磷酸胆碱支架抑制猪冠状动脉支架内再狭窄的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的
     支架内再狭窄是困扰冠心病支架治疗预后的主要瓶颈,损伤、炎症反应及内膜增生在支架内再狭窄的发病机制中有重要作用,新型支架涂层聚合物的研发利用是解决支架内再狭窄问题的主要思路之一。本研究利用小型猪冠状动脉支架损伤再狭窄动物模型评估新型磷酸胆碱聚合物涂层雷帕霉素药物洗脱支架对支架内再狭窄的抑制作用。
     方法
     健康实验用小型猪24头,雄性,体重28~38(33±2.4)kg,6-9月龄。采用随机数字法分为四组:裸支架组(6头,植入钴铬合金金属裸支架)、低剂量组(6头,植入磷酸胆碱聚合物120μg/cm2雷帕霉素洗脱支架)、高剂量组(6头,植入磷酸胆碱聚合物150μg/cm2雷帕霉素洗脱支架)和精工组(6头,植入精工处理磷酸胆碱聚合物120μg/cm2雷帕霉素洗脱支架)。各组基线资料一致。
     1.小型猪支架损伤模型建立及支架组织相容性评估。动物完成术前适应后采用经皮血管穿刺的方法,经股动脉入路进行冠脉造影及支架植入。术后服用肠溶阿斯匹林100mg/天和硫酸氢氯吡格雷75mg/天,普通饲料喂养至28天时处死取材。基线与28天时取静脉血检查血常规及血生化指标。取材后血管标本固定进行扫描电镜分析评估支架表面内皮化情况。综合上述资料初步评估支架的组织相容性。
     2. 28天时取支架段血管标本固定后进行塑料包埋,切片染色后用光学显微镜下进行损伤及炎症积分评估,专业图像分析软件测量支架内再狭窄相关参数。对上述数据进行相关分析及组间差异比较。评估各组支架抗再狭窄的安全性和有效性。
     结果
     1.组织相容性
     磷酸胆碱支架植入小型猪冠脉后,无全身严重不良反应发生。病理大体观察发现各组的支架段血管壁组织均呈脂肪样改变,药物支架组更为明显,精工组表现较轻。扫描电镜观察发现各组动物的支架段血管内皮化完全,新生内膜及内皮细胞结构完整。
     2.对支架内再狭窄的抑制作用
     实验动物支架段血管Schwartz损伤积分、Kornowski炎症积分与支架内再狭窄主要形态学参数新生内膜厚度、内膜面积、面积再狭窄程度呈明显正相关。裸支架组、低剂量组、高剂量组、精工组的病理结果显示它们对支架段血管新生内膜的抑制程度有逐渐增加的趋势,但只有精工组的内膜厚度较裸支架组有统计差异,在内膜面积、面积狭窄程度两参数未表现出统计差异。
     结论
     磷酸胆碱聚合物支架植入小型猪冠状动脉后表现出较好整体相容性及支架撑杠表面的内皮化。裸支架组发生了支架内再狭窄,面积狭窄为52.73%;低剂量组和高剂量组均无再狭窄发生,面积狭窄分别为38.01%和34.17%,精工组面积狭窄在四组中最低31.62%。裸支架组、低剂量组、高剂量组、粗工组的病理结果显示它们对支架段血管新生内膜的抑制程度有逐渐增加的趋势,只有精工组的内膜厚度较裸支架组有统计差异,在内膜面积、面积狭窄程度两参数未表现出统计差异。
Background and Objective
     In-stent restenosis is the main bottleneck of prognosis after percutaneous stent therapy for coronary heart disease. Factors like lesion,inflammation and neointima formation are known as the important contributing elements in restenosis mechanism. The study and utilization of new types of polymer is one of the key roads to resolve the hard nut of restenosis. Our study uses a porcine model of coronary stent lesion and restenosis to evaluate the anti in-stent restenosis performance of phosphocholine stent.
     Methods
     Twenty four healthy male minature pig(weight 28-38kg,aged 6-9 months) were divided at random into four groups:BMS (6, implanting bare cobalt-chromi-um stent), low dose DES(6, implanting phosphocholine stent with 120μg/cm2 sirolimus), high dose DES(6, implanting phosphocholine stent with 150μg/cm2 sirolimus)and refined DES(6, implanting rerefinedd phosphocholine stent with 120μg/cm2 sirolimus). The animals in four groups are comparable at base line.
     1.The establishment of miniature pig coronary stent lesion and restenosis model and the evaluation of histocompatibility of the new stent.After the animals completed adaptative period,angiography and stents implantation were performed through femoral artery percutaneously.After the operation each pig was given aspirin(100mg/d),clopidogrel(75mg/d) and routine feed. The blood samples were taken at base line and on 28th day after operation for routine and biochemical analysis.The samples of artery with stent were fixed and proceeded to do SEM analysis for endothelialization assessment. The histocompatibility of the stent was evaluated.
     2.On 28th day after operation, the samples of artery with stent were fixed and proceeded to plastic embedding, sectioning and staining. The cross sections were analyzed under optical microscope to assess the injury and inflammation score. Digital pictures were obtained and analyzed by professional image analysis software to measure and analyze parameters of restenosis.Those data were conducted correlation and difference analysis between groups to evaluate the safety and validity of the anti restenosis effect of the stent.
     Results
     1. Histocompatibilty
     After phosphocholine stents were implanted into miniature pigs'coronary, no serious whole body adverse effect was observed. Gross pathological observation revealed that all samples of coronary arterys with stent showed fat-like change,which was more apparent in DES groups and mild in refined DES. SEM analysis indicated full endothelialization above stent struts with integrated neointima in all coronary arteries with stent.
     2.Anti in-stent restenosis effect
     The Schwartz injury score and Kornowski inflammation score of coronary arteries with stents are positively correlated to those morphologic parameters of restenosis.Pathological results of BMS, low dose, high dose and refined groups show their inhibition ability of neointima with an upward trend.But only the difference between refined DES and BMS group shows statistical significance in neointima thickness.There are no statistically significant differences in parameters of neointimal area and degree of area restenosis.
     Conclusions
     The phosphocholine stents show preferable gross histocomparability and endothelialization above stent strut. BWS group shows area restenosis of 52.73% (more than 50%).While low dose, high dose and refined DES groups show no restenosis occurrence(not more than 50%).Their area restenosis is 38.01%,34.17% and 31.62% respectively. Pathological results of BMS, low dose, high dose and refined group show their inhibition ability of neointima with an upward trend. But only the difference of neointima thickness between refined DES group and BMS group was statistically significant.There are no statistical difference in parameters of neointimal area and degree of area restenosis between defined and BMS group.
引文
1. Fuster,O'rourke,Walsh,et al.Hurst's THE HEART 12th edition 2008; 1427-1429.
    2. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction: description of a new technique and a preliminary report of its application. Circulation 1964; 30:654-670.
    3. Zeitler EJ, Schmidtke J, Schoop W. Die Perkutane Behandlung von Arterie-lien Durchbluteungasstorungen der Estremiaten mit Katheter. Vasa 1973; 2: 401-404.
    4. Gruentzig AR, Turina MI, Schneider JA. Experimental percutaneous dilate-tion of coronary artery stenosis. Circulation 1985;54-81.
    5. Gruentzig AR, Kumpe DA. Technique of percutaneous transluminal angiopl-asty with the Gruentzig balloon catheter. AJR Am J Roentgenol 1979; 132: 547-552.
    6. Sheldon WC, Sones FM Jr. Stormy petrel of cardiology. Clin Cardiol 1994; 17:405-407.
    7. Hueb W, Soares PR, Gersh BJ, et al. The Medicine, Angioplasty, or Surgery Study (MASS-Ⅱ):a randomized, controlled clinical trial of three therapeutic strategies for multivessel coronary artery disease:one-year results. J Am Coll Cardiol 2004;43:1743-1751.
    8. Hueb W, Lopes N, Gersh BJ, et al. Five year follow-up of the Medicine, Ang-ioplasty or Surgery Study (MASS II):a randomized clinical trial. Circulation 2007.
    9. King SB Ⅲ, Lembo NJ, Weintraub WS, et al. A randomized trial comparing coronary angioplasty with coronary bypass surgery. N Engl J Med 1994; 331: 1044-1050.
    10. The Bypass Angioplasty Revascularization Investigation (BARI) Investiga-tors. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med 1996;335:217-225.
    11. Pocock SJ, Henderson RA, Rickards AF, et al. Meta-analysis of randomized trials comparing coronary angioplasty with bypass surgery. Lancet 1995; 346: 1184-1189.
    12. Sim I, Gupta M, McDonald K, et al. A meta-analysis of randomized trials comparing coronary artery bypass grafting with percutaneous transluminal coronary angioplasty in multivessel coronary artery disease. Am J Cardiol 1995;76:1025-1029.
    13. Weintraub WS, Mauldin PD, Becker E, et al. A comparison of the costs and quality of life after coronary angioplasty or coronary surgery for multivessel coronary artery disease:results from the Emory Angioplasty Versus Surgery Trial (EAST). Circulation 1995;92:2831-2840.
    14. Pocock SJ, Henderson RA, Rickards AF, et al. Meta-analysis of randomized trials comparing coronary angioplasty with bypass surgery. Lancet 1995; 346: 1184-1189.
    15. Sim I, Gupta M, McDonald K, et al. A meta-analysis of randomized trials comparing coronary artery bypass grafting with percutaneous transluminal coronary angioplasty in multivessel coronary artery disease. Am J Cardiol 1995;76:1025-1029.
    16. Weintraub WS, Mauldin PD, Becker E, et al. A comparison of the costs and quality of life after coronary angioplasty or coronary surgery for multivessel coronary artery disease:results from the Emory Angioplasty Versus Surgery Trial (EAST). Circulation 1995;92:2831-2840.
    17. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coron-ary stent placement and balloon angioplasty in treatment of coronary artery disease. N Engl J Med 1994;331:496-501.
    18. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-exp-andable stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994;331:489-495.
    19. Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology—drug-eluting stents:part Ⅰ. Circulation 2003; 107:2274-2279.
    20. Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology—drug-eluting stents:part Ⅱ. Circulation 2003; 107:2383-2389.
    21. Sousa JE, Costa MA, Abizaid A, et al. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries:a quantita-tive coronary angiography and three-dimensional intravascular ultrasound study. Circulation 2001; 103:192-195.
    22. Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents:one-year angiographic and intravas-cular ultrasound follow-up. Circulation 2001; 104:2007-2011.
    23. Degertekin M, Serruys PW, Foley DP, et al. Persistent inhibition of neointi-mal hyperplasia after sirolimus-eluting stent implantation:long-term (up to 2 years) clinical, angiographic, and intravascular ultrasound follow-up. Circula-tion 2002;106:1610-1613.
    24. Sousa JE, Costa MA, Abizaid A, et al. Four-year angiographic and intravascu-lar ultrasound follow-up of patients treated with sirolimus-eluting stents. Cir-culation 2005;111:2326-2329.
    25. Schwartz RS, Murphy J, Edwards WD, et al.Restenosis after balloon angio-plasty:a practical proliferative model in porci-ne coronary arteries. Circu-lation 1990;82:2190-2200.
    26. Rogers C, Welt FG, Karnovsky MJ, Edelman ER. Monocyte recruitment and neointimal hyperplasia in rabbits:coupled inhibitory effects of heparin. Arter-ioscler Thrombo Vasc Biol 1996; 16:
    27. Drachman DE, Edelman ER, Seifert P, et al. Neointimal thickening after stent delivery of paclitaxel:change in composition and arrest of growth over six months. J Am Coll Cardiol 2000;36:2325-2332.
    28. Garasic JM, Edelman ER, Squire JC, et al.Stent and artery geometry determi-ne intimal thickening independent of arterial injury. Circulation 2000; 101: 812-818.
    29. Welt FGP, Rogers C. Inflammation and restenosis in the stent era.Arterioscler Thrombo Vasc Biol 2002;22:1769-1776.
    30. Kantor B, Ashai K, Holmes DR Jr, Schwartz RS. The experimental animal models for assessing treatment of restenosis. Cardiovasc Radiat Med 1999; 1:48-54.
    31. Heldman AW, Cheng L, Jenkins GM, et al.Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary resteno-sis.Circulation 2001; 103:2289-2295.
    32. Frimerman A, Welch PJ, Jin X,et al.Chimeric DNA-RNA hammerhead ribo-zyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. Circulation 1999;99:697-703.
    33. Edelman ER, Seifart P, Groothuis A, et al.Gold-coated NIR stents in porcine coronary arteries. Circulation 2001; 103:429-434.
    34. Lowe HC, Kumar RK, Chesterman CN, et al.Coronary stent thrombosis:insi-ghts from the porcine coronary stent model. Thrombo Haemost 2001; 86: 937-938.
    35. Schwartz RS, Edelman ER, Carter A, et al.Drug-eluting stents in preclinical studies:recommended evaluation from a consensus group. Circulation 2002; 106:1867-1873.
    36. Lowe HC, Fahmy RG, Kavurma MM, et al.Catalytic oligodeoxynucleotides derefined a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ Res 2001; 89:670-677.
    37. Scott H. Bradshawa, Lloyd Kennedyb, David F et al.A practical method to rapidly dissolve metallic stents. Cardiovascular Pathology 18 2009; 18:127-133.
    38. Schwartz RS, Huber KC, Murphy JG, et al.Restenosis and the proportional neointimal response to coronary artery injury:results in a porcine model. J Am Coll Cardiol 1992; 19:267-274.
    39. Kornowski R, Hong MK, Tio FO, et al.In-stent restenosis:contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 1998; 31:224-230.
    40. Welt FG, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol.2002; 22(11) 1769-76.
    41. Sehgal SN. Sirolimus:its discovery, biological properties, and mechanism of action. Transplant Proc.2003; 35(Suppl.3),7S-14S.
    42. Axel DI, Kunert W,Goggelmann C,et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery.Circulation,1997;96(2),636-45.
    43. Wiskirchen J,Schober W,Schart N,et al. The effects of paclitaxel on the three phases of restenosis:smooth muscle cell proliferation, migration, and matrix
    formation:an in vitro study.Invest. Radiol.2004; 39(9):565-71.
    44. Nakazawa G, Finn AV,Ladich E, et al.Drug-eluting stent safety:findings from preclinical studied.Expert Rev.Cardiovasc.Ther.2008;6(10):1379-1391.
    45. Kubo T,Imanishi T,Kitabata H et al.Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris a serial optical coherence tomography study. JACC:Cardio-vasc.Imag.2008;1(4):475-484.
    46. Ahmed DD,Sobczak SC,Yunginger JW.Occupational allergied caused by latex.Immunol. Allergy Clin.N. Am.2003;23(2):205-219.
    47. Leggat PA,Kedjarune U.Toxicity of methyl methacrylate in dentistry.Int Den-tal J.2003;53(3):126-131.
    48. Nakazawa G,Finn AV,Kolodgie FD,Virmani R.A review of current devices and a look at new technology:Drug-eluting stents.Expert Rev Med Devices. 2009; 6(1):33-42.
    49. Joner M, Nakazawa G,Finn AV et al.Endothelial cell recovery between com-parator polymer-based drug-eluting stents. J.Am.Coll.Cardiol.2008; 52(5): 333-342.
    50. Stone GW,Midei M,Newman W et al.Randomized comparison everolimus-eluting and paclitaxel-eluting stents:two-year clinical follow-up from the clinical evaluation of the Xience V Everolimus Eluting Coronary Stent System in the Treatment of Patients with de nove Native Coronary Artery Lesions(SPIRIT)Ⅲ trial.Circulation.2009;119(5):680-686.
    51. Meredith IT,Ormiston J,Whitbourn R et al.Four-year clinical follow-up after implantation of the endeavor zotarolimus-eluting stent:ENDEAVOR Ⅰ,the first-in-human study.Am.J.Cardiol.2007; 100(8B):51M-61M.
    52. Grube E,Hauptmann K,Buellesfeld L,et al.Six-month results of a randomised study to evaluate safety and efficacy of a biolimus A9 eluting stent with a biodegradable polymer coating. Eurointer-vention.2005; 1:53-57.
    53. Windecker S,Serruys PW,Wandel S et al.Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation(LEADERS),a randomised non-inferiority trial.Lancet.2008;372(9644):1163-1173.
    54. Togni M,Windecker S,Cocchia R et al.Sirolimus-eluting stent associated with paradoxic coronary vasoconstriction. J.Am.Coll.Cardiol.2005;46(2):231-236.
    55. Hamilos MI,Ostojic M,Beleslin B et al.Differential effects of drug-eluting ste-nts on local endothelium-dependent coronary vasomotion. J Am Coll Cardiol. 2008; 51(22):2123-2129.
    1. Fuster,O'rourke,Walsh,et al.Hurst's THE HEART 12th edition 2008; 1427-1429.
    2. Miller AM,McPhaden AR,Preston A et al. TNFalpha increases the inflammat-ory response to vascular balloon injury without accelerating neointimal formation. Atherosclerosis 2005; 179(1):51-9.
    3. Rectenwald JE,Moldawer LL,Huber TS et al. Direct evidence for cytokine involvement in neointimal hyperplasia.Circulation 2000;102(14):1697-702.
    4. Nuhrenberg TG,Voisard R,Fahlisch F et al.Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty. FASEB J.2005;19(2):246-8.
    5. Adkins JR,Castresana MR,Wang Z et al.Am. Surg 2004;70(5):384-7.
    6. Dichtl W,Stocker EM,Mistlberger K et al. Countervailing effects of rapamy-cin (sirolimus) on nuclear factor-kappa B activities in neointimal and medial smooth muscle cells.Atherosclerosis.2006;186(2):321-30.
    7. Mehrhof FB,Schmidt-Ullrich R,Dietz R et al. Regulation of vascular smooth muscle cell proliferation:role of NF-kappaB revisited.Circ Res.2006; 96:958-964.
    8. Giordano A,Avellino R,Ferraro P et al. Rapamycin antagonizes NF-kappaB nuclear translocation activated by TNF-alpha in primary vascular smooth muscle cells and enhances apoptosis.Am J Physiol Heart Circ Physiol.2006; 290(6):H2459-65.
    9. Jayaraman T,Marks AR. Rapamycin-FKBP12 blocks proliferation, induces differentiation, and inhibits cdc2 kinase activity in a myogenic cell line. J Biol Chem.1993;268(34):25385-8.
    10. Martin KA,Rzucidlo EM,Merenick BL et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Phy-siol.2004;286(3):C507-17.
    11. Jaschke B,Milz S,Vogeser M et al. Local cyclin-dependent kinase inhibition by flavopiridol inhibits coronary artery smooth muscle cell proliferation and migration:Implications for the applicability on drug-eluting stents to prevent neointima formation following vascular injury. FASEB J 2004; 18(11):1285-7.
    12. Liu B,Itoh H,Louie O et al. The role of phospholipase C and phosphatidylino sito-13-kinase in vascular smooth muscle cell migration and proliferation. J Surg Res 2004;120(2):256-65.
    13. Sakakibara K,Liu B,Hollenbeck S et al. Rapamycin inhibits fibronectin-induced migration of the human arterial smooth muscle line (E47) through the mamma-liannn target of rapamycin. Am. J. Physiol. Heart Circ. Physiol 2005; 288(6):2861-8.
    14. McAllister SS,Becker-Hapak M,Pintucci G et al. Novel p27(kipl) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cyc-le arrest functions. Mol. Cell. Biol 2003; 23(1):216-28.
    15. Park J,Ha H,Ahn HJ et al. Sirolimus inhibits platelet-derived growth factor-induced collagen synthesis in rat vascular smooth muscle cells. Transpl-ant. Proc 2005;37(8):3459-62.
    16. Miriuka SG,Rao V,Peterson M et al. mTOR inhibition induces endothelial progenitor cell death.Am J Transplant.2006;6(9):2069-79.
    17. Iakovou I,Schmidt T,Bonizzoni E et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents.JAMA 2005;293(17):2126-30.
    18. de la Torre-Hernandez JM et al. Drug-eluting stent thrombosis:results from the multicenter Spanish registry ESTROFA (Estudio ESpanol sobre TROmbo-sis de stents FArmacoactivos). J Am Coll Cardiol.2008;51:986-990.
    19. Cutlip DE et al. Clinical end points in coronary stent trials:a case for standard-ized definitions. Circulation 2007; 115:2344-2351.
    20. Kastrati A et al. Analysis of 14 trials comparing sirolimus-eluting stents with
    bare-metal stents. N Engl J Med.2007;356:1030-1039.
    21. Pinto Slottow TL et al. Observations and outcomes of definite and probable drug-eluting stent thrombosis seen at a single hospital in a four-year period. Am. J. Cardiol 2008; 102:298-303.
    22. Joner M,Finn AV,Farb A et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Am Coll Cardiol.2006;48(1):193-202.
    23. Cutlip DE. Drug-eluting stent era:will we improve 5-year outcomes?Coron Artery Dis 2006; 17(3):289-92.
    24. Nakazawa G, Ladich E, Finn AV et al.Pathophysiology of vascular healing and stent mediated arterial injury. EuroIntervention 2008);4(C):5-10.
    25. Hamilos MI et al. NOBORI CORE Investigators. Differential effects of drug-eluting stents on local endothelium-dependent coronary vasomotion. J. Am Coll Cardiol.2008;51:2139-2140.
    26. Wiskirchen J,Schober W,Schart N et al.Invest. The effects of paclitaxel on the three phases of restenosis:smooth muscle cell proliferation, migration, and matrix formation:an in vitro study. Radiol 2004; 39(9):565-71.
    27. Davis HW,VandenBerg E,Reid MD et al. Paclitaxel impairs endothelial cell adhesion but not cytokine-induced cellular adhesion molecule expression. Ann Vasc Surg.2005;19(3):398-406.
    28. Parry TJ,Brosius R,Thyagarajan R et al. Drug-eluting stents:sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur. J. Phar-macol.2005;524(1-3):19-29.
    29. Fajadet J,Morice MC,Bode C et al. Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents:three-year results of the RAVEL trial. Circulation 2005;111(8):1040-4.
    30. Suttorp MJ,Laarman GJ,Rahel BM et al. Primary Stenting of Totally Occlud-ed Native Coronary Arteries II (PRISON II):a randomized comparison of bare metal stent implantation with sirolimus-eluting stent implantation for the treatment of total coronary occlusions. Circulation 2006; 114(9):921-8.
    31. Schampaert E,Moses JW,Schofer J et al. Sirolimus-eluting stents at two years: a pooled analysis of SIRIUS, E-SIRIUS, and C-SIRIUS with emphasis on late revascularizations and stent thromboses. Am. J. Cardiol 2006;98(1):36-41.
    32. Kelbaek H,Thuesen L,Helqvist S et al. The Stenting Coronary Arteries in No n-stress/benestent Disease (SCANDSTENT) trial. J Am Coll Cardiol 2006; 47(2):449-55.
    33. Ardissino D,Cavallini C,Bramucci E et al. Sirolimus-eluting vs uncoated stents for prevention of restenosis in small coronary arteries:a randomized trial. JAMA 2004;292(22):2727-34.
    34. Jimenez-Quevedo P,Sabate M,Angiolillo DJ et al. Vascular effects of siroli mus-eluting versus bare-metal stents in diabetic patients:three-dimensional ultrasound results of the Diabetes and Sirolimus-Eluting Stent (DIABETES) Trial. J. Am. Coll. Cardiol 2006; 47(11):2172-9.
    35. Moses JW,Leon MB,Popma JJ et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med 2003; 349(14):1315-23.
    36. Maluenda G, Lemesle G, Waksman R.A critical appraisal of the safety and efficacy of drug-eluting stents. Clin Pharmacol Ther.2009;85(5):474-80.