower than that of the 3.0V and 4.0V groups.
     (5) In the model of abdominal aorta balloon injury of rabbit, the level of cell apoptosis of vascular wall after the vascular intimal injury was relatively low and was not strengthened under the intervention of steady direct current electric fields of 3.0V or 4.0V.
     (6) After 2 weeks of balloon injury, the PCNA positive proliferation cell index in both the 3.0V and 4.0V groups was lower than that of the control group (P<0.01), but no significant difference was found after 4 weeks of balloon injury(P>0.05).
     (7) The steady direct current electric fields of 3.0V and 4.0V could up-regulate the expression of P27 after the vascular injury.
     (8) After vascular balloon injury, the PTEN expression declined, and with the intervention of steady direct current electric fields of 3.0V and 4.0V, the expression of PTEN protein in the vascular wall was up-regulated.
     4. Conclusions
     (1) The reendothelialization rate after vessel injury could not be influenced by the intervention of a applied steady direct electrical field, and the diastolic function of the vascular endothelium depending was improved by the intervention of 4.0V electrical field for 4 weeks compared to those in 3.0V group, indicating a suitable applied electrical field was favorable for the recovery of endothelial functions.
     (2) Neointimal hyperplasia after vessel injury, as well as the expression of proteins in the of type I and type III collagen of the neointima could be inhibited by a suitable applied steady direct current electrical field.
     (3) Inhibition of the neointimal hyperplasia by the applied steady direct current electrical field might be accomplished by influencing the proliferation of smooth muscle cells rather than promoting apoptosis. The expression of P27 and PTEN in the vessel wall after vessel injury could be enhanced by both applied steady direct current electrical fields with voltages of 3.0V and 4.0V, indicating inhibition of new intimal hyperplasia by the applied steady direct current electrical field might take effects through PTEN-P27 pathway in vivo.
引文
1. Bhargava B, Karthikeyan G, Abizaid AS, et al. New approaches to preventing restenosis. BMJ. 2003; 327(7409):274-279.
    2. Williams DO, Holubkov R, Yeh W, et al. Percutaneous coronary intervention in the current era compared wish 1985-1986: The National Heart, Lung and Blood Institute Registries. Circulation. 2000; 102(24):2945-2951.
    3. Mehran R, Dangas G, Abizaid AS, et al.Angiographic patterns of in-stmt restenosis: classification and implicationsfor long-term outcome.Circulation.1999;100(18): 1872-1878.
    4. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994; 331(8):496-501.
    5. Serruys PW, Foley DP, Suttorp MJ, et al. A randomized comparison of the value of additional stenting after optimal balloon angioplasty for long coronary lesions: final results of the additional value of NIR stems for treatment of long coronary lesions (ADVANCE) study.J Am Coll Cardiol. 2002; 39(3):393-399.
    6. Forrester JS, Fishbein M, Helfant R, et al. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J Am Coll Cardiol. 1991; 17(3):758-769.
    7. Barnes TC. Healing rate of human skin determined by measurement of the electrical potential of experimental abrasions. Am J Surg. 1945; 69:82–88.
    8. Cheng K, Goldman RJ. Electric fields and proliferation in a dermal wound model: cell cycle kinetics. Bioelectromagnetics. 1998; 19(2):68-74.
    9. Erickson CA, Nuccitelli R. Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol. 1984; 98(1):296-307.
    10. McCaig CD, Rajnicek AM, Song B, et al. Has electrical growthcone guidance found its potential? Trends in Neurosciences. 2002; 25(7):354-358.
    11. Wang E, Zhao M, Forresterb JV, et al. Bi-directional migration of lens epithelial cells in a physiological electrical field. Experimental Eye Research. 2003; 76:29–37.
    12. Saunders RD, McCaig CD. Developmental effects of physiologically weak electricfields and heat: An overview. Bioelectromagnetics. 2005; Suppl 7:S127-132.
    13. Sheridan DM, Isseroff RR, Nuccitelli R. Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol. 1996; 106(4):642-646.
    14. Song B, Zhao M, Forrester J,et al. Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo.J Cell Sci. 2004;117: 4681-4690.
    15. Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation. 2001; 104(4):473-479.
    16. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362 (6423):801-809.
    17. Li X, Kolega J. Effects of direct current electric fieleds on cell migtation and actin filament distribution in bovine vascular endothelial cells. J Vasc Res.2002; 39: 391-404.
    18. Wang E, Yin Y, Zhao M, et al. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. FASEB J.2003; 17(3): 458-460
    19. Zhao M, Bai H, Wang E, et al. Electrical stimulation directly induces preangiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci.2004; 117: 397-405
    20. Sawyer PN, Pate JW. Bio-electric phenomena as an etiologic factor in intravascular thrombosis. Am J Physiol. 1953; 175:103-107.
    21. Sawyer PN, Himmelfarb E, Lustrin I, et al. Measurement of streaming potentials of mammalian blood vessels, aorta and vena cava, in vivo. Biophys J. 1966; 6: 641-651.
    22. Li Y, Fukuda N, Kunimoto S, et al. Stent-based delivery of antisense oligodeoxy- nucleotides targeted to the PDGF A-chain decreases in-stent restenosis of the coronary artery. J Cardiovasc Pharmacol. 2006; 48(4):184-190.
    23. Kappert K, Sparwel J, Sandin A, et al. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler Thromb Vasc Biol. 2006; 26(12):2644-2651.
    24. Levitzki A. PDGF receptor kinase inhibitors for the treatment of restenosis. Cardiovasc Res. 2005; 65(3):581-586.
    25. Serruys PW, Heyndrickx GR, Patel J, et al. Effect of an anti-PDGF-beta-receptor-blocking antibody on restenosis in patients undergoing elective stent placement. Int J Cardiovasc Intervent. 2003; 5(4):214-222.
    26.唐波,何国祥,刘建平等。电场干预对血管平滑肌细胞形态和细胞骨架的影响。中国临床康复。2006;10(21):70-72。
    27.刘建平,唐波,何国祥。外加电场诱导大鼠血管平滑肌细胞形态及迁移行为变化与血管紧张素Ⅱ受体和血小板源生长因子受体的关系。中国动脉硬化杂志。2006;14(3):189-193。
    28. K?bbert C, Berndt A, Bierbaum T, et al. Low-energy electromagnetic fields promote proliferation of vascular smooth muscle cells. Electromagn Biol Med. 2008; 27(1): 41-53.
    29. Chekanov VS. Low frequency electrical impulses reduce atherosclerosis in cholesterol fed rabbits. Med Sci Monit. 2003; 9(8): 302-309.
    30. Nagai A, Yamashita K, Imamura M, et al.Hydroxyapatite electret accelerates re- endothelialization and attenuates intimal hyperplasia occurring after endothelial removal of the rabbit carotid artery. Life Sci. 2008; 82:1162–1168.
    31.唐波,何国祥。电场对细胞生物学行为的影响。国外医学,心血管疾病分册。2003; 30(6):350-353。
    32. Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-g and PTEN. Nature. 2006; 442 (7101):457-460.
    33. Simpson L, Parsons R. PTEN: Life as a tumor suppressor .Exp Cell Res. 2001; 264 (1): 29-36.
    34. Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell singaling, growth, migration and apoptosis. J Cell Sci. 2001; 114 (13): 2375-2382.
    35. Garl PJ, Wenzlau JM, Walker HA, et al. Perlecan-induced suppression of smooth muscle cell proliferation is mediated through increased activity of the tumor suppressor PTEN. Circ Res. 2004; 94 (12): 175-183.
    36. Chen WJ, Lin KH, Lai YJ, et al. Protective effect of propylthiouracil independent of its hypothyroid effect on atherogenesis in cholesterol-fed rabbits PTEN induction and inhibiton of vascular smooth muscle cell proliferation and migration. Circulation. 2004; 110 (8): 1313-1319.
    37. Koide S, Okazaki M, Tamura M, et al. PTEN reduces cuff-induced neointimaformation and proinflammatory cytokines. Am J Physiol Heart Circ Physiol. 2007; 292 (2): H2824-H2831.
    38.唐波,何国祥,刘建平等。血管平滑肌细胞受电场作用后迁移的变化。中国临床康复。2006;10(29):80-82。
    39. Lente F. Cases of united fractures treated by electricity. N Y State J Med.1850; 5:5117-5118.
    40. Kloth LC. Electrical Stimulation for Wound Healing: A Review of Evidence From In Vitro Studies, Animal Experiments, and Clinical Trials. Int J Low Extrem Wounds. 2005, 4(1):23-44.
    41. Ojingwa JC, Isseroff RR. Electrical stimulation of wound healing. J Invest Dermatol. 2003, 121(1):1-12.
    42.何国祥,蒋清安,刘建平等。低压稳恒直流电场促进兔梗死-缺血心肌血管新生的效应。第三军医大学学报。2008;30(5):402-405。
    43.蒋清安,何国祥,刘建平,等。低压稳恒直流电场对组织间液的电化学作用。中国医学物理学杂志。2007;24(2):116-118,146。
    44. Betz E, Schlote W. Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol. 1979; 74(1):10-20.
    45. Carmeliet P, Moons L, Stassen JM, et al. Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am J Pathol. 1997; 150(2): 761–776.
    46.蔡炳新。基础物理化学。北京:科学出版社。2006;252-331。
    47. Voskerician G, Shawgo RS, Hiltner PA, et al. In vivo inflammatory and wound healing effects of gold electrode voltammetry for MEMS micro-reservoir drug delivery device. IEEE Trans Biomed Eng. 2004; 51(4):627-635.
    48. Drogui P, Elmaleh S, Rumeau M, et al. Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell. Water Res. 2001; 35(13):3235-3241.
    49. Wemyss-Holden SA, Robertson GS, Dennison AR, et al. Electrochemical lesions in the rat liver support its potential for treatment of liver tumors. J Surg Res. 2000; 93(1): 55-62.
    50. Turler A, Schaefer H, Schaefer N, et al. Experimental low-level direct current therapy in liver metastases: influence of polarity and current dose. Bioelectromagnetics. 2000;21(5):395-401.
    51.胡新珉。医学物理学第六版。北京:人民卫生出版社。2004;178-180。
    52.聂能,尧德中,谢正祥。生物医学信号数字处理技术及应用。北京:科学出版社。2005;267-269。
    53.陈金明,吴宗贵。冠状动脉再狭窄的理论与实践。上海:第二军医大学出版社。1999;13-24。
    54. Bennett MR, O’Sullivan MO. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacol Ther. 2001; 91: 149–166.
    55. Bennett MR. In-stent stenosis: pathology and implications for the development of drug eluting stents. Heart. 2003; 89(2):218-224.
    56. Slavin L, Chhabra A, Tobis JM. Drug-eluting stents: preventing restenosis. Cardiol Rev. 2007; 15(1):1-12.
    57. Versari D, Lerman LO, Lerman A. The importance of reendothelialization after arterial injury. Current Pharmaceutical Design. 2007; 13: 1811-1824.
    58. Dorafshar AH, Angle N, Bryer-Ash M, et al. Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation. J Surg Res. 2003; 114(2): 179-186.
    59. Kong D, Melo LG, Gnecchi M, et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation. 2004; 110 (14): 2039-2046.
    60. Kipshidze N, Dangas G, Tsapenko M, et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol. 2004; 44 (4): 733-739.
    61.蒋清安,何国祥。内源性电场及其生物学效应探讨。中国医学物理学杂志。2006;23(2):100-103。
    62. Sims FH. A comparison of structural of the walls of coronary arteries from 10 different species. Pathology. 1989; 21(2):115-124.
    63. Sauvage LR, Berger KE, Wood SJ, et al. Interspecies healing of porous arterial prostheses: observation from 1960 to 1974. Arch Surg. 1974; 109(5):698-705.
    64. Sidway AN, Hakim FS, Jones BA, et al. Insulin-like growth factor-I binding in injury-induced intimal hyperplasia of rabbit aorta. J Vasc Surg. 1996; 23(2): 308-313.
    65. Kipshidze N, Sahota H, Komorowski R,et al. Photoremodeling of arterial wall reduces restenosis after balloon angioplasty in an atherosclerotic rabbit model. J Am Coll Cardiol. 1998; 31(5):1152-1157.
    66.卢竞前,李建美,杨锋等。建立兔腹主动脉血管再狭窄模型的实验研究。昆明医学院学报。2007;28(1):33~35。
    67. Lau AK, Leichtweis SB, Hume P,et al. Probucol promotes functional reendotheli- alization in balloon-injured rabbit aortas. Circulation. 2003; 107(15): 2031-2036.
    68. Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation. 2003; 108: 3115-3121.
    69. Tan H, Jiang X, Yang F,et al. Hyperhomocysteinemia inhibits post-injury reendothe- lialization in mice. Cardiovasc Res. 2006; 69(1):253-262.
    70.姚玉宇,冷静,彭韬等。兔动脉内膜损伤后血管狭窄模型的建立及动态观察的研究。江苏医药。1999;25(12):910-911。
    71.王金林,谭小进。血管再内皮化与血管成形术后再狭窄的防治进展。国际内科学杂志。2007;34 (10):581-584。
    72. Kipshidze N, Dangas G, TsapenkoM, et al. Role of the endothelium in modulating neointimal formation Vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol. 2004; 44(4): 733-739.
    73. Lerman A. Restenosis: another“dysfunction”of the endothelium. Circulation. 2005; 111 (1): 8-10.
    74. Robinson KR. The response of cells to electric fields: A review. J Cell Biol. 1985; 101:2023-2027.
    75. Parent CA, Devreotes PN. A cell’s sense of direction. Science.1999; 84: 765-770.
    76. Dekker LV, Segal AW. Perspectives: signal transduction. Signals to move cells. Science.2000; 287: 982-983,985.
    77. Goldman R, Pollack S. Electric fields and proliferation in a chronic wound model. Bioelectromagnetics. 1996; 17:450-457.
    78. BouloumiéA, Schini-Kerth VB, Busse R. Vascular endothelial growth factor up- regulates nitric oxide synthase expression in endothelial cells. Cardiovascular Research1999; 41(3):773-780.
    79. Sottirurai VS, Yao JST, Batson RC, et al. Distal anastomotic intimal hyperplasia: histopathologic character and biogenesis. Ann Vasc Sung. 1989; 3: 26-33.
    80. Loth F, Jones S, Zarins CK, et al. Relative contribution of wall shear stress and injury in experimental thickening at PTFE end-to-side anastomoses. J Biomech Eng. 2002; 124: 44-51.
    81. Kairuz EM, Barber MN, Anderson CR, et al. C-type natriuretic peptide (CNP) suppresses plasminogen activator inhibitor-1 (PAI-1) in vivo. Cardiovascular Research. 2005; 66:574-582.
    82. Sottiurai VS. Distal anastomotic intimal hyperplasia: histocytomorphology, pathoph- ysiology, etiology, and prevention. Int J Angiol. 1999; 8: 1-10.
    83. Kohler TR, Kirlanan TR, Kraiss LW, et al. Increased blood flow inhibits neointimal lasia in indothelialized vascular grafts. Circ Res. 1991; 69: 1557-1565.
    84. Azadniv M, Miller MW, Cox C, et al. On the mechanism of a 60-Hz electric field induced growth reduction of mammalian cells in vitro. Radiat Environ Biophys. 1993; 32(1): 73-3.
    85. Abid MR, Yano K, Guo S, et al. Forkhead transcription factors inhibit Vascular smooth muscle cell proliferation and neointimal hyperplasia. J Biol Chem. 2005; 280(33): 29864 - 29873.
    86.杜瑶瑶,王宪,孔炜。细胞外基质、基质水解酶与血管钙化。生理科学进展。2008; 39(3):203-208。
    87. Morton LF, Barnes MJ. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis.1982; 42(1):41-51.
    88. Murie-Luce BP, Gabbiarci F, Redard M, et al. Apoptosis participates in cellularity regulation during rat sortie intimal thickening. Am J Pathol. 1995; 146:1059-1064.
    89.王耿,何国祥,刘建平等。血管紧张素II型受体在血管球囊损伤后平滑肌细胞凋亡中的作用。中国介人心脏病学杂志。2000;11 (4):213-315。
    90. Toyoshima H, Hunter T. P27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994; 78:67-74.
    91. Li DM, Sun H. Tep1, encoded by a candidate tumor suppressor locus, is a novel proteintyrosine phosphatase regulated by transforming growth factorβ. Cancer Res. 1997; 57:2130-2136.
    92. Nakamura N, Ramaswamy S, Vazquez F, et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol. 2000, 20:8969-8982.
    93. Sun H, Lesche R, Li DM, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3, 4, 5, - trisphosphate and Akt/ protein kinase B signaling pathway. Proc Natl Acad Sci. 1999; 96:6199-6204.
    94.单江,程刚,傅国胜等。辛伐他汀抑制血管平滑肌细胞增殖及对PTEN、p27蛋白表达的影响。中华心血管病杂志。2002;30(10):622-625。
    95. Lu Y, Yu Q, Liu JH, et al.Src famili protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades.J Biol Chem. 2003; 278(41): 40057-40066.
    96. Porter PL, Malone KE, Heagerty PJ, et al. Expression of cell-cycle regulators p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients.Nat Med. 1997; 3 (2):222-225.
    97.王恩彤,叶涛,陈伟。电场对血管内皮细胞增殖及其细胞周期的影响。空军总医院学报。2003;19(1):6-11。
    98. Kearney M, Pieczek A, Haley L, et al. Hostopathology of instent restenosis in patients with peripheral artery disease. Circulation.1997; 95:1998-2002.
    99. Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis. Circulation. 1995; 91:2703-2711.
    100.徐浩,史大卓,陈可冀等。XSO 601对猪冠脉球囊损伤后内膜细胞凋亡及bcl-2, P53基因表达的影响。中国介人心脏病学杂志。2001;9(3):152-154。
    101.田首元,刘保江。线粒体介导细胞凋亡和心肌保护新途径。国外医学,麻醉学与复苏分册。2005;26(6):377-380。
    102.米彦,孙才新,姚陈果等。陡脉冲电场对肝癌细胞线粒体跨膜电位的影响。高电压技术。2007;33(2):79-81。
    103.Haw N, David PL. Monoclonal antibody analysis of the proliferating cell nuclea rantigen (PECAN) structure (conservation and the detection of anuclear, Cell Sci. 1990; 96:121-129.
    104.Bravo R. Synthesis of the nuclear protein cyclone (PECAN) and its relationship with DNA replication, Exp Cell Res. 1986; 163:287-293.
    105.单岩,张谦,朱慧琪。冠状动脉旁路移植术再狭窄中PCNA蛋曰表达的研究。中国心血管杂志。2004;2 (9):1-3。
    106.Haapssalo HK, Sallinen PK, Helen PT, et al. Comparison of three quantitation methods for PCNA immunostaining: applicability and relation to survival in 83 astrocytic neoplasms. J Pathol. 1993; 171:207-214.
    107.Polyak K, Lee MH, Erdjument-Bromage H, et al.Cloning of p27Kip1,a cyclin -dependent kinase inhibitor and a potential mediator of extracellular antimitogentic signals.Cell. 1994; 78(1):59-66.
    108.Coats S, Flanagan WM, Nourse J, et al. Requirement of p27 for Restriction Point Control of the Fibroblast Cell Cycle. Science. 1996; 272: 877.
    109.Winston J, Dong F, Pledger WJ.Differential Modulation of Gl Cyclins and the Cdk Inhibitor p27 by Platelet-derived Growth Factor and Plasma Factors in Density-arrested Fibroblasts.J Biol Chem. 1996; 271:11253-11260.
    110.Ueno H, Yamamoto H, Ito S,et a1.Adenovirus-mediated transfer of a dominant-negative H-ras suppresses neointimal formation in balloon-injured arteries in vivo. Arterioscler Thromb Vasc Biol.1997; 17:898-904.
    111.Fukumoto S, Nishizawa Y, Hosoi M, et al.Protein kinase C inhibits the proliferation of vascular smooth muscle cells by suppressing G1 cyclin expression. J Biol Chem. 1997; 272:13816-13822.
    112.Díez-Juan A, Castro C, Edo MD, et al. Role of the growth suppressor p27Kip1 during vascular remodeling. Curr Vasc Pharmacol. 2003; 1(1):99-106.
    113.Wu RC, Li X, Schonthal AH. Transcriptional activation of p21 WAF1 by PTEN/ MMACl tumor suppressor. Mol Cell Biochem. 2000; 203 (122): 59-71.
    114.Weiser-Evans MC, Quinn BE, Burkard MR, et al. Transient reexpression of an embryonic autonomous growth phenotype by adult carotid artery smooth muscle cells after vascular injury. J Cell Physiol. 2000; 182 (1): 12-23.
    115.Huang J, Kontos CD. Inhibition of vascular smoot h muscle cell proliferation, migration, and survival by t he tumor suppressor protein PTEN. Arterioscler Thromb Vasc Biol. 2002; 22 (5): 745-751.
    116.Huang J, Niu XL M. Pippen A, et al. Adenovirus-mediated int raarterial delivery of PTEN inhibits neointimal hyperplasia. Arterioscler Thromb Vasc Biol. 2005; 25(11): 354-358.
    117.严志强,衣昕,马红萍。肿瘤抑制因子PTEN蛋白在自发性高血压大鼠主动脉平滑肌中的表达。南通医学院学报。2002;22 (2):130-131。
    1. Li J, Yen C, Liaw D,et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997;275: 1943-1947
    2. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997;15: 356-362
    3. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res.1997;57: 2124-2129
    4. Hlobilkova A, Knillova J, Bartek J, et al. The mechanism of action of the tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003; 147: 19-25
    5. Das S, Dixon JE, Cho W. Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci U S A 2003;100: 7491-7496
    6. Georgescu MM, Kirsch KH, Kaloudis P, et al. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res 2000; 60:7033-7038
    7. Murray D, Honig B. Electrostatic control of the membrane targeting of C2 domains. Mol Cell 2002;9:145-154
    8. Torres J, Rodriguez J, Myers MP, et al. Phosphorylationregulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and
    9. Valiente M, Andres-Pons A, Gomar B, et al. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem, 2005; 280: 28936-28943
    10. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem, 2001; 276: 993-998
    11. Perren A, Komminoth P, Saremaslani P, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells.Am J Pathol, 2000; 157: 1097-1103
    12. Liu JL, Mao Z, LaFortune TA, et al. Cell cycle-dependent nuclear export of phosphatase and tensin homologue tumor suppressor is regulated by the phosphoinositide-3-kinase signaling cascade. Cancer Res, 2007; 67: 11054-11063
    13. Whiteman DC, Zhou XP, Cummings MC, et al. Nuclear PTEN expression and clinicopathologic features in a populationbased series of primary cutaneous melanoma. Int J Cancer, 2002;99: 63-67
    14. Chung JH, Eng C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res, 2005;65:8096-8100
    15. Minaguchi T, Waite KA, Eng C. Nuclear localization of PTEN is regulated by Ca(2+) through a tyrosil phosphorylation-independent conformational modification in major vault protein. Cancer Res,2006;66: 11677-11682
    16. Oviler G, Tania A ttie- Bitach, Jacqueline A , et al. Expression of PTEN tumor suppressor Protein during human development. H um M ol Genet, 2000, 9 (11):1633.
    17. Joelle D, Jean P R , Mo she S, et al. PTEN over expression suppressesp ro liferation and differentiation and enhances apoptosis of the mouse mammary epithelium. J C lin Invest, 2002, 110 (6) :81511.
    18. Jianhua H, Ch ristopher D K. Inhibition of vascular smooth muscle cell proliferation, migration, and survival by the tumor suppressor protein PTEN. Arterioscl Throm Vas, 2002, 22 (5):7457.
    19. Tamara M, Gu J, Mat sumoto K, et al. Inhibition of cell migration, spreading, and focaladhesions by tumor suppressor PTEN. Science, 1998, 280 (5369):1614-1617.
    20. Gu J, Tamara M, Yamada KM. Tumor suppressor PTEN inhibit s integrin and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pat hways. J Cell Biol, 1998, 143(5): 1375-1383.
    21. Leslie NR, Bennett D, Gray A, et al. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J, 2001, 357 ( Pt2): 427-435.
    22. Patel L, Pass I, Coxon P,et al. Tumor supp ressor and anti-inflammatory actions of PPARγagonists are mediated via upregulation of PTEN.Curr Biol,2001,11 (10): 764 -768.
    23. Virolle T, Adamson ED, Baron V, et al. The Egr-1 transcription factor directly activates PTEN during irradiationinduced signaling. Nat Cell Biol, 2001, 3 (12): 1124-1128.
    24. Moorehead RA, Hojilla CV, Belle ID, et al. Insulin-like Growth Factor-Ⅱregulates PTEN exp ression in the mammary gland. J Biol Chem, 2003, 278 (50): 50422–50427
    25. Vasudevan KM, Gurumurthy S, Rangnekar VM. Suppression of PTEN ex- pression by NF-κB prevents apoptosis. Mol Cell Biol, 2004, 24 (3):1007-1021.
    26. Torres J, Rodriguez J, Myers MP,et al. Phosphorylation regulated cleavage of the tumor suppressor PTEN by caspase-3.J Biol Chem, 2003, 278 (33) : 30652-30660.
    27. Vazqurez F, Ramaswamy S, Nakanura N, et al. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol, 2000, 20 (14): 5010–5018
    28. Okahara F, Ikawa H, Kanaho Y,et al. Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem, 2004, 279(44) : 45300-45303.
    29. Das S, Dixon JE, Cho WW. Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci, 2003, 100 (13):7491-7496.
    30. Wu XY, Hepner K, Castelino-Prabhu S, et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci, 2000, 97 (8): 4233-4238.
    31. Sumitomo M, Iwase A, Zheng R, et al. Synergy in tumor suppression by direct interaction of neutral endopeptidase with PTEN.Cancer Cell,2004, 5 (1) : 67-78.
    32. Choa SH, Lee CH, Kima YA, et al. Redox regulation of PTEN and protein tyrosine phosphatases in H2O2 mediated cell signaling. FEBS Letters, 2004, 560 (123): 7-13.
    33. Lee SR, Yang KS, Kwon J, et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem, 2002, 277(23): 20336–20342.
    34. Sulism L, Paesons R. PTEN: from pathology to biology. Trends Cell Biol, 2003, 3 (9): 478 - 483.
    35. Mitam M, Miat A, Rowinsky E K. Mammalian target of repaying: a new molecular target for breast cancer. Clin Breast Cancer, 2003, 4 (2): 126-137.
    36. Vivanco I, Sawyersc L. The phosphatidylinosite 3– kinase AKT pathway in human cancer. Nat Rev Cancer, 2002, 2(5): 489-501.
    37. Leslien R, Bennett D, Lindsayy E, et al. Redox regulation of P I 3 - kinase signaling via inactivation of PTEN . EMBO J, 2003, 22 (20): 5501-5510.
    38. Leek KS, Kim SR, Park SJ, et al. Phosphates and tensin homolog deleted on chromosome (PTEN) reduces vascular endothelial growth factor exp ression in allergen - induced airway inflammation. Mol Pharmacol, 2006, 69 (6): 1829-1839.
    39. Stambolic V, Tsao MS, Macpherson D, et al. High incidence of breast and endometrial neop lasia resembling human Cowden syndrome in p ten + / - mice. Cancer Res, 2000, 60(13): 3605 -3611.
    40. Suzukia A, Kaisho T, Ohishi M, et al. Critical roles of PTEN in B cell homeostasis and immunoglobulin class switch re-combination. J Exp Med, 2003, 197 (5): 657-667.
    41. Eng C. PTEN: one gene, many syndromes. Hum M utat, 2003, 22 (3): 183 - 198.
    42. Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med SciM onit, 2004, 10 (10): 235- 241.
    43. Cristofano AD, Pesce B, Cordon-Cardo C, et al. PTEN is essential for embryonic development and tumour suppression. N at Genet, 1998, 19 (4): 348-355.
    44. Goberdhan D, Clive W. PTEN: tumour suppressor, multifunctional growth regulator and more. Hum Mol Genet, 2003, 12(2): 239-248.
    45. Schwartzbauer G, Robbins J. The Tumor Suppressor Gene PTEN Can Regulate Cardiac Hypertrophy and Survival. J Biol Chem. 2001, 276: 35786-35793.
    46. Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of Myocardial Contractility and Cell Size by Distinct PI3K-PTEN Signaling Pathways. Cell. 2002; 110: 737-749.
    47. Huang J, Niu XL, Pippen A, et al. Adenovirus-mediated intra-arterial delivery of PTEN inhibits neointimal hyperplasia.Arterioscler Thromb Vasc Biol, 2005, 25 (11): 354-358.
    48. Mourani PM, Carl PJ, Wenzlau JM, et al. Unique, highly proliferative growt h phenotype expressed by embryonic and neointimal smoot h muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN. Circulation, 2004, 109 (3): 1299-1306.
    49. Koide S, Okazaki M, Tamura M, et al. PTEN reduces cuff-induced neointima formation and proinflammatory cytokines. Am J Physiol Heart Circ Physiol, 2007, 292 (2): H2824-H2831.
    1. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus- eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002; 346:1773-1780.
    2. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003; 349: 1315-1323.
    3. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation. 2003; 108:r36-r42.
    4. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004; 350:221-231.
    5. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious? Circulation. 2004; 109: 701-705.
    6. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006; 48:193–202.
    7. Nebeker JR, Virmani R, Bennett CL, et al. Hypersensitivity cases associated with drug-eluting coronary stents. J Am Coll Cardiol.2006; 47:175–181.
    8. Finn AV, Joner M, Nakazawa G, et al. Mike pathological correlates of late drug-eluting stent thrombosis: Strut coverage as a marker of endothelialization. Circulation. 2007;115: 2435-2441.
    9. Cutlip DE, Windecker S, Mehran R, et al.Clinical end points in coronary stent trials: A case for standardized definitions.Circulation.2007;115:2344-2351.
    10. Windecker S, Peter J. Safety of drug-eluting stents. Nature Clinical Practice Cardiovascular Medicine. 2008; 5:316-328.
    11. Bavry AA, Kumbhani DJ, Helton TJ, et al. Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol. 2005; 95: 1469–1472.
    12. Bavry AA, Kumbhani DJ, Helton TJ, et al. What is the risk of stent thrombosis associated with the use of paclitaxel-eluting stents for percutaneous coronary intervention?: a meta-analysis. J Am Coll Cardiol. 2005; 45: 941–946.
    13. Moreno R, Fernández C, Hernández R, et al. Drug-eluting stent thrombosis: results from a pooled analysis including 10 randomized studies. J Am Coll Cardiol. 2005; 45: 954–959.
    14. Stettler C,Wandel S, Allemann S, et al. Outcomes associated with drugeluting and bare-metal stents: a collaborative network meta-analysis. Lancet. 2007; 370: 937–948.
    15. Pfisterer M, Brunner-La Rocca HP, Buser PT, et al. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol. 2006; 48: 2584–2591.
    16. Bavry AA, Kumbhani DJ, Helton TJ, et al. Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am J Med. 2006; 119: 1056–1061.
    17. Kastrati A, Mehilli J, Pache J, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med. 2007; 356: 1030–1039.
    18. Stone GW, Moses JW, Ellis SG, et al. Safety and efficacy of sirolimus and paclitaxel-eluting coronary stents. N Engl J Med. 2007; 356:998–1008.
    19. Mauri L, Hsieh WH, Massaro JM, et al.Stent thrombosis in randomized clinical trials of drug-eluting stents.N Engl Med. 2007;356(10):1020-1029.
    20. Mishkel GJ, Moore AL, Markwell S, et al. Correlates of late and very late thrombosis of drug eluting stents.Am Heart J.2008;156(1):141-147.
    21. Eisenstein EL, Anstrom KJ, Kong DF, et al. Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation. JAMA. 2007; 297: 159–168.
    22. Airoldi F, Colombo A, Morici N, et al. Incidence and predictors of drug eluting stent thrombosis during and after discontinuation of thienopyridine treatment. Circulation. 2007; 116: 745–754.
    23. Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007; 369: 667–678.
    24. Steffel J, Eberli FR, Thomas F, et al. Drug-eluting stents—what should be improved? Annals of Medicine. 2008; 40: 242-252.