层层组装构建内皮细胞选择性功能界面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血栓和再狭窄是心血管疾病术后面临的两大主要问题。其主要原因是心血管植入材料表面的内皮化不完全或内皮化延迟而导致的凝血或平滑肌增生。植入体材料表面的原位快速内皮化是解决术后血栓和再狭窄的根本途径。本论文针对心血管植入材料表面原位快速内皮化问题,采用层层静电自组装技术,设计了两种不同类型的天然聚电解质多层膜涂层对植入材料进行表面修饰,以期实现材料表面的高内皮细胞选择性粘附和快速内皮化。
     1.细胞惰性多层膜及其功能化构建内皮细胞选择性粘附界面研究—研究首先利用多层膜的生物大分子固定作用,采用具有抗凝血性的天然聚多糖肝素作为聚阴离子,细胞相容性良好但致凝血性的天然聚多糖壳聚糖作为聚阳离子,在医用聚酯材料PET表面进行层层静电自组装。依据肝素的可扩散性及聚多糖聚电解质多层膜高亲水性特点,构建得到了协同抗凝血及阻抗非特异性细胞粘附的肝素/壳聚糖多层膜涂层。石英晶体微天平(QCM-D)及椭偏仪测试表明了肝素和壳聚糖交替组装到基材表面。对QCM-D和椭偏仪所获得的数据进行分析可以得出,所获得的肝素/壳聚糖多层膜为溶胀的类水凝胶性质的薄膜涂层。QCM-D和紫外光谱结果表明该多层膜涂层在生理缓冲溶液PBS中具有较良好的稳定性。体外血液相容性评价和人血管内皮细胞/平滑肌细胞培养结果表明,该多层膜涂层具有良好的抗凝血和阻抗非特异性细胞粘附的特点。化学交联前后的肝素/壳聚糖多层膜的QCM-D分析和细胞培养结果表明,肝素/壳聚糖多层膜的类水凝胶状溶胀的特点是导致该涂层具有阻抗非特异性细胞粘附性质的主要原因。
     研究随后通过静电组装在阻抗非特异性细胞粘附的肝素/壳聚糖多层膜表面分别进行血管内皮细胞特异性的REDV短肽和抗CD34抗体分子的固定。体外血管内皮细胞和平滑肌细胞的培养结果表明:REDV短肽功能化和抗CD34抗体功能化的肝素/壳聚糖多层膜都能够获得特异选择性的内皮细胞粘附功能。通过在阻抗非特异性细胞粘附的肝素/壳聚糖多层膜表面修饰内皮细胞特异性的粘附分子可以实现内皮细胞的特异选择性粘附功能。
     2.细胞活性多层膜及其功能化促进快速内皮化的研究—研究利用抗凝血性的肝素作为聚阴离子,细胞相容性良好但致凝血性的天然细胞外基质组分胶原蛋白作为聚阳离子,在316L医用不锈钢表面进行层层静电自组装。依据肝素的可扩散性和天然生物大分子本身的生物学性质特点,构建得到了协同抗凝血及高内皮细胞相容性的肝素/胶原多层膜涂层。激光共聚焦显微镜和扫描电镜结果表明肝素/胶原多层膜能够实现对不锈钢支架进行表面修饰,获得良好的多层膜涂层支架。体外血液相容性评价和内皮细胞培养结果表明,该多层膜涂层具有良好的抗凝血和高内皮细胞相容性的特点。
     研究随后通过戊二醛对肝素/胶原多层膜进行化学交联并在其表面固定血管内皮细胞特异性的抗CD34抗体。QCM-D,椭偏仪及酶联免疫吸附测定结果表明了抗CD34抗体在肝素/胶原多层膜表面的成功固定。椭偏仪和QCM-D的结果还表明了化学交联及抗体固定后的多层膜具有比原多层膜更好的静态及流动态的稳定性。体外血管内皮细胞/平滑肌细胞培养结果表明,肝素/胶原多层膜不仅促进内皮细胞的粘附增殖,同样也促进平滑肌细胞的粘附增殖。即单纯的胶原/肝素多层膜不能实现对内皮细胞的选择性诱导。而抗CD34抗体功能化的肝素/胶原多层膜则能获得特异性的内皮细胞快速粘附和快速内皮化。体外内皮细胞活力及NO分泌测定结果表明抗CD34抗体修饰的肝素/胶原多层膜表面的内皮细胞具有很高的细胞活性并且能够很好地保持内皮细胞功能。荧光显微镜照片显示了该抗体功能化多层膜能够对不锈钢支架进行表面修饰。动物体内实验结果表明,抗CD34抗体功能化肝素/胶原多层膜修饰的支架能明显加速血管内皮细胞在支架表面的富集,从而实现快速内皮化。与裸支架及单纯肝素/胶原多层膜修饰支架相比,抗CD34抗体功能化肝素/胶原多层膜修饰的支架能显著减少新生内膜的形成。这种内皮细胞选择性诱导的多层膜涂层支架可能成为通过快速内皮化解决支架术后再狭窄和远期血栓的有效途径。
Surface induced thrombosis and restenosis constitute major clinical failures of cardiovascular stent implantation. Previous researches have demonstrated that the occurrences of thrombosis and restenosis are ultimately due to the endothelium injury or delayed/uncompleted endothelialization on the stent. The in situ rapid endothelialization of the implants may be the ultimate solution to the thrombosis and restenosis. Two kinds of natural polyelectrolyte multilayer coatings were designed and coated onto biomedical devices in this dissertation, to realize the high selective attachment of the endothelial cells (EC) and rapid endothelialization on the biomedical material surfaces.
     1. The study of cell-resistant polysaccharide multilayer and its functionalization for EC selective attachment.—Two natural polysaccharides, antithrombogenic heparin and cytocompatible while thrombogenic chitosan, were chosen as the polyanion and polycation, respectively, to construct polyelectrolyte multilayer on the poly(ethylene terephalate) (PET) surface. Considering that the diffusion property of heparin in the multilayer and the swollen hydrogel-like property of the polysaccharide multilayers, we hypothesis that the multilayer which is fabricated of heparin and chitosan may have the synergic properties of excellent hemocompatibility and non-specifically cell-resistant. Quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry results indicate the successful alternate deposition of heparin and chitosan onto the substrate. The analysis of the data from the QCM-D and ellipsometry reveal that the heparin/chitosan multilayer preserves swollen and hydrogel-like property. The QCM-D and Ultraviolet spectroscopy (UV) measurements show that the heparin/chitosan multilayers are stable under PBS incubation and flushing conditions. The in vitro hemocompatibility tests and human vascular EC/smooth muscle cell (SMC) culture results reveal that a surface coating with synergic properties of excellent antithrombogenicity and non-specifically cell-resistant was obtained via layer-by-layer deposition of the heparin and chitosan. Furthermore, the QCM-D analysis and the cell culture results of the heparin/chitosan multilayer before and after chemical crosslinking demonstrate that the swollen and hydrogel-like property of the native heparin/chitosan multilayer is the essential reason to the cell-resistant of this coating.
     The vascular EC specific adhesive peptide sequence REDV and the vascular EC targeting antibody anti-CD34 were immobilized onto the cell-resistant heparin/chitosan multilayer subsequently. The in vitro human vascular EC/SMC culture results reveal that the functionalization of the REDV and anti-CD34 antibody onto the cell-resistant heparin/chitosan multilayer can achieve specifically selective attachment of vascular EC.
     2. The study of cell-compatible natural polyelectrolyte multilayer and its functionalization for rapid endothelialization.—Two natural polyelectrolytes, antithrombogenic heparin and cytocompatible while thrombogenic collagen, which is one of the extracellular matrix proteins, were chosen as the polyanion and polycation, respectively, to construct polyelectrolyte multilayer on the 316L stainless steel disk surface. The results of QCM-D, ellipsometry, UV and atomic force microscopy (AFM) results indicate the successful fabrication of heparin/chitosan multilayer. The QCM-D and ellipsometry measurements show that the heparin/collagen multilayers are stable both under PBS incubation and flushing conditions. The in vitro hemocompatibility tests and human vascular EC culture results reveal that an antithromboresistant and EC compatible surface coating was obtained via layer-by-layer deposition of the heparin and collagen. The heparin/collagen multilayer was also performed onto the stainless steel stent surface. The fluorescent photographs show that a smooth and homogenous stent surface coating was obtained via heparin/collagen multilayer modification. The results of scanning electronic microscopy (SEM) and confocal laser scanning microscopy (CLSM) show that good EC affinity of the heparin/collagen multilayer modified stent is also obtained. These results indicate that antithrombogenic and EC favorable surface coating was obtained via layer-by-layer deposition of heparin and collagen onto stent.
     The vascular EC targeting antibody anti-CD34 was subsequent immobilized onto the cytocompatible heparin/collagen multilayer after glutaraldehyde crosslinking. The ellipsometry and QCM-D results demonstrate that the antibody functionalized multilayer coatings is stable both in static incubation and flushing conditions. The in vitro hemocompatibility tests and EC/SMC culture results indicate that both heparin/collagen multilayers with or without the anti-CD34 antibody functionalization not only preserve good hemocompatibility, but also promote cell attachment and growth notably. The heparin/collagen multilayer coatings show no selectivity in promotion of EC and SMC, whereas the attachment and growth of the vascular EC can be specifically enhanced on the anti-CD34 antibody functionalized heparin/collagen multilayer. The metabolic activity assessment and the NO secretion measurements further indicate that the EC adherent to the anti-CD34 antibody functionalized multilayer surface have better viability and possess the specific function of the natural vascular EC. In vivo experiments indicate that the anti-CD34 antibody can enrich and accelerate the attachment of the vascular cells onto the stent and rapid endothelialization is realized. Compared with bare stents and heparin/collagen multilayer modified stents, the neointimal hyperplasia on the anti-CD34 antibody functionalized multilayer modified stents is significantly inhibited. The success of the anti-CD34 antibody functionalized heparin/collagen multilayer coating in rapid endothelialization and anti-restenosis might indicate that the immobilization of EC specific ligands onto a cytocompatible matrix can be a good approach for in situ endothelialization and a possible solution to in stent restenosis.
引文
1.刘海波,徐波,高润霖.冠心病介入治疗—从临床试验到临床实践:人民卫生出版社,2001.
    2.吴恩惠,刘玉清,贺能树.介入治疗学:人民卫生出版社,1994.
    3.Hamon M,Lepage O,Malagutti P,Riddell JW,Morello R,Agostini D.Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment:Meta-analysis.Radiology 2008;247(3):679-686.
    4.Naylor AR.Does the risk of post-CABG stroke merit staged or synchronous reconstruction in patients with symptomatic or asymptomatic carotid disease? Journal of Cardiovascular Surgery 2009;50(1):71-81.
    5.高炜,朱国英.冠心病介入治疗:科学出版社,2006.
    6.马业新.实用介入心脏病学:湖北科学技术出版社,2003.
    7.Belenkov YN,Samko AN,Batyraliev TA,Pershukov Ⅳ.Coronary angioplasty:View through 30years.Kardiologiya 2007;47(9):4-14.
    8.Hartwell D,Colquitt J,Loveman E,Clegg AJ,Brodin H,Waugh N,et al.Clinical effectiveness and cost-effectiveness of immediate angioplasty for acute myocardial infarction:systematic review and economic evaluation.Health Technology Assessment 2005;9(17):1-99.
    9.迪伊KC,普莱奥DA,比齐奥斯R,黄楠.组织-生物材料相互作用导论:化学工业出版社,2005.
    10.Cernigliaro C,Sansa M,Vitrella G,Verde A,Bongo AS,Giuliani L,et al.Preventing Restenosis after Implantation of Bare Stents with Oral Rapamycin:A Randomized Angiographic and Intravascular Ultrasound Study with a 5-Year Clinical Follow-Up.Cardiology 2010;115(1):77-86.
    11.Seiji K,Tsuda M,Matsuhashi T,Takase K,Miyachi H,Yamada T,et al.Treatment of in-stent restenosis with beraprost sodium:An experimental study of short- and intermediate-term effects in dogs.Clinical and Experimental Pharmacology and Physiology 2009;36(12):1164-1169.
    12.Rogue M,Cordon-Cardo C,Fuster V,Reis ED,Drobnjak M,Badimon JJ.Modulation of apoptosis,proliferation,and p27 expression in a porcine coronary angioplasty model.Atherosclerosis 2000;153(2):315-322.
    13.Kipshidze N,Dangas G,Tsapenko M,Moses J,Leon MB,Kutryk M,et al.Role of the endothelium in modulating neointimal formation - Vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. Journal of the American College of Cardiology 2004;44(4):733-739.
    
    14. Horiguchi J, Fujioka C, Kiguchi M, Yamamoto H, Kitagawa T, Kohno S, et al. Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT. European Radiology 2009;19(10):2363-2372.
    
    15. Sadek M, Cayne NS, Shin HJ, Turnbull IC, Marin ML, Faries PL. Safety and efficacy of carotid angioplasty and stenting for radiation-associated carotid artery stenosis. J Vasc Surg 2009;50(6):1308-1313.
    
    16. Saito T, Iguchi A, Tabayashi K. Irradiation inhibits vascular anastomotic stenosis in a canine model. Gen Thorac Cardiovasc Surg 2009;57(8):406-412.
    
    17. Jin X, Mei L, Song CX, Liu LX, Leng XG, Sun HF, et al. Immobilization of plasmid DNA on an anti-DNA antibody modified coronary stent for intravascular site-specific gene therapy. Journal of Gene Medicine 2008;10(4):421-429.
    
    18. Nikol S. Gene therapy of cardiovascular disease. Current Opinion in Molecular Therapeutics 2008;10(5):479-492.
    
    19. Wu J, Hecker JG, Chiamvimonvat N. Antioxidant enzyme gene transfer for ischemic diseases. Advanced Drug Delivery Reviews 2009;61(4):351-363.
    
    20. Yang J, Zeng Y, Li YJ, Song CX, Zhu WL, Guan H, et al. Intravascular site-specific delivery of a therapeutic antisense for the inhibition of restenosis. European Journal of Pharmaceutical Sciences 2008;35(5):427-434.
    
    21. Yin XH, Fu Y, Yutani C, Ikeda Y, Enjyoji K, Kato H. HVJ-AVE liposome-mediated Tissue Factor Pathway Inhibitor (TFPI) gene transfer with recombinant TFPI (rTFPI) irrigation attenuates restenosis in atherosclerotic arteries. International Journal of Cardiology 2009;135(2):245-248.
    
    22. Kalinczuk L, Demkow M, Mintz GS, Cedro K, Debski A, Ciszewski M, et al. Impact of Different Re-stenting Strategies on Expansion of a Drug-Eluting Stent Implanted to Treat Bare-Metal Stent Restenosis. American Journal of Cardiology 2009;104(4):531-537.
    
    23. Goto K, Shiode N, Shirota K, Fukuda Y, Kitamura F, Tominaga K, et al. Pathological Finding of Sirolimus-Eluting Stent (SES) Restenosis Lesion With Black Hole Appearance on Intravascular Ultrasound. Circulation Journal 2009;73( 10):1969-1971.
    
    24. Lookstein RA, Talenfeld AD, Raju R, Vorchheimer DA, Olin JW, Marin ML. Sirolimus-eluting stent placement for refractory renal artery in-stent restenosis: sustained patency and clinical benefit at 24 months. Vascular Medicine 2009;14(4):361-364.
    
    25. Nakazawa G, Finn AV, Vorpahl M, Ladich E, Kutys R, Balazs I, et al. Incidence and Predictors of Drug-Eluting Stent Fracture in Human Coronary Artery A Pathologic Analysis. Journal of the American College of Cardiology 2009;54(21): 1924-1931.
    
    26. Hehrlein C, Arab A, Bode C. Drug-eluting stent: the "magic bullet" for prevention of restenosis?Basic Research in Cardiology 2002;97(6):417-423.
    
    27. Hill R, Bagust A, Bakhai A, Dickson R, Dundar Y, Haycox A, et al. Coronary artery stents: a rapidsystematic review and economic evaluation. Health Technology Assessment 2004;8(35):1-242.
    
    28. Kamath KR, Barry JJ, Miller KM. The Taxus (TM) drug-eluting stent: A new paradigm in controlled drug delivery. Advanced Drug Delivery Reviews 2006;58(3):412-436.
    
    29. Aminian A, Kabir T, Eeckhout E. Treatment of Drug-Eluting Stent Restenosis: An Emerging Challenge. Catheterization and Cardiovascular Interventions 2009;74(1):108-116.
    
    30. Chen JP. Safety and efficacy of the drug-eluting stent: A double-edged sword? Southern Medical Journal 2008;101(2):174-178.
    
    31. Gupta R, Al-Ali F, Thomas AJ, Horowitz MB, Barrow T, Vora NA, et al. Safety, feasibility, and short-term follow-up of drug-eluting stent placement in the intracranial and extracranial circulation.Stroke 2006;37(10):2562-2566.
    
    32. Kozinski M, Sukiennik A, Sinkiewicz W, Kochman W, Kubica J. Drug-eluting stent-associated thrombosis: Clinical relevance of impaired vessel-wall healing. Postepy Higieny I Medycyny Doswiadczalnej 2008;62:185-205.
    
    33. Carlsson J, von Wangenheim B, Linder R, Anwari TM, Qvist J, Petersson I, et al. Is late stent thrombosis in drug-eluting stents a real clinical issue? A single-center experience and review of the literature. Clinical Research in Cardiology 2007;96(2):86-93.
    
    34. Garg P, Mauri L. The conundrum of late and very late stent thrombosis following drug-eluting stent implantation. Current Opinion in Cardiology 2007;22(6):565-571.
    
    35. Pershukov IV, Batyraliev TA. Drug-eluting stent thrombosis and it's pharmacological prevention.Review. Kardiologiya 2007;47(7):60-67.
    36.Chatterjee S,Pandey A.Drug eluting stents:Friend or foe? A review of cellular mechanisms behind the effects of paclitaxel and sirolimus eluting Stents.Current Drug Metabolism 2008;9(6):554-566.
    37.Wykrzykowska JJ,Onuma Y,Serruys PW.Advances in stent drug delivery:the future is in bioabsorbable stents.Expert Opinion on Drug Delivery 2009;6(2):113-126.
    38.Aoki J,Serruys PW,van Beusekom H,Ong ATL,McFadden EP,Sianos G,et al.Endothelial progenitor cell capture by stents coated with antibody against CD34-The HEALING-FIM(healthy endothelial accelerated lining inhibits neointimal growth-first in man) registry.Journal of the American College of Cardiology 2005;45(10):1574-1579.
    39.Losordo DW,Isner JM,Diaz-Sandoval LJ.Endothelial recovery-The next target in restenosis prevention.Circulation 2003;107(21):2635-2637.
    40.Liu JX,Yang DZ,Shi F,Cai YJ.Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement.Thin Solid Films 2003;429(1-2):225-230.
    41.Sunny MC,Sharma CP.Fibrinogen aluminuminteraction-changes with oxide layer thickness onto metal surface.Journal of Biomedical Materials Research 1990;24(4):455-462.
    42.Charitidis C,Patsalas P,Logothetidis S.Effects of energetic species during the growth of nitrogenated amorphous carbon thin films on their nanomechanical properties.Thin Solid Films 2005;482(1-2):177-182.
    43.Kastrati A,Sch(o|¨)mig A,Dirschinger J,Mehilli J,von Welser N,Pache J,et al.Increased Risk of Restenosis After Placement of Gold-Coated Stents Circulation 2000:101:2478-2483.
    44.顾汉卿,徐国风.生物医学材料学:天津科技翻译出版公司,1993.
    45.Milner ST.Polymer brushes.Science 1991;251(4996):905-914.
    46.Kim JH,Kim SC.PEO-grafting on PU/PS IPNs for enhanced blood compatibility-effect of pendant length and grafting density.Biomaterials 2002;23(9):2015-2025.
    47.Billinger M,Buddeberg F,J.A.H,Elbert DL,Schaffner T,Mettler D,et al.Polymer stent coating for prevention of neointimal hyperplasia.The Journal of invasive cardiology 2006;18(9):423-426.
    48.Maalej N,Albrecht R,Loscalzo J,Folts JD.The potent platelet inhibitory effects of S-nitrosated albumin coating of artificial surfaces.Journal of the American College of Cardiology 1999;33(5):1408-1414.
    49.计剑,封麟先,沈家骢.白蛋白原位复合生物医用功能材料的研究(Ⅰ)—材料的合成和表面 结构研究.高等学校化学学报2002;23(11):2196-2201.
    50.计剑,封麟先,沈家骢.白蛋白原位复合的生物医用功能材料的研究(Ⅱ)—白蛋白的选择性吸附和血液相容性研究.高等学校化学学报2002;23(12):2369-2376.
    51.Liu TY,Lin WC,Huang LY,Chen SY,Yang MC.Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane.Biomaterials 2005;26(12):1437-1444.
    52.Weng YJ,Hou RX,Li GC,Wang J,Huang N,Liu HQ.Immobilization of bovine serum albumin on TiO2 film via chemisorption of H3PO4 interface and effects on platelets adhesion.Applied Surface Science 2008;254(9):2712-2719.
    53.Sprague S,Cook DJ,Anderson D,O'Brien BJ.A systematic review of economic analyses of low-molecular-weight heparin for the treatment of venous thromboembolism.Thrombosis Research 2003;112(4):193-201.
    54.Anderson DR,Obrien BJ,Levine MN,Roberts R,Wells PS,Hirsh J.Efficacy and cost of low-molecular-weight heparin compared with standard heparin for the prevention of deep-vein thrombosis after total HIP-Arthroplasty.Annals of Internal Medicine 1993;119(11):1105-1112.
    55.Murngesan S,Xie J,Linhardt RJ.Immobilization of heparin:Approaches and applications.Current Topics in Medicinal Chemistry 2008;8(2):80-100.
    56.Wendel HP,Ziemer G.Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation.European Journal of Cardio-Thoracic Surgery 1999;16(3):342-350.
    57.Wang AF,Cao T,Tang HY,Liang XM,Salley SO,Ng KYS.In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces.Colloids and Surfaces B-Biointerfaces 2005;43(3-4):245-255.
    58.Yoon SJ,Pyun YR,Hwang JK,Mourao PAS.A sulfated fucan from the brown alga Laminaria cichorioides has mainly heparin cofactor Ⅱ-dependent anticoagulant activity.Carbohydrate Research 2007;342(15):2326-2330.
    59.Lin CZ,Guan HS,Li HH,Yu GL,Gu CX,Li GQ.The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities.European Polymer Journal 2007;43(7):3009-3015.
    60.Poussard L,Burel F,Couvercelle JP,Merhi Y,Tabrizian M,Bunel C.Hemocompatibilty of new ionic polyurethanes:influence of carboxylic group insertion modes.Biomaterials 2004;25(17):3473-3483.
    
    61. Kudryashova OY, Zateyshchikov DA, Sidorenko BA. Endothelial hemostasis: Thrombomodulin system and its role in pathogenesis of atherosclerosis and its complications. Kardiologiya 2000;40(8):65-74.
    
    62. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Critical Care Medicine 2004;32(5):S254-S261.
    
    63. Weiler H, Isermann BH. Thrombomodulin. Journal of Thrombosis and Haemostasis 2003;1(7):1515-1524.
    
    64. Stringer KA, Lindenfeld J. Hirudins - antithrombin anticoagulants. Annals of Pharmacotherapy 1992;26(12):1535-1540.
    
    65. Greinacher A, Warkentin TE. The direct thrombin inhibitor hirudin. Thrombosis and Haemostasis 2008;99(5):819-829.
    
    66. Markwardt F. Hirudin as alternative anticoagulant - A historical review. Seminars in Thrombosis and Hemostasis 2002;28(5):405-413.
    
    67. Alexander CL, Miller SJ, Abel SR. Prostaglandin analog treatment of glaucoma and ocular hypertension. Annals of Pharmacotherapy 2002;36(3):504-511.
    
    68. Wong G, Li JM, Hendricks G, Eslami MH, Rohrer MJ, Cutler BS. Inhibition of experimental neointimal hyperplasia by recombinant human thrombomodulin coated ePTFE stent grafts. Journal of Vascular Surgery 2008;47(3):608-615.
    
    69. Lahann J, Klee D, Pluester W, Hoecker H. Bioactive immobilization of r-hirudin on CVD-coated metallic implant devices. Biomaterials 2001;22(8):817-826.
    
    70. Wyers MC, Phaneuf MD, Rzucidlo EM, Contreras MA, LoGerfo FW, Quist WC. In vivo assessment of a novel Dacron surface with covalently bound recombinant hirudin. Cardiovascular Pathology 1999;8(3):153-159.
    
    71. Schurmann K, Roos A, Meyer J, Ries B, Lahann J, Hermanns B, et al. A novel hirudin coating of vascular endoprostheses: Experimental results. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 2003;175(2):262-270.
    
    72. Warkentin TE. Bivalent direct thrombin inhibitors: hirudin and bivalirudin. Best Practice & Research Clinical Haematology 2004;17(1):105-125.
    
    73. Lahann J, Pluster W, Klee D, Gattner HG, Hocker H. Immobilization of the thrombin inhibitor r-hirudin conserving its biological activity.Journal of Materials Science-Materials in Medicine 2001;12(9):807-810.
    74.Moses JW,Leon MB,Popma JJ,Fitzgerald PJ,Holmes DR,O'Shaughnessy C,et al.Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.New England Journal of Medicine 2003;349(14):1315-1323.
    75.Rowinsky EK,Donehower RC.Drug- therapy-Paclitaxel(Taxoi).New England Journal of Medicine 1995;332(15):1004-1014.
    76.Axel DI,Kunert W,Goggelmann C,Oberhoff M,Herdeg C,Kuttner A,et al.Paclitaxei inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery.Circulation 1997;96(2):636-645.
    77.Colombo A,Drzewiecki J,Banning A,Grube E,Hauptmann K,Silber S,et al.Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions.Circulation 2003;108(7):788-794.
    78.Burke SE,Kuntz RE,Schwartz LB.Zotarolimus(ABT-578) eluting stents.Advanced Drug Delivery Reviews 2006;58(3):437-446.
    79.Garcia-Touchard A,Burke SE,Toner JL,Cromack K,Schwartz RS.Zotarolimus-eluting stents reduce experimental coronary artery neointimal hyperplasia after 4 weeks.European Heart Journal 2006;27(8):988-993.
    80.Zhang Q,Lu L,Pu LJ,Zhang RY,Shen J,Zhu ZB,et al.Neointimal hyperplasia persists at six months after sirolimus-eluting stent implantation in diabetic porcine.Cardiovascular Diabetology 2007;6.
    81.Hoffmann R,Langenberga R,Radke P,K(u|¨)hl H,Ortlepp J,Blindt R,et al.Treatment of In-Stent restenosis using a stent with non-polymer-based paclitaxel elution.The American Journal of Cardiology 2004;93(6):760-762.
    82.Lansky AJ,Costa RA,Mintz GS,Tsuchiya Y,Midei M,Cox DA,et al.Non-polymer-based paclitaxel-coated coronary stents for the treatment of patients with de novo coronary lesions-Angiographic follow-up of the DELIVER clinical trial.Circulation 2004;109(16):1948-1954.
    83.刘学波,葛均波,王克强,钱菊英,樊冰,贾剑国,等.载Rapamycin多聚物涂层支架在猪冠状动脉模型预防再狭窄的实验研究.中华心血管病杂志2002;30(5):290-293.
    84.徐仲英.地塞米松血管内支架影响内膜增生的实验研究.介入放射学杂志2000;9(2):98-101.
    85. Grube E, Buellesfeld L. BioMatrix (R) Biolimus A9 (R)-eluting coronary stent: a next-generation drug-eluting stent for coronary artery disease. Expert Review of Medical Devices 2006;3(6):731-741.
    
    86. Grube E, Hauptmann K-E, Buellesfeld L, Lim V, Abizaid A. Six-month results of a randomized study to evaluate safety and efficacy of a Biolimus A9 eluting stent with a biodegradable polymer coating. Eurolntervention 2005;1(1):53-57.
    
    87. Ostojic M, Sagic D, Beleslin B, Jung R, Perisic Z, Jagic N, et al. First clinical comparison of Nobori -Biolimus A9 eluting stents with Cypher- Sirolimus eluting stents: Nobori Core nine months angiographic and one year clinical outcomes. Eurolntervention 2008;3(5):574-579.
    
    88. Geraghty PJ. Bioabsorbable stenting for peripheral arterial occlusive disease. Perspect Vasc Surg Endovasc Ther 2006; 18(4):295-298.
    
    89. Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MWI, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 2008;371(9616):899-907.
    
    90. Di Mario C, Griffiths H, Goktekin O, Peelers N, Verbist J, Bosiers M, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 2004;17(6):391-395.
    
    91. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 2006;27(28):4955-4962.
    
    92. Kutryk MJB, Foley DP, van den Brand M, Hamburger JN, van der Giessen WJ, deFeyter PJ, et al.Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis - Results of the randomized investigation by the thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. Journal of the American College of Cardiology 2002;39(2):281-287.
    
    93. Klugherz BD, Jones PL, Cui XM, Chen WL, Meneveau NF, DeFelice S, et al. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nature Biotechnology 2000; 18(11):1181 -1184.
    
    94. Klugherz BD, Song CX, Defelice S, Cui XM, Lu ZB, Connolly J, et al. Gene delivery to pig coronary arteries from stents carrying antibody-tethered adenovirus. Human Gene Therapy 2002;13(3):443-454.
    
    95. Walter DH, Cejna M, Diaz-Sandoval L, Willis S, Kirkwood L, Stratford PW, et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents-An alternative strategy for inhibition of restenosis.Circulation 2004;110(1):36-45.
    96.陈再华,张群林,黄从新,王晓红,吴新刚,王卫民,等.重组腺病毒介导的人一氧化氮合酶基因转染对大鼠颈总动脉球囊损伤后新生内膜的影响.临床心血管病杂志2003;19(7):406-409.
    97.阿塔拉A,兰扎RP.组织工程学方法:化学工业出版社,2006.
    98.竺亚斌.博士学位论文.杭州:浙江大学;2003.
    99.Xu JP,Ji J,Wang XL,Shen JC.The effect of formation of the liquid crystalline phase on the blood compatibility of a cholesterol modified silicone.Journal of Materials Science-Materials in Medicine 2005;16(3):277-282.
    100.Lewis AL,Furze JD,Small S,Robertson JD,Higgins BJ,Taylor S,et al.Long-term stability of a coronary stent coating post implantation.Journal of Biomedical Materials Research 2002;63(6):699-705.
    101.Bakhai A,Booth J,Delahunty N,Nugara F,Clayton T,McNeil J,et al.The SV stent study:a prospective,multicentre,angiographic evaluation of the BiodivYsio phosphorylcholine coated small vessel stent in small coronary vessels.International Journal of Cardiology 2005;102(1):95-102.
    102.Xu JP,Ji J,Chen WD,Fan DZ,Sun FY,Shen JC.A bioinspired phospholipid polymer as drug-laden coating for biomedical device.Chemical Journal of Chinese Universities-Chinese 2004;25(1):188-190.
    103.Xu JP,Ji J,Chen WD,Fan DZ,Sun YF,Shen JC.Phospholipid based polymer as drug release coating for cardiovascular device.European Polymer Journal 2004;40(2):291-298.
    104.Xu JP,Ji J,Chen WD,Zhao HF,Shen JC,Fan DZ,et al.A novel crosslinkable polymer as drug-loaded coating for biomedical device.Journal of Materials Science-Materials in Medicine 2004;15(2):137-143.
    105.Abizaid A,Albertal M,Costa MA,Abizaid AS,Staico R,Fetes F,et al.First human experience with the 17-beta-estradiol-eluting stent-The Estrogen And Stents To Eliminate Restenosis(EASTER)Trial.Journal of the American College of Cardiology 2004;43(6):1118-1121.
    106.Popowich DA,Varu V,Kibbe MR.Nitric oxide:What a vascular surgeon needs to know.Vascular 2007;15(6):324-335.
    107.Wu B,Gerlitz B,Grinnell BW,Meyerhoff ME.Polymeric coatings that mimic the endothelium:Combining nitric oxide release with surface-bound active thrombomodulin and heparin.Biomaterials 2007;28(28):4047-4055.
    
    108. Vaughn MW, Kuo L, Liao JC. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology 1998;274(6):2163-2176.
    
    109. Mowery KA, Schoenfisch MH, Saavedra JE, Keefer LK, Meyerhoff ME. Preparation and characterization of hydrophobic polymeric films that are thromboresistant via nitric oxide release.Biomaterials 2000;21 (1):9-21.
    
    110. Fleser PS, Nuthakki VK, Malinzak LE, Callahan RE, Seymour ML, Reynolds MM, et al. Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of artcriovenous bridge grafts. Journal of Vascular Surgery 2004;40(4):803-811.
    
    111. Yoon J, Wu CJ, Homme J, Tuch RJ, Wolff RG, Topol EJ, et al. Local delivery of nitric oxide from an eluting stent to inhibit neointimal thickening in a porcine coronary injury model. Yonsei Medical Journal 2002;43(2):242-251.
    
    112. Hwang S, Meyerhoff ME. Polyurethane with tethered copper(II)-cyclen complex: Preparation,characterization and catalytic generation of nitric oxide from S-nitrosothiols. Biomaterials 2008;29(16):2443-2452.
    
    113. Gu J, Lewis RS. Effect of pH and metal ions on the decomposition rate of S-nitrosocysteine.Annals of Biomedical Engineering 2007;35(9):1554-1560.
    
    114. Sharif F, Hynes SO, Cooney R, Howard L, McMahon J, Daly K, et al. Gene-eluting stents:Adenovirus-mediated delivery of eNOS to the blood vessel wall accelerates re-endothelialization and inhibits restenosis. Molecular Therapy 2008;16(10):1674-1680.
    
    115. Sharif F, Hynes S, McMahon J, Daly K, Crowley J, O'Brien T. Accelerated re-endothelialization in an eNOS transduced Iliac artery following gene delivery from an adenoviral eluting stent. European Heart Journal 2006;27:124-125.
    
    116. Mansfield PB. Tissue cultured endothelium for vascular prosthetic devices Review of surgery 1970;27:291-293.
    
    117. Fields C, Cassano A, Allen C, Meyer A, Pawlowski KJ, Bowlin GL, et al. Endothelial Cell Seeding of a 4-mm I.D. Polyurethane Vascular Graft Journal of Biomaterials Applications 2002;17(1):45-70.
    
    118. Kooten TGV, Klein CL, Kohler H, Kirkpatrick CJ, Williams DF, Eloy R. From cytotoxicity to biocompatibility testing in vitro: cell adhesion molecule expression defines a new set of parameters Journal of Materials Science: Materials in Medicine 1997;8:835-841.
    
    119. 余贯华.博士学位论文.杭州:浙江大学;2005.
    
    120. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21(7):667-681.
    
    121. Kawamoto Y, Nakao A, Ito Y, Wada N, Kaibara M. Endothelial cells on plasma-treated segmented-polyurethane - Adhesion strength, antithrombogenicity and cultivation in tubes. Journal of Materials Science-Materials in Medicine 1997;8(9):551-557.
    
    122. Gauvreau V, Chevallier P, Vallieres K, Petitclerc E, Gaudreault RC, Laroche G. Engineering surfaces for bioconjugation: Developing strategies and quantifying the extent of the reactions.Bioconjugate Chemistry 2004;15(5):1146-1156.
    
    123. Letourneur D, Machy D, Pelle A, Marcon-Bachari E, D'Angelo G, Vogel M, et al. Heparin and non-heparin-like dextrans differentially modulate endothelial cell proliferation: In vitro evaluation with soluble and crosslinked polysaccharide matrices. Journal of Biomedical Materials Research 2002;60(1):94-100.
    
    124. Remy M, Bordenave L, Bareille R, Rouais F, Baquey C, Gorodkov A, et al. Endothelial cell compatibility testing of various prosthetic surfaces. Journal of Materials Science-Materials in Medicine 1994;5(11):808-812.
    
    125. Holland J, Hersh L, Bryhan M, Onyiriuka E, Ziegler L. Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface:Comparison with fibronectin-coated tissue grade polystyrene. Biomaterials 1996;17(22):2147-2156.
    
    126. Dichek DA, Neville RF, Zwiebel JA, Freeman SM, Leon MB, Anderson WF. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989;80(5):1347-1353.
    
    127. Scott NA, Candal FJ, Robinson KA, Ades EW. Seeding of intracoronary stents with immortalized human microvascular endothelial cells. American Heart Journal 1995;129(5):860-866.
    
    128. Shirota T, Yasui H, Shimokawa H, Matsuda T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 2003;24(13):2295-2302.
    
    129. Flugelman MY, Virmani R, Leon MB, Bowman RL, Dichek DA. Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. Circulation Research 1992;70:348-354.
    130. L'Heureux N, Dusserre N, Marini A, Garrido S, de la Fuente L, McAllister T. Technology Insight:the evolution of tissue-engineered vascular grafts - from research to clinical practice. Nature Clinical Practice Cardiovascular Medicine 2007;4(7):389-395.
    
    131. Brewster LP, Bufallino D, Ucuzian A, Greisler HP. Growing a living blood vessel: Insights for the second hundred years. Biomaterials 2007;28:5028-5032.
    
    132. Miller-Kasprzak E, Jagodzinski PP. Endothelial progenitor cells as a new agent contributing to vascular repair. Archivum Immunologiae Et Therapiae Experimentalis 2007;55(4):247-259.
    
    133. Asahara T, Murohara T, Sullivan A, Silver M, vanderZee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964-967.
    
    134. Kawamoto A, Asahara T. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheterization and Cardiovascular Interventions 2007;70:477-484.
    
    135. Shi Q, Rafii S, Wu MHD, Wijelath ES, Yu C, Ishida A, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92(2):362-367.
    
    136. Shirota T, Yasui H, Matsuda T. Intralumenal tissue-engineered therapeutic stent using endothelial progenitor cell-inoculated hybrid tissue and in vitro performance. Tissue Engineering 2003;9(3):473-485.
    
    137. Henneke P, Golenbock DT. Innate immune recognition of lipopolysaccharide by endothelial cells.Critical Care Medicine 2002;30(5):S207-S213.
    
    138. Kralisz U. Platelets - Endotrelial cells interactions in inflammation. Part I. Adhesive receptors of platelets, endothelial cells, and microparticles in hemostasts and inflammation. Postepy Biologii Komorki 2008;35(1):45-60.
    
    139. Pearson JD. Endothelial progenitor cells - hype or hope? Journal of Thrombosis and Haemostasis 2009;7(2):255-262.
    
    140. Magri D, Fancher TT, Fitzgerald TN, Muto A, Dardik A. Endothelial progenitor cells: A primer for vascular surgeons. Vascular 2007;15(6):384-394.
    
    141. Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? Journal of Cellular and Molecular Medicine 2009;13(1):87-102.
    
    142. Blindt R, Vogt F, Astafieva I, Fach C, Hristov M, Krott N, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology 2006;47(9):1786-1795.
    143.Plouffe BD,Njoka DN,Harris J,Liao JH,Horick NK,Radisic M,et al.Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow.Langmuir 2007;23(9):5050-5055.
    144.Monchaux E,Vermette P.Bioactive microarrays immobilized on low-fouling surfaces to study specific endothelial cell adhesion.Biomacromolecules 2007;8:3668-3673.
    145.Larsen CC,Kligman F,Tang C,Kottke-Marchant K,Marchant RE.A blomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion.Biomaterials 2007;28(24):3537-3548.
    146.Taite LJ,Yang P,Jun HW,West JL.Nitric oxide-releasing Polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion.Journal of Biomedical Materials Research Part B-Applied Biomaterials 2008;84B(1):108-116.
    147.Veleva AN,Heath DE,Cooper SL,Patterson C.Selective endothelial cell attachment to peptide-modified terpolymers.Biomaterials 2008;29(27):3656-3661.
    148.Genous.Endothelilal progenitor cell(EPC) capture technology for the prevention of in-stent thrombosis and restenosis,www.orbusmt.com 2004.
    149.沈雳,葛均波.内皮祖细胞捕获支架的困惑与希望.中国分子心脏病学杂志2006;6(3):184-187.
    150.Pislaru SV,Harbuzariu A,Agarwal G,Witt T,Gulati R,Sandhu NP,et al.Magnetic forces enable rapid endothelialization of synthetic vascular grafts.Circulation 2006;114:1314-1318.
    151.Pislaru SV,Harbuzariu A,Gulati R,Witt T,Sandhu NP,Simari RD,et al.Magnetically targeted endothelial cell localization in stented vessels.Journal of the American College of Cardiology 2006;48(9):1839-1845.
    152.Hoffmann J,Paul A,Harwardt M,Groll J,Reeswinkel T,Klee D,et al.Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells.Journal of Biomedical Materials Research Part A 2008;84A(3):614-621.
    153.Decher G.Fuzzy nanoassemblies:Toward layered polymeric multicomposites.Science 1997;277(5330):1232-1237.
    154.Anzai J.Development of polyelectrolyte multilayer films and their applications to analytical chemistry.Bunseki Kagaku 2001;50(9):585-594.
    155.Campas M,O'Sullivan C.Layer-by-layer biomolecular assemblies for enzyme sensors, immunosensing, and nano architectures. Analytical Letters 2003;36(12):2551-2569.
    
    156. Jaber JA, Schlenoff JB. Recent developments in the properties and applications of polyelectrolyte multilayers. Current Opinion in Colloid & Interface Science 2006;11(6):324-329.
    
    157. Jewell CM, Lynn DM. Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Advanced Drug Delivery Reviews 2008;60(9):979-999.
    
    158. Johnston APR, Cortez C, Angelatos AS, Caruso F. Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science 2006; 11(4):203-209.
    
    159. Quinn JF, Johnston APR, Such GK, Zelikin AN, Caruso F. Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chemical Society Reviews 2007;36(5):707-718.
    
    160. Tang ZY, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Advanced Materials 2006;18(24):3203-3224.
    
    161. Ji J, Tan QG, Shen JC. Construction of albumin multilayer coating onto plasma treated poly(vinyl chloride) via electrostatic self-assembly. Polymers for Advanced Technologies 2004;15(8):490-494.
    
    162. Tan QG, Ji J, Zhao F, Fan DZ, Sun FY, Shen JC. Fabrication of thromboresistant multilayer thin film on plasma treated poly (vinyl chloride) surface. Journal of Materials Science-Materials in Medicine 2005;16(7):687-692.
    
    163. Brynda E, Houska M, Jirouskova M, Dyr JE. Albumin and heparin multilayer coatings for blood-contacting medical devices. Journal of Biomedical Materials Research 2000;51(2):249-257.
    
    164. Houska M, Brynda E. Interactions of proteins with polyelectrolytes at solid/liquid interfaces:Sequential adsorption of albumin and heparin. Journal of Colloid and Interface Science 1997;188(2):243-250.
    
    165. Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 2003;4(6): 1564-1571.
    
    166. Thierry B, Winnik FM, Merhi Y, Tabrizian M. Nanocoatings onto arteries via layer-by-layer deposition: Toward the in vivo repair of damaged blood vessels. Journal of the American Chemical Society 2003;125(25):7494-7495.
    
    167. Serizawa T, Yamaguchi M, Matsuyama T, Akashi M. Alternating bioactivity of polymeric layer-by-layer assemblies: Anti- vs procoagulation of human blood on chitosan and dextran sulfate layers. Biomacromolecules 2000;1(3):306-309.
    168. Wood KC, Chuang HF, Batten RD, Lynn DM, Hammond PT. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layer-by-layer thin films. Proceedings of the National Academy of Sciences of the United States of America 2006;103(27):10207-10212.
    
    169. Yoo PJ, Zacharia NS, Doh J, Nam KT, Belcher AM, Hammond PT. Controlling surface mobility in interdiflusing polyelectrolyte multilayers. Acs Nano 2008;2(3):561-571.
    
    170. Zacharia NS, Modestino M, Hammond PT. Factors influencing the interdiffusion of weak polycations in multilayers. Macromolecules 2007;40(26):9523-9528.
    
    171. Meng S, Liu ZJ, Shen L, Guo Z, Chou LSL, Zhong W, et al. The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials 2009;30(12):2276-2283.
    
    172. Boulmedais F, Frisch B, Etienne O, Lavalle P, Picart C, Ogier J, et al. Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials.Biomaterials 2004;25(11):2003-2011.
    
    173. Etienne O, Picart C, Taddei C, Haikel Y, Dimarcq JL, Schaaf P, et al. Multilayer polyelectrolyte films functionalized by insertion of defensin: A new approach to protection of implants from bacterial colonization. Antimicrobial Agents and Chemotherapy 2004;48(10):3662-3669.
    
    174. Grunlan JC, Choi JK, Lin A. Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 2005;6(2): 1149-115 3.
    
    175. Dai JH, Bruening ML. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Letters 2002;2(5):497-501.
    
    176. Fu JH, Ji J, Fan DZ, Shen JC. Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research Part A 2006;79A(3):665-674.
    
    177. Fu JH, Ji J, Yuan WY, Shen JC. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005;26(33):6684-6692.
    
    178. Yuan WY, Ji J, Fu JH, Shen JC. Construction of anti-bacterial multilayer films via layer-by-layer electro, static self-assembly of chitosan and heparin. Chemical Journal of Chinese Universities-Chinese 2005;26(10):1963-1965.
    
    179. Yuan WY, Ji J, Fu JH, Shen JC. A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2008;85B(2):556-563.
    
    180. Zhu YB, Gao CY, He T, Liu XY, Shen JC. Layer-by-layer assembly to modify poly(L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules 2003;4(2):446-452.
    
    181. Zhu YB, Gao CY, Liu YX, Shen JC. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods. Journal of Biomedical Materials Research Part A 2004;69A(3):436-443.
    
    182. Zhu HG, Ji J, Barbosa MA, Shen JC. Protein electrostatic self-assembly on poly(DL-Lactide) scaffold to promote osteoblast growth. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2004;71B(1):159-165.
    
    183. Zhu HG, Ji J, Shen JC. Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility. Biomaterials 2004;25(1):109-117.
    
    184. Zhu HG, Ji J, Shen JC. Osteoblast growth promotion by protein electrostatic self-assembly on biodegradable poly(lactide). Journal of Biomaterials Science-Polymer Edition 2005;16(6):761-774.
    
    185. Zhu HG, Ji J, Tan QG, Barbosa MA, Shen JC. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules. Biomacromolecules 2003;4(2):378-386.
    
    186. Zhang J, Senger B, Vautier D, Picart C, Schaaf P, Voegel JC, et al. Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials 2005;26(16):3353-3361.
    
    187. Zhu HG, Ji J, Shen JC. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold. Biomacromolecules 2004;5(5):1933-1939.
    
    188. Liu YX, He T, Gao CY. Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells. Colloids and Surfaces B-Biointerfaces 2005;46(2):117-126.
    
    189. Liu YX, He T, Song HQ, Gao CY. Layer-by-layer assembly of biomacromolecules on poly(ethylene terephthalate) films and fiber fabrics to promote endothelial cell growth. Journal of Biomedical Materials Research Part A 2007;81A(3):692-704.
    
    190. Richert L, Lavalle P, Vautier D, Senger B, Stoltz JF, Schaaf P, et al. Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 2002;3(6):1170-1178.
    191. Boura C, Menu P, Payan E, Picart C, Voegel JC, Muller S, et al. Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification. Biomaterials 2003;24(20):3521-3530.
    
    192. Berthelemy N, Kerdjoudj H, Gaucher C, Schaaf P, Stolz JF, Lacolley P, et al. Polyelectrolyte films boost progenitor cell differentiation into endothelium-like monolayers. Advanced Materials 2008;20(14):2674-2678.
    
    193. Elbert DL, Herbert CB, Hubbell JA. Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 1999;15(16):5355-5362.
    
    194. Croll TI, O'Connor AJ, Stevens GW, Cooper-White JJ. A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 2006;7(5): 1610-1622.
    
    195. Richert L, Lavalle P, Payan E, Shu XZ, Prestwich GD, Stoltz JF, et al. Layer by layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects. Langmuir 2004;20(2):448-458.
    
    196. Picart C, Elkaim R, Richert L, Audoin T, Arntz Y, Cardoso MD, et al. Primary cell adhesion on RGD-functionalized and covalently crosslinked thin polyelectrolyte multilayer films. Advanced Functional Materials 2005;15(1):83-94.
    
    197. Richert L, Engler AJ, Discher DE, Picart C. Elasticity of native and cross-linked polyelectrolyte multilayer films. Biomacromolecules 2004;5(5):1908-1916.
    
    198. Richert L, Schneider A, Vautier D, Vodouhe C, Jessel N, Payan E, et al. Imaging cell interactions with native and crosslinked polyelectrolyte multilayers. Cell Biochemistry and Biophysics 2006;44(2):273-285.
    
    199. Mendelsohn JD, Yang SY, Hiller J, Hochbaum Al, Rubner MF. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 2003;4(1):96-106.
    
    200. Ren KF, Ji J, Shen JC. Construction of biodegradable multilayer films via layer-by-layer self-assembly as gene delivery system. Chemical Journal of Chinese Universities-Chinese 2004;25(8):1576-1578.
    
    201. Ren KF, Ji J, Shen JC. Tunable DNA release from cross-linked ultrathin DNA/PLL multilayered films. Bioconjugate Chemistry 2006;17(1):77-83.
    
    202. Ren KF, Ji J, Shen JC. Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films. Biomaterials 2006;27(7):1152-1159.
    
    203. Ren KF, Wang YX, Ji J, Lin QK, Shen JC. Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: Effect of ionic strength. Colloids and Surfaces B-Biointerfaces 2005;46(2):63-69.
    
    204. Jewell CM, Zhang JT, Fredin NJ, Lynn DM. Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. Journal of Controlled Release 2005 ;106(1-2):214-223.
    
    205. Jewell CM, Zhang JT, Fredin NJ, Wolff MR, Hacker TA, Lynn DM. Release of plasmid DNA from intravascular stents coated with ultrathin multilayered polyelectrolyte films. Biomacromolecules 2006;7(9):2483-2491.
    
    206. Liu XH, Zhang JT, Lynn DM. Ultrathin multilayered films that promote the release of two DNA constructs with separate and distinct release profiles. Advanced Materials 2008;20(21):4148-4153.
    
    207. Lynn DM. Layers of opportunity: nanostructured polymer assemblies for the delivery of macromolecuiar therapeutics. Soft Matter 2006;2(4):269-273.
    
    208. Zhang JT, Chua LS, Lynn DM. Multilayered thin films that sustain the release of functional DNA under physiological conditions. Langmuir 2004;20(19):8015-8021.
    
    209. Zhang JT, Montanez SI, Jewell CM, Lynn DM. Multilayered films fabricated from plasmid DNA and a side-chain functionalized poly(beta-amino ester): Surface-type erosion and sequential release of multiple plasmid constructs-from surfaces. Langmuir 2007;23:11139-11146.
    
    210. Yamauchi F, Koyamatsu Y, Kato K, Iwata H. Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer. Biomaterials 2006;27(18):3497-3504.
    
    211. Yamauchi F, Kato K, Iwata H. Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer.Langmuir 2005;21 (18):8360-8367.
    
    212. Jessel N, Oulad-Abdeighani M, Meyer F, Lavalle P, Haikel Y, Schaaf P, et al. Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proceedings of the National Academy of Sciences of the United States of America 2006;103(23):8618-8621.
    
    213. Meyer F, Ball V, Schaaf P, Voegel JC, Ogier J. Polyplex-embedding in polyelectrolyte multilayers for gene delivery. Biochimica Et Biophysica Acta-Biomembranes 2006;1758(3):419-422.
    
    214. Ren KF, Ji J, Shen JC. Construction of polycation-based non-viral DNA nanoparticles and polyanion multilayers via layer-by-layer self-assembly. Macromolecuiar Rapid Communications 2005;26(20):1633-1638.
    215. Lin QK, Ren KF, Ji J. Hyaluronic acid and chitosan-DNA complex multilayered thin film as surface-mediated nonviral gene delivery system. Colloids and Surfaces B-Biointerfaces 2009;74(1):298-303.
    
    216. Mao ZW, Ma L, Zhou J, Gao CY, Shen JC. Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjugate Chemistry 2005; 16(5): 1316-1322.
    
    217. Vodouhe C, Schmittbuhl M, Boulmedais F, Bagnard D, Vautier D, Schaaf P, et al. Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials 2005;26(5):545-554.
    
    218. Jessel N, Atalar F, Lavalle P, Mutterer J, Decher G, Schaaf P, et al. Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Advanced Materials 2003;15(9):692-695.
    
    219. Chluba J, Voegel JC, Decher G, Erbacher P, Schaaf P, Ogier J. Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity.Biomacromolecules 2001 ;2(3):800-805.
    
    220. Yoo D, Shiratori SS, Rubner MF. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 1998;31 (13):4309-4318.
    
    221. Berg MC, Yang SY, Hammond PT, Rubner MF. Controlling mammalian cell interactions on patterned polyelectrolyte multilayer surfaces. Langmuir 2004;20(4):1362-1368.
    
    222. Zheng HP, Berg MC, Rubner MF, Hammond PT. Controlling cell attachment selectively onto biological polymer-colloid templates using polymer-on-polymer stamping. Langmuir 2004;20(17):7215-7222.
    
    223. Kidambi S, Lee I, Chan C. Controlling primary hepatocyte adhesion and spreading on protein-free polyelectrolyte multilayer films. Journal of the American Chemical Society 2004;126(50):16286-16287.
    
    224. Kidambi S, Sheng LF, Yarmush ML, Toner M, Lee I, Chan C. Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates. Macromolecular Bioscience 2007;7(3):344-353.
    
    225. Mohammed JS, DeCoster MA, McShane MJ. Micropatterning of nanoengineered surfaces to study neuronal cell attachment in vitro. Biomacromolecules 2004;5(5):1745-1755.
    
    226. Mohammed JS, DeCoster MA, McShane MJ. Fabrication of interdigitated micropattems of self-assembled polymer nanofilms containing cell-adhesive materials.Langmuir 2006;22(6):2738-2746.
    227.Schneider A,Bolcato-Bellemin AL,Francius G,Jedrzejwska J,Schaaf P,Voegel JC,et al.Glycated polyelectrolyte multilayer films:Differential adhesion of primary versus tumor cells.Biomacromolecules 2006;7(10):2882-2889.
    228.Hubbell JA,Massia SP,Desai NP,Drumheller PD.Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor.Bio-Technology 1991;9(6):568-572.
    229.Massia SP,Hubbell JA.Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the ⅢCS region of plasma fibronectin is mediated by integrin alpha-4-beta-1.Journal of Biological Chemistry 1992;267(20):14019-14026.
    230.Garmy-Susini B,Jin H,Zhu YH,Sung RJ,Hwang R,Varner J.Integrin alpha(4)beta(1)-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation.Journal of Clinical Investigation 2005;115(6):1542-1551.
    231.Monchaux E,Vermette P.Bioactive microarrays immobilized on low-fouling surfaces to study specific endothelial cell adhesion.Biomacromolecules 2007;8(11):3668-3673.
    232.Nickoloff BJ.The human progenitor cell antigen(CD34) is localized on endothelial cells,dermal dendritic cells and perifollicular cells in formalin-fixed normal skin and on proliferating endothelial cells and stromal spindle-sharped cells in kaposi-sarcoma.Archives of Dermatology 1991;127(4):523-529.
    233.顾其胜,蒋文霞.胶原蛋白与临床医学:第二军医大学出版社,2003.
    234.Stitzel J,Liu L,Lee SJ,Komura M,Berry J,Soker S,et al.Controlled fabrication of a biological vascular substitute.Biomaterials 2006;27:1088-1094.
    235.McGuigan AP,Sefton MV.The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules.Biomaterials 2008;29(16):2453-2463.
    236.蒋挺大.甲壳素:化学工业出版社,2002.
    237.Tan QG,Lin QK,Fan DZ,Ji J,Shen JC.Deionized mediated anticoagulant heparin/chitosan multilayer fihns.Chemical Journal of Chinese Universities-Chinese 2006;27(4):787-789.
    238.Richert L,Boulmedais F,Lavalle P,Mutterer J,Ferreux E,Decher G,et al.Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking.Biomacromolecules 2004;5(2):284-294.
    239. Boudou T, Crouzier T, Auzely-Velty R, Glinel K, Picart C. Internal Composition versus the Mechanical Properties of Polyelectrolyte Multilayer Films: The Influence of Chemical Cross-Linking.Langmuir2009;25(24):13809-13819.
    
    240. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Journal of Clinical Investigation 1973;52(11):2745-2756.
    
    241. Vadiveloo PK, Stanton HR, Cochran FW, Hamilton JA. Interleukin-4 inhibits human smooth muscle cell proliferation. Artery 1994;21(3):161-181.
    
    242. Strauss J, Liu YT, Camesano TA. Bacterial Adhesion to Protein-Coated Surfaces: An AFM and QCM-D Study. JOM, 2009;61(9):71-74.
    
    243. Voinova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Physica Scripta 1999;59(5):391-396.
    
    244. Su YH, Teoh LG, Lai WH, Chang SH, Yang HC, Hon MH. Ellipsometric advances for local surface plasmon resonance to determine chitosan adsorption on layer-by-layer gold nanoparticles.Applied Spectroscopy 2007;61(9): 1007-1014.
    
    245. He PL, Li M, Hu NF. Interaction of heme proteins with poly(propyleneimine) dendrimers in layer-by-layer assembly films under different pH conditions. Biopolymers 2005;79(6):310-323.
    
    246. Ji J, Fu JH, Shen JC. Fabrication of a superhydrophobic surface from the amplified exponential growth of a multilayer. Advanced Materials 2006;18(11):1441-1444.
    
    247. LubarskyGV, Davidson MR,Bradley RH. Hydration-dehydration of adsorbed protein films studied by AFM and QCM-D. Biosensors & Bioelectronics 2007;22(7): 1275-1281.
    
    248. Li J, Yun H, Gong YD, Zhao NM, Zhang XF. Investigation of MC3T3-E1 cell behavior on the surface of GRGDS-coupled chitosan. Biomacromolecules 2006;7(4): 1112-1123.
    
    249. Liu GM, Zhao JP, Sun QY, Zhang GZ. Role of chain interpenetration in layer-by-layer deposition ofpolyelectrolytes. Journal of Physical Chemistry B2008;112(11):3333-3338.
    
    250. Liu GM, Zou SR, Fu L, Zhang GZ. Roles of chain conformation and interpenetration in the growth of a polyelectrolyte multilayer. Journal of Physical Chemistry B 2008;112(14):4167-4171.
    
    251. Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethylene imine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials 2007;28(4):632-640.