荔枝果实成熟过程中的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以荔枝品种‘乌叶’(Litchi chinensis Sonn.cv.‘Wuye’)和‘下番枝’(Litchi chinensis Sonn.cv.‘Xiafanzhi’)果实为试验材料,利用双向电泳和质谱技术对荔枝果实不同成熟时期进行了差异蛋白质组学研究。获得了与荔枝果实成熟衰老相关的差异蛋白,并对部分差异蛋白进行cDNA克隆及相对定量表达分析。主要研究结果如下:
     1.建立了适合荔枝果皮和假种皮中总蛋白质提取的方法和双向电泳体系。以荔枝果皮和假种皮为材料,比较了TCA-丙酮、丙酮和酚3种提取方法在总蛋白产量、单向SDS-PAGE和双向电泳等方面的区别,并对荔枝果皮和假种皮的双向电泳体系进行探索。结果表明,酚抽提法最佳,提取的总蛋白得率最高;所获蛋白在单向SDS-PAGE中形成条带数目最多,最清晰;经双向电泳分离用银染显色,2D图谱分辨率较好,蛋白点清晰,主要分布在pH4-8,15.0-85.0 kD,可有效解析荔枝果皮和假种皮的蛋白质组。
     2.采用18 cm pH4-7和pH3-10 IPG胶条相结合的方法对‘乌叶’果皮不同成熟期进行蛋白质分离,随着果皮的成熟蛋白点数总体表现出先上升后下降的变化。其中,以阶段Ⅲ检测到的蛋白点数目最多,分别为753和937个,这个时期刚好处在荔枝果皮的转色期;以阶段Ⅵ完全转红期的蛋白点数最少,分别为651和604个。从pH4-7胶条分离的蛋白中选取79个和pH3-10胶条分离的蛋白中选取28个,总107个差异蛋白进行MALDI-TOF/TOF质谱分析,获得了107个完整的肽指纹图谱,61个差异蛋白获得成功鉴定,成功率约为57.0%。通过生物信息学分析,这些鉴定成功的已知蛋白参与了糖和能量代谢(29.51%)、蛋白质合成和代谢以及稳定(11.48%)、基因表达调控(11.48%)、抗氧化(9.84%)、细胞代谢和周期调控(4.92%)、氨基酸代谢(4.92%)、转录与翻译(4.92%)、信号转导(1.64%)等生命活动功能,功能未知的蛋白为21.31%。
     3.采用18 cm pH4-7和pH3-10 IPG胶条相结合的方法对‘下番枝’果皮不同转色期进行蛋白质分离,随着果皮转色的进程蛋白点数表现出上升趋势。其中,以果皮转红阶段检测到的蛋白点数目最多,分别为750和1106个,在果皮为青色期的蛋白点最少,分别为643和1041个。从pH4-7胶条分离的蛋白中选取55个和pH3-10胶条分离的蛋白中选取10个,总65个差异蛋白进行MALDI-TOF/TOF质谱分析,获得了65个完整的肽指纹图谱,43个差异蛋白获得成功鉴定,成功率约为66.15%。通过生物信息学分析,这些鉴定成功的蛋白参与了糖和能量代谢(20.93%)、蛋白质合成和代谢以及稳定(16.28%)、基因表达调控(13.95%)、信号转导(6.98%)、氨基酸代谢(6.98%)、转录与翻译(6.98%)、次生代谢(4.65%)、抗氧化(4.65%)、细胞结构相关(2.33%)、激素相关(2.33%)等生命活动功能,功能未知的蛋白为13.95%。
     4.采用18 cm pH4-7胶条对‘乌叶’假种皮不同成熟期进行蛋白质分离,随着果皮转色的进程蛋白点数表现出先上升再下降的变化趋势。其中,以阶段Ⅲ检测到的蛋白点数目最多1374个,这个时期刚好处在荔枝果实的转色期;以阶段Ⅵ果实完全转红期的蛋白点数最少914个;其它时期检测到的蛋白点为:阶段Ⅰ1144个、阶段Ⅱ1330个、阶段Ⅳ1096个、阶段Ⅴ1012个。这与乌叶果皮转色过程中蛋白质点数的总体变化趋势相似,在阶段Ⅲ能检测到的蛋白质最多,在阶段Ⅵ完全转红期的蛋白质最少。选取64个差异蛋白进行MALDI-TOF/TOF质谱分析,获得了64个完整的肽指纹图谱,43个差异蛋白获得成功鉴定,成功率约为67.19%。通过生物信息学分析,这些鉴定成功的蛋白参与了糖和能量代谢(27.91%)、蛋白质合成和代谢以及稳定(11.63%)、氨基酸代谢(6.98%)、细胞结构和周期调控(6.98%)、基因表达调控(4.65%)、转录与翻译(9.3%)、信号转导(4.65%)、抗氧化(4.65%)、次生代谢(4.65%)等生命活动功能,功能未知的蛋白为18.6%。
     5.荔枝果实成熟过程中部分相关蛋白的基因克隆及其在果皮中的表达。
     ①克隆了荔枝果皮Actin1基因的cDNA序列,该序列全长1418 bp,其中开放阅读框(ORF)共有1134 bp,编码377个氨基酸。Actin1在荔枝果皮不同成熟期的蛋白水平和转录水平的表达相对稳定,变化不大。因此,在研究荧光定量表达分析中,所克隆的Actin1基因可作为其它目的基因的内参基因。
     ②克隆了荔枝果皮UFGT基因的cDNA序列,该序列全长1577 bp,其中开放阅读框(ORF)共有1362 bp,编码453个氨基酸。荔枝果皮UFGT基因在转录水平随着果皮着色的加深呈不断上升变化,与其在果皮成熟过程中的蛋白水平表达趋势一致。
     ③克隆了荔枝果皮OEE1基因的cDNA序列,该序列全长1217 bp,其中开放阅读框(ORF)共有1002 bp,编码333个氨基酸。荔枝果皮OEE1基因在转录水平随着果皮着色的加深呈不断下降变化,与其在果皮成熟过程中的蛋白水平表达趋势一致。
     ④克隆了荔枝果皮rbcs基因的cDNA序列,该序列全长868 bp,其中开放阅读框(ORF)共有567 bp,编码188个氨基酸。荔枝果皮rbcs基因在转录水平随着果皮着色的加深呈不断下降变化,与其在果皮成熟过程中的蛋白水平表达趋势一致。
     ⑤克隆了荔枝果皮Aconitase基因的cDNA序列,该片段序列长2945 bp,编码883个氨基酸。荔枝果皮Aconitase基因在转录水平随着果皮着色的加深呈不断上升变化,与其在果皮成熟过程中的蛋白水平表达趋势一致。
     ⑥克隆了荔枝果皮ASR基因的cDNA序列,该片段序列长515 bp,编码99个氨基酸。荔枝果皮ASR基因在转录水平随着果皮着色的加深呈先上升后下降的变化,在阶段Ⅱ的表达量最高,与其在果皮成熟过程中的蛋白水平表达趋势一致。
     ⑦克隆了荔枝果皮TCTP基因的cDNA序列,该序列全长848bp,其中开放阅读框(ORF)共有507 bp,编码168个氨基酸。荔枝果皮TCTP基因在转录水平随着果皮着色的加深呈先上升后下降再上升的变化,与其在果皮成熟过程中的蛋白水平表达趋势不太一致。
     ⑧克隆了荔枝果皮14-3-3基因的cDNA序列,该序列全长1084 bp,其中开放阅读框(ORF)共有792 bp,编码261个氨基酸。荔枝果皮14-3-3基因在转录水平随着果皮着色的加深呈先上升后下降再上升的变化,与其在果皮成熟过程中的蛋白水平表达趋势不太一致。
     ⑨克隆了荔枝果皮VSP基因的开放阅读框(ORF),该序列长678 bp,编码225个氨基酸。荔枝果皮VSP基因在转录水平随着果皮着色的加深呈不断下降变化,与其在果皮成熟过程中的蛋白水平表达趋势一致。
In this experiment,the pericarp and aril of litchi(Litchi chinensis Sonn.) were utilized as materials,and the techniques of two dimensional electrophoresis(2-DE),Mass Spectrometry(MS)and real-time fluorescence quantified PCR(qRT-PCR)were performed to study the mechanism of fruit ripening in litchi.The main results were as follow:
     1.In order to develop an efficient protein extraction method which was suitable for litchi pericarp and aril proteome analysis, three protein extraction methods based on trichloroacetic acid(TCA)- acetone,and phenol respectively,were compared in total protein yield and the protein resolution in one dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE)and two dimentional gel. It was found that the phenol extraction method was the best one resulting in the highest total protein yield,the most protein bands and the best resolution in one dimentional SDS-PAGE;about 890 protein spots were detected by 2-DE which could obtain clear map and better separation effect followed by silver staining.Most of isoelectric points were found between pH4-8,and most of relative molecular weight of protein was between 15.0 to 85.0 kD.
     2.The proteins of‘wuye’pericarp at different stages during fruit ripening were separated by two dimensional electrophoresis with immobilized pH4-7and pH3-10 gradients. The results indicated that the general numbers of protein increased then decreased during fruit ripening,the most protein numbers could be detected at stageⅢabout 753 and 937 spots,the lowest protein numbers appeared at stageⅥabout 651 and 604 spots.Then 107 spots of differential protein during pericarp ripening were selected and identified through mass spectrometry(MS) analysis,61(57.0%)of them were identified,and they were classified to nine functional classes,which including 18 proteins involved in energy metabolism(29.51%),7 proteins involved in gene regulation(11.48%),7 proteins involved in protein synthesis and metabolism(11.48%),6 proteins involved in stress response and defense(9.84%),3 proteins involved in amino acid metabolism(4.92%),3 proteins involved in cell structural(4.92%),3 proteins involved in transcription factor(4.92%),1 proteins involved in signal transduction(1.64%)and 13 unknown functional proteins(21.31%).
     3.The proteins of‘xiafanzhi’pericarp at different stages during color-changing period were separated by two dimensional electrophoresis with immobilized pH4-7and pH3-10 gradients. The results indicated that the numbers of protein increased during color-changing period,the most protein numbers could be detected at red period about 750 and 1106 spots seperately,the lowest protein numbers appeared at green period about 643 and 1041 spots.Then 65 spots of differential protein during pericarp ripening were selected and identified through mass spectrometry(MS) analysis. 43(66.15%)of them were identified,and they were classified to eleven functional classes,which including 9 proteins involved in energy metabolism(20.93%),7 proteins involved in protein synthesis and metabolism(16.28%),6 proteins involved in gene regulation(13.95%),3 proteins involved in amino acid metabolism(6.98%),3 proteins involved in transcription facto(r6.98%),3 proteins involved in signal transduction(6.98%),2 proteins involved in stress response and defens(e4.65%),2 proteins involved in secondary metabolism(4.65%),1 proteins involved in cell structural(2.33%),1 proteins involved in hormonal phase(2.33%),and 6 unknown fuctional proteins(13.95%).
     4.The proteins of‘wuye’aril at different stages during fruit ripening were separated by two dimensional electrophoresis with immobilized pH4-7 gradients . The results indicated that the general numbers of protein increased then decreased during fruit ripening.The most protein numbers could be detected at stageⅢabout 1374 spots.The lowest protein numbers appeared at stageⅥabout 914 spots.Then 64 spots of differential protein during aril ripening were selected and identified through mass spectrometry(MS) analysis,43(67.19%)of them were identified,and they were classified to 10 functional classes,which including 12 proteins involved in energy metabolism(27.91%),5 proteins involved in protein synthesis and metabolism(11.63%),4 proteins involved in transcription factor(9.3%),3 proteins involved in amino acid metabolism(6.98%),3 proteins involved in cell structuraln and division cycle(6.98%),2 proteins involved in stress response and defense(4.65%),2 proteins involved in gene regulation(4.65%),2 proteins involved in secondary metabolism(4.65%),2 proteins involved in signal transduction(4.65%),and 8 unknown fuctional proteins(18.6%).
     5.Cloning of several ripening associated protein genes were expressed at transcript level during different ripening stages in pericarp.
     ①Actin1 gene was cloned and its cDNA full-length was 1418 bp,and its ORF was 1418 bp which encoded 377 amino acids. Actin1 gene expressed stablely at transcript and protein levels in pericarp.Thus the Actin1 gene was used as reference gene which was used to detect other target genes expression at transcript level during fruit ripening.
     ②The full-length cDNA sequence of UFGT gene was cloned with 1577 bp.It contained a 1362 nucleotides open reading frame which encoded protein of 453 amino acid residues.Transcription level of UFGT gene was increasing with the deepening of pericarp color,which was also consistent with the change at protein level.
     ③The OEE1 gene was cloned with full-length 1217 bp and its ORF was 1002 bp which encoded 333 amino acids.The relative expression of OEE1 gene was decreasing during fruit ripening at transcription level and reached the lowest level at stageⅥ,which was also consistent with the trend at protein level.
     ④Rbcs gene was cloned and its cDNA full-length was 868 bp,and its ORF was 567 bp which encoded 188 amino acids. The relative expression of rbcs gene was decreasing duing fruit ripening at transcription level and reached the lowest level at stageⅥ,which was also consistent with the change at protein level.
     ⑤The partial sequence of Aconitase gene isolated from pericarp by RACE was 2945 bp,encoding 883 amino acid residues. Quantitative real-time RT-PCR analysis indicated that Aconitase mRNA accumulated during pericarp ripening and reached the highest level at periodⅥ,the trend of transcription level was similar with the change of protein level.
     ⑥The fragment cDNA of ASR gene contains 515 bp length was cloned and encoding 99 amino acids. The relative expression of ASR gene was first increased and then decreased changes during fruit ripening at transcription level ,and reached the highest level at stageⅡ,which was also consistent with the change at protein level.
     ⑦The full-length cDNA clone of TCTP gene contained 848 with an open reading frame of 507 nucleotides and encoded 168 amino acids. The relative expression of TCTP gene was first increased from stageⅠtoⅡ,then decreased to stageⅣ,further addition to stageⅥduing fruit ripening at transcription level.The change of transcription level was not consistent with the tendency at protein level.
     ⑧The 14-3-3 gene was cloned and its cDNA full-length was 1084 bp.Its ORF was 792 bp which encoded 261 amino acids. The relative expression of 14-3-3 gene was first increased from stageⅠtoⅢ,then decreased to stageⅤ,further addition to stageⅥduing fruit ripening at transcription level.The change of transcription level was not consistent with the tendency at protein level.
     ⑨The ORF sequence of VSP gene was cloned with 678 bp encoding 225 amino acids. The relative expression of VSP gene was reducing duing fruit ripening at transcription level and reached the lowest level at stageⅥ,which was also consistent with the change at protein level.
引文
[1]李恒球.福建荔枝史话[J].福建果树, 1995: 52-54.
    [2]欧良喜,陈洁珍,向旭,等.荔枝种质资源的研究现状与展望[J].中国热带农业, 2010, (35): 33-36.
    [3]孙清明,欧良喜,向旭,等.荔枝品种选育进展[J].果树学报, 27(5): 790-796.
    [4]吴淑娴.中国果树志·荔枝卷[M].北京:中国林业出版社, 1998.
    [5]罗桂环.我国荔枝的起源和栽培发展史[J].古今农业, 2001: 71-78.
    [6]邱云霞,黄辉白.荔枝果实发育的研究Ⅰ,对一个复杂的相关体系的剖析[J].华南农业大学学报, 1986, 7(3): 44-50.
    [7] Huang H, Xu J. The developmental patterns of fruit tissues and their correlative relationships in Litchi chinensis Sonn[J]. Scientia Horticulturae, 1983, 19(3-4): 335-342.
    [8] Joubert. The litchi[J]. Pretoria:Bull.Gov.Printer, 1970: 389.
    [9] Paull R E, Chen N J, Deputy J, et al. Litchi growth and compositional changes during fruit development[J]. Journal of the American Society for Horticultural Science, 1984, 109(6): 817-821.
    [10]谢龙莲.印度荔枝果实生长发育研究[J].世界热带农业信息, 2007, 5,50
    [11]黄辉白,江世尧,谢昶.荔枝假种皮的发生和果实的个体发育[J].华南农学院学报, 1983, 4(4): 78-83.
    [12]李建国,黄辉白,黄旭明.荔枝果实发育时期的新划分[J].园艺学报, 2003, 30(3): 307-310.
    [13]邱云霞,黄辉白.荔枝果实发育的研究Ⅱ,干鲜重变化动态及水分与溶质的进入与分配[J].园艺学报, 1986, 13(2): 81-85.
    [14]李建国,刘向东.荔枝果皮发育细胞学研究[J].园艺学报, 2003, 30(1): 23-28.
    [15]黄辉白.具假种皮(荔枝、龙眼)果实生理研究进展[J].园艺学年评, 1995, 1: 107-120.
    [16] Sun J, Loboda T, Sung S J S, et al. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength[J]. Plant Physiology, 1992, 98(3): 1163.
    [17]黄辉白,程贵文,高飞飞.荔枝果实发育的研究Ⅱ.成熟期间某些生理生化特点[J].园艺学报, 1986, 13(1): 9-15.
    [18] Chan Jr H T, Kwok S C M, Lee C W Q. Sugar composition and invertase activity in lychee[J]. Journal of Food Science, 1975, 40(4): 772-774.
    [19]李建国,罗诗,袁炜群.荔枝果实成熟期间糖积累和糖代谢相关酶活性变化[J].华南农业大学学报, 2003, 24(2): 87-88.
    [20]谢龙莲.荔枝果肉中糖和有机酸含量研究[J].世界热带农业信息, 2007, 5,50
    [21]王惠聪,黄辉白,黄旭明.荔枝果实的糖积累与相关酶活性[J].园艺学报, 2003, 30(1): 1-5.
    [22] Gaur G S, Bajpai P N. Some aspects of developmental physiology of the litchi fruit[J]. Indian J. Hortic, 1978, 10: 173-177.
    [23]胡志群,王惠聪,胡桂兵.高效液相色谱测定荔枝果肉中的糖,酸和维生素C[J].果树学报, 2005, 22(5): 582-585.
    [24] M L. Post harvest responses and grouth regulators,Pwstlcide chemistry in the 20th century,American chem[J]. Society, 1977: 283-285.
    [25]季作梁,梁立峰.荔枝果实发育期间内源激素含量动态[J].华南农业大学学报, 1992, 13(3): 93-98.
    [26]向旭,张展微.糯米糍荔枝坐果与内源激素的关系[J].园艺学报, 1994, 21(1): 1-6.
    [27]向旭,邱燕平.糯米糍荔枝果实内源激素与落果的关系[J].果树科学, 1995, 12(2): 88-92.
    [28]王碧青,邱燕萍.荔枝结果过程中内源激素变化及单性结果的诱导[J].园艺学报, 1997, 24(1): 19-24.
    [29]李建国,黄旭明,黄辉白. NAA增大荔枝果实及原因分析[J].华南农业大学学报, 2004, 25(2): 10-12.
    [30]周碧燕,叶永昌.荔枝果实发育期间内源激素含量的变化[J].园艺学报, 1998, 25(3): 236-240.
    [31]李建国,周碧燕.大核和焦核‘桂味’荔枝果实发育及其发育期间果皮中内源激素含量的变化比较[J].植物生理学通讯, 2005, 41(5): 587-590.
    [32]陈文豁,庄伊美,吕柳新.赤霉素对荔枝保花保果的试验初报[J].中国果树, 1959, (5): 24-28.
    [33]季作梁,王钢涛.荔枝果实发育过程中细胞分裂素的变化[J].果树科学, 1996, 13(2): 92-95.
    [34]李宗霆,周燮.植物激素及其免疫检测技术[M].江苏科学技术出版社, 1996.
    [35]周睿,杨洪强.脱落酸对植物库强度的调节作用[J].植物生理学通讯, 1996, 32(3): 223-228.
    [36]郭志雄.油木奈坐果及果实生长发育机制的若干研究[D].福州:福建农业大学, 1999.
    [37] Yuan R, Huang H. Litchi fruit abscission: its patterns, effect of shading and relation to endogenous abscisic acid[J]. Scientia Horticulturae, 1988, 36(3-4): 281-292.
    [38]邱燕萍,向旭.荔枝三种结实类型内源激素的平衡与坐果机理[J].果树科学, 1998, 15(1): 39-43.
    [39]胡桂兵,王卫华.荔枝果皮花青苷与内源激素含量的变化规律[J].福建果树, 2000, (1): 1-3.
    [40]胡桂兵,王卫华.套袋对荔枝果皮中的色素,酚类物质和内源激素的影响[J].华南农业大学学报, 2001, 22(1): 31-34.
    [41]王惠聪,黄旭明,胡桂兵,等.荔枝果皮花青苷合成与相关酶的关系研究[J].中国农业科学, 2004, 37(12): 2028-2032.
    [42]尹金华,高飞飞. ABA和乙烯对荔枝果实成熟和着色的调控[J].园艺学报, 2001, 28(1): 65-67.
    [43]尹金华,高飞飞.乙烯对荔枝果实成熟的影响[J].果树科学, 1999, 16(4): 272-275.
    [44]欧良喜,袁沛元,邱燕萍,等.荔枝花穗发育及坐果初期内源多胺含量的变化分析[J].农业科技通讯, 2009, (9): 76-78.
    [45]蒋学美.荔枝坐果与多胺的关系及相关基因克隆研究[D].武汉:华中农业大学, 2008.
    [46]李建国,周碧燕,黄旭明,等.‘妃子笑’荔枝不同花期果实大小与激素含量的关系[J].园艺学报, 2004, 31(1): 73-75.
    [47]胡桂兵,王卫华.荔枝果皮色素,酚类物质与酶活性的动态变化[J].果树科学, 2000, 17(1): 35-40.
    [48]李平,王卫华.荔枝果实发育过程中果皮色素的变化[J].热带亚热带植物学报, 1999, 7(1): 53-58.
    [49]王惠聪,黄辉白.‘妃子笑’荔枝果实着色不良原因的研究[J].园艺学报, 2002, 29(5): 408-412.
    [50]王家保,刘志媛,杜中军,等.荔枝果实发育过程中果皮颜色形成的相关分析[J].热带作物学报, 2006, 27(2): 11-17.
    [51]魏永赞,胡福初,秦永华,等.实时荧光定量PCR检测荔枝果皮中基因表达方法的建立[J].热带作物学报, 2010,31(8): 1523-1529.
    [52]胡桂兵,李敬.不同生长调节剂和营养剂对妃子笑荔枝果色及营养品质的影响[J].广东农业科学, 2000, (3): 24-26.
    [53]陈大成,王卫华.套袋对妃子笑荔枝果实着色的影响[J].华南农业大学学报, 1999, 20(4): 65-69.
    [54] Wasinger V C, Cordwell S J, Cerpa‐Poljak A, et al. Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(1): 1090-1094.
    [55]曹尚银,张秋明,郭俊英,等.蛋白质组学研究技术及其在果树学中的应用[J].果树学报, 2005, 22(2): 138-142.
    [56] Deytieux C, Geny L, Lapaillerie D, et al. Proteome analysis of grape skins during ripening[J]. Journal of experimental botany, 2007, 58(7): 1851.
    [57] Grimplet J, Wheatley M D, Jouira H B, et al. Proteomic and selected metabolite analysis of grape berry tissues under well‐watered and water‐deficit stress conditions[J]. Proteomics, 2009, 9(9): 2503-2528.
    [58] Marsoni M, Bracale M, Espen L, et al. Proteomic analysis of somatic embryogenesis in Vitis vinifera[J]. Plant cell reports, 2008, 27(2): 347-356.
    [59] Vincent D, Ergül A, Bohlman M C, et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity[J]. Journal of experimental botany, 2007, 58(7): 1873.
    [60] Jellouli N, Ben Jouira H, Skouri H, et al. Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress[J]. Journal of plant physiology, 2008, 165(5): 471-481.
    [61] Skylas D J, Van Dyk D, Wrigley C W. Proteomics of wheat grain[J]. Journal of cereal science, 2005, 41(2): 165-179.
    [62] Andon N L, Hollingworth S, Koller A, et al. Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry[J]. Proteomics, 2002, 2(9): 1156-1168.
    [63] Fukuda H. Tracheary element formation as a model system of cell differentiation[J]. International Review of Cytology–a Survey of Cell Biology, 1992, 136: 289–332.
    [64] Koller A, Washburn M P, Lange B M, et al. Proteomic survey of metabolic pathways in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11969.
    [65] Santoni V, RouquiéD, Doumas P, et al. Use of a proteome strategy for tagging proteins present at the plasma membrane[J]. The Plant Journal, 1998, 16(5): 633-641.
    [66] Gallardo K, Job C, Groot S P C, et al. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds[J]. Plant Physiology, 2002, 129(2): 823.
    [67]陈伟,吕柳新.‘乌叶’荔枝胚胎发育过程特异蛋白的变化[J].园艺学报, 2001, 28(6): 504-508.
    [68]张以顺,向旭,黄上志,等.荔枝胚败育过程中内源激素与蛋白质含量的变化[J].植物生理与分子生物学学报, 2003, 29(3): 233-238.
    [69]李蕾.无核荔枝胚败育相关蛋白质的分离鉴定及cDNA克隆[D].广州:华南热带农业大学, 2006.
    [70]李蕾,彭存智,李明芳,等.醮核荔枝胚胎发育相关蛋白质的分离及初步鉴定[J].热带亚热带植物学报, 2008, 16(6): 537-544.
    [71]陈伟,吕柳新.顽拗植物荔枝蛋白质双向电泳的改良方法[J].福建农业大学学报, 2001, 30(1): 123-126.
    [72]李焕玲,赖钟雄,陈义挺,等. 66份荔枝古树遗传多样性的RAPD分析[J].热带作物学报, 2009, 30(4): 450-455.
    [73]杨转英,胡桂兵,王惠聪,等.不同着色期荔枝果皮总RNA的提取及mRNA差显分析[J].果树学报, 2008, 25(2): 281-285.
    [74] Damerval C, De Vienne D, Zivy M, et al. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins[J]. Electrophoresis, 1986, 7(1): 52-54.
    [75]谷瑞升,蒋湘宁.一种省时高效的木本植物蛋白双向电泳分析方法[J].北京林业大学学报, 1999, 21(5): 7-10.
    [76] Saravanan R S, Rose J K C. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues[J]. PROTEOMICS-Clinical Applications, 4(9): 2522-2532.
    [77] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry, 1976, 72(1-2): 248-254.
    [78] Blum H, Beier H, Gross H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels[J]. Electrophoresis, 1987, 8(2): 93-99.
    [79] Boguth G, Harder A, Scheibe B, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients[J]. Electrophoresis, 2000, 21: 1037-1053.
    [80] Granier F. Extraction of plant proteins for two-dimensional electrophoresis[J]. Electrophoresis, 1988, 9(11): 712-718.
    [81] Wang W, Scali M, Vignani R, et al. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds[J]. Electrophoresis, 2003, 24(14): 2369-2375.
    [82]文李,刘盖,王坤,等.水稻花药总蛋白质双向电泳方法的改良与优化(简报)[J].分子细胞生物学报, 2006, 39(5): 473-476.
    [83]朱志勇,曹尚银,徐小彪,等.新红星苹果花芽蛋白质提取及双向电泳的改良方法[J].果树学报, 2007, 24(4): 549-552.
    [84]马增春,高月,吕俊萍,等.双向凝胶电泳中三种蛋白质检测方法的比较[J].中国生物化学与分子生物学, 2004, 4: 551-556.
    [85] Hirel B, Gallais A. Rubisco synthesis, turnover and degradation: some new thoughts on an old problem[J]. New Phytologist, 2006, 169(3): 445-448.
    [86]柴玉荣.杜氏盐藻的Rbcs基因及其调控区的克隆和功能鉴定[D].郑州:郑州大学, 2005.
    [87]王振英,李学平,李雪梅,等.光系统Ⅱ抑制型除草剂Atrazine诱导小麦幼苗叶绿体蛋白质组变化分析[J].农业环境科学学报, 29(6): 1039-1043.
    [88]张大伟,王玉成,杨传平.二色补血草OEE2基因的克隆和表达[J].植物生理学通讯, 2009, 45(4): 323-328.
    [89]王猛,曹福祥,龙绛雪.马尾松捕光叶绿素a/b结合蛋白基因cab-Pm1的克隆与原核表达[J].林业科学, 2010, 46(9): 172-177.
    [90]高志民,李雪平,彭镇华,等.竹子捕光叶绿素a/b结合蛋白基因全长的克隆和序列分析[J].林业科学, 2007, 43(3): 34-38.
    [91] Konishi H, Yamane H, Maeshima M, et al. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling[J]. Plant molecular biology, 2004, 56(6): 839-848.
    [92] Iwaki T, Wadano A, Yokota A, et al. Aldolase—An Important Enzyme in Controlling the Ribulose 1, 5-bisphosphate Regeneration Rate in Photosynthesis[J]. Plant and cell physiology, 1991, 32(7): 1083.
    [93]杨亚南.小麦根中盐胁迫响应基因FBPA的克隆及鉴定[D].山东:山东大学, 2009.
    [94] Knowles J R. Enzyme catalysis: not different, just better[J]. Nature, 1991, 350(6314): 121-124.
    [95] Xu Y, Yu H, Hall T C. Rice triosephosphate isomerase gene 5 [prime] sequence directs [beta]-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice[J]. Plant physiology, 1994, 106(2): 459.
    [96]周君,徐剑,相人丽,等.蜜蜂磷酸丙糖异构酶基因(AmTpi)全长cDNA的电子克隆及其验证[J].福建农林大学学报:自然科学版, 2009, 38(2): 154-159.
    [97] Helfert S, Estévez A M, Bakker B, et al. Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei[J]. Biochemical Journal, 2001, 357(Pt 1): 117.
    [98] Kim K H, Park H M. Enhanced secretion of cell wall bound enolase into culture medium by the soo1-1 mutation of Saccharomyces cerevisiae[J]. J. Microbiol, 2004, 42: 248–252.
    [99] Motshwene P, Brandt W, Lindsey G. Significant quantities of the glycolytic enzyme phosphoglycerate mutase are present in the cell wall of yeast Saccharomyces cerevisiae[J]. Biochemical Journal, 2003, 369(2): 357.
    [100]秦巧平,张上隆,谢鸣,等.果实糖含量及成分调控的分子生物学研究进展[J].果树学报, 2005, 22(5): 519-525.
    [101]温福平,张檀,张朝晖,等.赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析[J].作物学报, 2009, 35(3): 483-489.
    [102]文李,刘盖,张再君,等.红莲型水稻细胞质雄性不育花药蛋白质组学初步分析[J].遗传, 2006, 28(3): 311-316.
    [103]张文利,沈文飚,叶茂炳,等.植物顺乌头酸酶及其生理功能[J].植物生理学通讯, 2003, 39(4): 391-398.
    [104] Sadka A, Dahan E, Cohen L, et al. ACOnitase activity and expression during the development of lemon fruit[J]. Physiologia Plantarum, 2000, 108(3): 255-262.
    [105] Giribaldi M, Perugini I, Sauvage F X, et al. Analysis of protein changes during grape berry ripening by 2‐DE and MALDI‐TOF[J]. Proteomics, 2007, 7(17): 3154-3170.
    [106]阚娟,王红梅,金昌海,等.桃果实成熟过程中活性氧和线粒体呼吸代谢相关酶的变化[J].食品科学, 2009, (8): 275-279.
    [107]陈玉芹,王喆之.植物翻译控制肿瘤蛋白的分子结构特征与功能预测分析[J].生物技术通报, 2008, (2): 105-112.
    [108]陈玉芹.丹参SmTCTP基因的克隆及其功能的初步研究[D].陕西:陕西师范大学, 2008.
    [109] Ermolayev V, Weschke W, Manteuffel R. Comparison of Al‐induced gene expression in sensitive and tolerant soybean cultivars[J]. Journal of experimental botany, 2003, 54(393): 2745.
    [110] Lopez A P, Franco A R. Cloning and expression of cDNA encoding translationally controlled tumor protein from strawberry fruits[J]. Biologia plantarum, 2006, 50(3): 447-449.
    [111] Sehnke P C, DeLille J M, Ferl R J. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity[J]. The Plant Cell Online, 2002, 14(Supplement 1): 339.
    [112]庞国彩,谢东丽,陈清西,等.龙眼花芽与叶芽差异蛋白分析[J].热带亚热带植物学报, 2009, 17(3): 242-248.
    [113]李美英,徐碧玉,杨小亮,等.香蕉14-3-3蛋白基因Ma-14-3-3的克隆及序列分析[J].安徽农业科学, 2008, 36(27): 11691-11694.
    [114]金谷雷,汪旭升,朱军.水稻14-3-3蛋白家族的生物信息学分析[J].遗传学报, 2005, 32(7): 726-732.
    [115]张大鹏,许雪峰.葡萄果实始熟机理的研究[J].园艺学报, 1997, 24(1): 1-7.
    [116]吴有梅,顾采琴,邰根福,等.ABA和乙烯在草莓采后成熟衰老中的作用[J].植物生理学报, 1992, 18(2): 167-172.
    [117] Jiang Y, Joyce D C, Macnish A J. Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene[J]. Journal of plant growth regulation, 2000, 19(1): 106-111.
    [118] Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit[J]. Journal of experimental botany, 2009, 60(6): 1579.
    [119]陈尚武,张大鹏.ABA和Fluridone对苹果果实成熟的影响[J].植物生理学报, 2000, 26(2): 123-129.
    [120] Lund S T, Peng F Y, Nayar T, et al. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster[J]. Plant Molecular Biology, 2008, 68(3): 301-315.
    [121]曹永庆,冷平,潘烜,等.脱落酸在桃果实成熟过程中的作用[J].园艺学报, 2009, 36(7): 1037-1042.
    [122] Gilad A, Amitai-Zeigerson H, Bar-Zvi D, et al. ASR1, a tomato water-stress regulated gene: genomic organization, developmental regulation and DNA-binding activity[A]. In, 1996: 447-454.
    [123]赵海艳,孙清鹏,秦勇,等.茄子反转录转座子基因片段的克隆及序列分析[J].中央民族大学学报:自然科学版, 2006, 15(4): 299-303.
    [124]李晓玲,赵欣欣.植物基因组中的反转录转座子[J].长春工业大学学报:自然科学版, 2004, 25(4): 21-24.
    [125]张彦昌,赵德英.果树氮素贮藏营养研究进展[J].山西农业科学, 2009, 37(1): 88-91.
    [126]张华,陈月异,史敏晶,等.荔枝种子可溶性贮藏蛋白质的特点[J].热带作物学报, 2007, 28(4): 21-25.
    [127] Tian W M, Wu J L, Hao B Z, et al. Vegetative storage proteins in the tropical tree Swietenia macrophylla: seasonal fluctuation in relation to a fundamental role in the regulation of tree growth[J]. Botany, 2003, 81(5): 492-500.
    [128]赵东旭,徐存栓.永久型70kD热休克蛋白在白菜花发育过程中的免疫组织化学定位[J].西北植物学报, 1998, 18(3): 348-351.
    [129]李冰,刘宏涛,李国良,等.玉米细胞质HSC70的分离纯化及其抗体的制备[J].植物生理学通讯, 2003, 39(5): 486-488.
    [130]牟鸿飞.桂皮紫萁(Osmunda cinnamomea L. var. asiatica)成熟与萌发孢子差异表达蛋白质组学研究[J].哈尔滨:东北林业大学, 2009.
    [131] Ellis R J. The general concept of molecular chaperones[J]. Philosophical Transactions: Biological Sciences, 1993, 339(1289): 257-261.
    [132]王会峰.分子伴侣及其在蛋白质折叠中的作用研究进展[J].现代生物医学进展, 2009, 9(4): 746-748.
    [133]葛瑛,柏锡,才华,等.提高豆科植物蛋氨酸含量的基因工程途径[J].东北农业大学学报, 2009, 40(2): 127-133.
    [134]陈锐,陈亮,王士强,等.水分胁迫下小麦S-腺苷甲硫氨酸合成酶基因的半定量表达模式分析[J].麦类作物学报, 2009, 29(6): 954-958.
    [135]杨晓颖,胡伟,徐碧玉,等.乙烯与果实成熟关系的研究进展[J].热带农业科学, 2008, 28(2): 70-75.
    [136] Flores H E, Galston A W. Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock[J]. Science, 1982, 217(4566): 1259.
    [137] Ronald G D, Siew S P. Acetohydroxyacid synthase[J]. J Biochem Mol Biol, 2000, 33: 351-362.
    [138]陈以峰,李宜慰,汤日圣.乙酸乳酸合酶活性的简易测定方法建立[J].江西农业大学学报, 1996, 18(2): 213-217.
    [139]李惠华,赖钟雄.植物抗坏血酸过氧化物酶研究进展(综述)[J].亚热带植物科学, 2006, 35(2):66-69.
    [140]李颖,马锋旺.抗坏血酸过氧化物酶基因转化苹果的研究[J].西北农业学报, 2010, (1): 140-143.
    [141] Wang J, Zhang H, Allen R D. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress[J]. Plant and cell physiology, 1999, 40(7): 725.
    [142]刘飞虎,梁雪妮,周玮,等.外源SOD和APX基因在转基因烟草中的表达与遗传[J].植物生理学通讯, 2006, 42(5): 877-881.
    [143]赖建勋,金志强,王家保.采后荔枝果皮抗坏血酸过氧化物酶基因的差异表达试验初报[J].现代农业科技, 2007, (14): 7-7.
    [144]赖建勋,金志强,王家保.荔枝抗坏血酸过氧化物酶cDNA的克隆和分析[J].安徽农业科学, 2007, 35(26): 8164-8167.
    [145]吴波,刘勇.柑橘类植物SOD基因片段的克隆和SNP分析[J].安徽农业科学, (22): 11719-11721.
    [146]何敬和,姚丽.小麦Mn-SOD基因的克隆及其在盐胁迫下的表达分析[J].麦类作物学报,2010 30(4) ,630-633.
    [147]史河秀,王世鄂. 2-Cys peroxiredoxins的研究进展[J].解剖学研究, 2007, 29(5) ,380-382.
    [148]陈义挺.龙眼体胚发生过程中的CDC48和GPX基因克隆与表达[D].福州:福建农林大学, 2009.
    [149] Ye Y, Meyer H H, Rapoport T A. Function of the p97–Ufd1–Npl4 complex in retrotranslocation from the ER to the cytosol[J]. The Journal of cell biology, 2003, 162(1): 71.
    [150] Fu X, Ng C, Feng D, et al. Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p[J]. The Journal of cell biology, 2003, 163(1): 21.
    [151] Rape M, Hoppe T, Gorr I, et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48UFD1/NPL4, a ubiquitin-selective chaperone[J]. Cell, 2001, 107(5): 667-677.
    [152] Rabinovich E, Kerem A, Frohlich K U, et al. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation[J]. Molecular and cellular biology, 2002, 22(2): 626.
    [153]陈建中,戴剑.植物蛋白质合成延伸因子[J].植物生理学通讯, 2002, 38(4): 406-411.
    [154] Browning K S. The plant translational apparatus[J]. Plant molecular biology, 1996, 32(1): 107-144.
    [155]张珊珊,陶勇生,郑用琏,等.玉米DEAD-box RNA解旋酶基因的克隆及分析[J].中国生物化学与分子生物学报, 2006, 22(8): 640-646.
    [156] Wang Y, Duby G, Purnelle B, et al. Tobacco VDL gene encodes a plastid DEAD box RNA helicase and is involved in chloroplast differentiation and plant morphogenesis[J]. The Plant Cell Online, 2000, 12(11): 2129.
    [157] Gong Z, Dong C H, Lee H, et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J]. The Plant Cell Online, 2005, 17(1): 256.
    [158]岳海林,孟海军,邓秀新,等.柑橘钙调蛋白cDNA的克隆及序列分析[J].园艺学报, 2006, 33(5): 1075-1078.
    [159]金艳.盐胁迫下小麦叶片蛋白质组差异研究[D].河南:河南农业大学, 2009.
    [160]钟伟良,袁炜群,黄旭明,等.荔枝果皮对外源钙和蔗糖吸收及向细胞壁沉着的研究[J].果树学报, 2006, 23(3): 350-354.
    [161]靳静晨,马东媛,靳永胜,等.烟草转酮醇酶基因(NtTK)的克隆与表达[J].河南农业大学学报,2008, 42(5): 479-482.
    [162]吴利民,陈键,田连福,等.水稻锚蛋白基因家族分析和锚定膜蛋白的表达模式研究[J].激光生物学报, 2007, 16(1): 58-61.
    [163]刘雪梅,金晓玲,巩菊芳.氨酰-tRNA合成酶的结构和功能[J].山东医药, 2009, 49(3): 117-118.
    [164]郑婵新.青少年双侧上肢远端肌萎缩伴膝反射亢进的临床特征及甘氨酰-tRNA合成酶基因突变的研究[D].上海:复旦大学, 2009.
    [165]李岩,周惠. tRNA在基因表达中的调控作用[J].中国科学C辑, 2009, 39(1): 91-97.
    [166] Johanson K, Hoang T, Sheth M, et al. GRS1, a yeast tRNA synthetase with a role in mRNA 3′end formation[J]. Journal of Biological Chemistry, 2003, 278(38): 35923.
    [167] LACOmbe E, Hawkins S, Doorsselaere J, et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships[J]. The Plant Journal, 1997, 11(3): 429-441.
    [168]白勇,巩威,刘天昀,等.水稻肉桂酰辅酶A [J].科学通报, 2003, 48(16): 1780.
    [169]李波,梁颖,柴友荣.植物肉桂酰辅酶A还原酶(CCR)基因的研究进展[J].分子植物育种, 2006, 4(3): 55-65.
    [170]黄春辉,俞波,苏俊,等.‘美人酥’和‘云红梨1号’红皮砂梨果实的着色生理[J].中国农业科学, 43(7): 1433-1440.
    [171]程海燕,李德红.光,糖与激素影响植物花色素苷合成与积累的研究进展(综述)[J].亚热带植物科学, 39(3): 82-86.
    [172] Ford C M, Boss P K, H j P B. Cloning and Characterization of Vitis viniferaUDP-Glucose: Flavonoid 3-O-Glucosyltransferase, a Homologue of the Enzyme Encoded by the Maize Bronze-1Locus That May Primarily Serve to Glucosylate Anthocyanidins in Vivo[J]. Journal of Biological Chemistry, 1998, 273(15): 9224.
    [173] Honda C, Kotoda N, Wada M, et al. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin[J]. Plant Physiology and Biochemistry, 2002, 40(11): 955-962.
    [174]李俊才,李天忠,王志刚,等.‘红巴梨’果皮UFGT基因的克隆及表达分析[J].西北植物学报, (1): 30-34.
    [175] Ju Z, Liu C, Yuan Y. Activities of chalcone synthase and UDPGal: flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple[J]. Scientia horticulturae, 1995, 63(3-4): 175-185.
    [176]魏永赞,胡福初,秦永华,等.实时荧光定量PCR检测荔枝果皮中基因表达方法的建立[J].热带作物学报, 2010, 31(8): 1253-1259.
    [177]陆旺金,蒋跃明.荔枝果实两个膨大素基因的克隆与序列分析[J].中国农业科学, 2003, 36(12): 1525-1529.
    [178]陈美霞,赵从凯,陈学森,等.杏果实发育过程中有机酸积累与相关代谢酶的关系[J].果树学报, 2009, 26(4) :471-474.
    [179]齐红岩,李天来,刘海涛,等.番茄不同部位中糖含量和相关酶活性的研究[J].园艺学报, 2005, 32(2): 239-243.
    [180]李肖蕖,王建设,张根发.植物蔗糖转化酶及其基因表达调控研究进展[J].园艺学报, 2008, 35(9): 1384-1392.
    [181]樊继德,何启伟,王秀峰,等.甜瓜反义酸性转化酶基因对甜瓜的遗传转化[J].园艺学报, 2007, 34(3): 677-682.
    [182]李志凌.甜瓜果实糖分积累与蔗糖代谢相关酶变化规律的基因型差异研究[D].杭州:浙江大学, 2003.
    [183]刘永忠,李道高.柑橘果实糖积累与蔗糖代谢酶活性的研究[J].园艺学报, 2003, 30(4): 457-459.
    [184] Ruffner H P, Kliewer W M. Phosphoenolpyruvate carboxykinase activity in grape berries[J]. Plant Physiology, 1975, 56(1): 67.
    [185] Bahrami A R, Chen Z H, Walker R P, et al. Ripening-related occurrence of phosphoenolpyruvate carboxykinase in tomato fruit[J]. Plant Molecular Biology, 2001, 47(4): 499-506.
    [186]赵淼,吴延军,蒋桂华,等.柑橘果实有机酸代谢研究进展[J].果树学报, 2008, 25(2): 225-230.
    [187]周群.球孢白僵菌噻唑合成酶基因的克隆和功能分析[D].重庆:西南大学, 2008.
    [188]李春子,成善汉.植物小分子热激蛋白的进化及表达调控研究进展[J].热带生物学报, 1(002): 193-196.
    [189]余瑛,夏玉先,蔡绍皙.植物小分子热休克蛋白[J].中国生物工程杂志, 2003, 23(7): 38-41.
    [190]李军,梁春阳,杨继良,等.水稻基因APRT的克隆及其与温敏核雄性不育的关系[J].植物学报, 2003, 45(11): 1319-1328.
    [191]王军花,陈琼,马梅生,等.草鱼eIF-5A的克隆,组织表达和进化分析[J].西北农林科技大学学报:自然科学版, 2009, (8): 48-54.
    [192]石金磊,徐健遥,蒋昌华,等.月季elF-5A基因的表达增强宿主大肠杆菌对高温和低温的耐性木[J].中国生物工程杂志, 2008, 28(1): 18-24.
    [193]王妮.番茄诱导衰老基因脱氧hypusine合酶的克隆[D].吉林:吉林大学, 2007.
    [194]双宝,韩英鹏,李明,等.真核细胞翻译起始因子5A (eIF5A)研究进展[J].东北农业大学学报, (8): 156-160.
    [195] Liu Y P, Nemeroff M, Yan Y P, et al. Interaction of eukaryotic initiation factor 5A with the human immunodeficiency virus type 1 Rev response element RNA and U6 snRNA requires deoxyhypusine or hypusine modification[J]. Neurosignals, 1997, 6(3): 166-174.
    [196] Hongzhi W, Rongcai M A, Ruifen L I, et al. Virus-induced silencing of a tobacco deoxyhypusine synthase gene[J]. Chinese Science Bulletin, 2005, 50(23): 2707-2713.
    [197] Wang T W, Zhang C G, Wu W, et al. Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development[J]. Plant physiology, 2005, 138(3): 1372.
    [198] Park M H. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A)[J]. Journal of biochemistry, 2006, 139(2): 161.
    [199]宋松,葛春艳.磷脂酶D参与的植物信号转导[J].安徽农学通报, 2009, 15(19): 57-57.
    [200]李勇,卢萍,韩冰.植物的磷脂酶D[J].内蒙古林业科技, 2009, 35(001): 46-48.
    [201]王国泽,贾晋,莎娜.植物磷脂酶D的分子生物学研究进展[J].安徽农业科学, 2009, 37(21): 9885-9887.
    [202]李婧,章文华. PLDα1介导ABA调控的拟南芥主根伸长并参与根毛生长[J].云南植物研究, 2009, 31(4): 309-316.
    [203] Sang Y, Cui D, Wang X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis[J]. Plant Physiology, 2001, 126(4): 1449.
    [204] Fan L, Zheng S, Wang X. Antisense suppression of phospholipase D [alpha] retards abscisic acid [mdash] and ethylene-promoted senescence of postharvest arabidopsis Leaves[J]. The Plant Cell Online, 1997, 9(12): 2183.
    [205]侯夫云,王庆美,李爱贤,等.植物花青素合成酶的研究进展[J].中国农学通报, 2009, 25(21): 188-190.
    [206]李琳玲,程华,许锋,等.植物查尔酮异构酶研究进展[J].生物技术通讯, 2008, 19(6): 935-937.
    [207] Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees[J].Plant Molecular Biology Reporter, 1993, 11(2): 113-116.
    [208]赵晓,马会勤,陈尚武,等.葡萄果实发育后期半定量RT-PCR内参基因的优选[J].中国农业大学学报, 2010, 15(3): 7-14.
    [209]曲平治,刘贯山,刘好宝,等.普通烟草K+通道基因NKT4的克隆,序列和表达分析[J].植物遗传资源学报, 2009, 10(3): 354-359.
    [210]刘峰,黄妤,郭清泉,等.苎麻UDPGDH基因的cDNA克隆及表达分析[J].中国农业科学, 2008, 41(11): 3542-3548.
    [211]夏宗良,周朋,武轲,等.玉米对二氧化硫胁迫响应的相关cDNA克隆与分析[J].西北植物学报, 2009, (9): 1736-1741.
    [212]孙云.茶叶抗坏血酸过氧化物酶(APX)的生理学与分子生物学研究[J].福州:福建农林大学, 2009.
    [213] Crick F H C. The packing of-helices: simple coiled-coils[J]. Acta Crystallographica, 1953, 6(8-9): 689-697.
    [214]魏香,曾宪纲,周海梦.蛋白质结构中卷曲螺旋的研究进展[J].中国生物化学与分子生物学报, 2004, 5: 565-571.
    [215]叶方寅.信号肽假说的提出及证实: 1999年诺贝尔生理学医学奖获得者[J].国外医学:分子生物学分册, 1999, 21(6): 377-379.
    [216]郑斌,詹希美.信号肽序列及其在蛋白质表达中的应用[J].生物技术通讯, 2005, 16(3): 296-298.
    [217]侯林,姜丽娟,孙文静,等.中国卤虫actin基因的实时荧光定量PCR方法的建立和优化[J].辽宁师范大学学报:自然科学版, 2006, 29(4): 466-469.
    [218]刘海峰,杨成君,于淼,等.山葡萄UDP-葡萄糖:类黄酮-3-O-葡萄糖基转移酶基因(3GT) cDNA的克隆和分析[J].植物生理学通讯, 2009, (8): 748-752.
    [219] Kobayashi S, Ishimaru M, Ding C K, et al. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin[J]. Plant Science, 2001, 160(3): 543-550.
    [220]彭晓明,王重,徐登献,等.天山雪莲PsbO基因的克隆,原核表达及其烟草中的遗传转化[J].石河子大学学报, 2008, 26(4): 397-401.
    [221]张大伟,王玉成,杨传平.二色补血草OEE2基因的克隆和表达[J].植物生理学通讯, 2009, 4:323-328.
    [222]岳海燕,尹剑锐,闫守庆.野大麦盐胁迫rbcs基因的克隆及序列分析[J].安徽农业科学, 2011, 93(1): 73-77.
    [223]柴玉荣,刘国红,刘红涛,等.杜氏盐藻RuBisCO小亚基基因的克隆和分析[J].生命科学研究, 2008, 12(1): 29-34.
    [224]梁小莲,李辉亮,彭世清.巴西橡胶树HbTCTP基因的克隆及表达[J].分子植物育种, 2009, 7(1): 188-193.
    [225] Moore B W. Specific acidic proteins of the nervous system[J]. Physiological and Biochemical Aspects of Nervous Integratin, 1967: 343-359.
    [226]游向荣,王平,梁文裕,等.龙眼14-3-3基因的克隆与原核表达[J].园艺学报, 2009, 36(10) :1431-1436.
    [227]余梅,江昌俊,房婉萍,等.茶树花蕾14-3-3蛋白基因的分子克隆及差异表达分析[J].中国农业科学, 2008, 41(10): 2983-2991.
    [228] Sehnke P C, DeLille J M, Ferl R J. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity[J]. The Plant Cell Online, 2002,14(Supplement 1): S339.
    [229] Sauter J J, Cleve B. Seasonal variation of amino acids in the xylem sap of“Populus x canadensis”and its relation to protein body mobilization[J]. Trees-Structure and Function, 1992, 7(1): 26-32.
    [230] Tian W M, Peng S Q, Wang X C, et al. Vegetative storage protein in Litchi chinensis, a subtropical evergreen fruit tree, possesses trypsin inhibitor activity[J]. Annals of botany, 2007, 100(6): 1199.
    [231]钟廷琼,李辉亮,田维敏,等.荔枝LcVSP1基因5′调控序列的克隆及功能初步鉴定[J].西北植物学报, 2008, 28(8): 1507-1512.