微生物胞外多糖—结冷胶提取工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物胞外多糖-结冷胶具有凝胶效率高、透明度好、稳定性强等优点,在不同领域有着广泛应用。结冷胶发酵液粘度较高,胶体围绕细胞以粘性聚合物形式构成网状结构,对结冷胶的提取带来了不小的困难。目前研究主要集中在发酵方面,提取工艺报道较少,为此本论文对结冷胶提取工艺进行了初步探索,并得到了低酰基结冷胶的提取工艺路线。
     菌体的去除:比较了离心除菌、絮凝过滤除菌以及微滤除菌方式的优劣。结果表明:(1)离心除菌需要将发酵液大量稀释,工业生产成本较高;(2)微孔过滤除菌效率最高,但初始料液菌体含量过大时,微滤膜表面菌体层较厚,膜通量较小。(3)采用CaCl2作为絮凝剂,经板框过滤可以去除94%左右的菌体。最后确定采用先絮凝过滤再微滤的除菌方式。
     色素的去除:首先考察了粉末活性炭、双氧水的脱色效果。结果表明:酸性或中性条件下粉末活性炭脱色效果最好,但结冷胶回收率很低;双氧水在高温碱性条件下脱色效果较强,但pH大于8时会使结冷胶分子降解。考虑到色素主要是发酵液中残留葡萄糖在脱酰基过程中发生一系列反应所产生,最终确定先用3%HCl将结冷胶与菌体一同沉淀,然后用乙醇洗涤沉淀以去除其中的色素以及葡萄糖的方式来粗步脱色,然后用双氧水彻底脱色。
     蛋白质的去除:考察了等电点除蛋白以及酶法除蛋白。结果表明将料液pH调至4过滤后可以去除大部分蛋白质,但是结冷胶在pH4时也要沉淀,造成其回收率很低;酶法除蛋白效果较好,添加0.3%的碱性蛋白酶,在pH10,55℃下保温4小时蛋白质去除率达90%以上。
     钙离子的去除:分别采用一价离子取代法(KCl)、化学沉淀法(Na2C03、多聚磷酸钠、草酸钠)、螯合法(EDTA)去除钙离子。结果表明使用Na2C03去除钙离子效果最好,干燥后的产品在蒸馏水中稍微加热即可溶解。
     提取工艺总结:1、向发酵液中加入等体积的3%HCl,过滤后将滤饼压榨脱水,然后加入1.5倍滤饼体积的工业酒精并调pH至7,浸泡40min,过滤除去酒精。2、将脱色后的滤饼按发酵液初始体积的2-3倍重新溶解,调pH为10,80℃下保温25min脱酰基。加入0.05%CaCl2(0.0045mol/L)絮凝菌体后用板框过滤去除菌体,过滤温度为80℃,压力0.25MPa,过滤介质为200目工业滤布,助滤剂为硅藻土,添加量为3%,平均分配到滤布和料液中。3、向滤液中加入0.0045mol/L的Na2C03,再用平板微滤除去CaCO3沉淀以及剩余菌体,过滤压力为0.7MPa,过滤介质为0.45μm的聚醚砜滤膜,过滤温度90℃。4、向滤液中加入0.3%(w/v)的碱性蛋白酶,调pH10,55℃下保温4小时除蛋白。5、向除蛋白后的料液中加入0.5%(w/v)双氧水,pH8、75℃下保温15min彻底脱色。6、加入与料液等体积的3%HCl沉淀结冷胶,过滤后得滤饼,然后加入1.5倍滤饼体积的工业酒精并调pH至7,过滤后回收酒精用于第一步洗涤,滤饼于50℃下干燥得白色产品。产品重均分子量为113万,凝胶强度为890g/cm2,透光率为79.9%,结冷胶总回收率为71%。
Extracellular polysaccharide gellan gum is one of the industrially useful microbial exopolysaccharides due to its stability and high gelling efficiency. Because of its high viscosity, the extraction work is very difficult. Current researches are mainly focusing on its fermentation rather than extraction. In laboratory, fermentation broth is largely diluted to reduce its viscosity, and remove the cells by centrifugation, the method is obviously uneconomical for industrial production. In this paper an extraction process for gellan gum was developed including cell removing, decolorization, deproteinization and Ca2+ removing. The total process was as follow:
     The first step decolorization:add 3% HCl (v/v) solution into the broth to precipitate crude gellan gum (gellan gum mixed mainly with cells). The volume of 3%HCl solution is equal to the initial fermentation broth.Then filtrate the precipitate with Plate and Frame Filter(PFF) to get the filter cake(crude gellan gum), and squeeze the cake to remove HCl solution as much as possible. Then the cake was immersed in industrial alcohol of 1.5 cake volumes, and adjusts pH to 7, after 40min, remove alcohol and main pigment by filtration.
     The second step cell removing:dissolve the crude gellan gum in water (the ratio of water volume to initial broth was about 2:1).Then adjust pH to 10,and keep the solution at 80℃for 25min to make gellan deacetylated. After that the cells were flocculated by adding 0.0045mol/L CaCl2 into the solution (pH10,80℃)and removed by filtration with PFF using industrial filter cloth of 200 mesh along with diatomite as filter aid at pressure of 0.25MPa.
     The third step Ca2+ removing and further removing of cells:add 0.0045mol/LNa2CO3 into permeation liquid, filtrated the liquid by PES membrane of 0.45μm pore at 90℃,0.7MPa using PFF.
     The fourth step deproteinization and further decolorization:after cell and Ca2+ removing,0.3% alkaline protease (w/v) was added and the solution was kept at 55℃for 4h to remove protein.after that add 0.5% H2O2 and keep the solution at 75℃,pH8 forl5 min to remove pigment absolutely.
     The last step precipitate and drying:add equal volume of 3%HC1 into the solution, then get the precipitate by filtration,and wash it with alcohol and adjust the pH to7, then remove the alcohol by filtration again.At last drying the refined gellan gum at 50℃. The molecular weight, gel strength, transparency, and total recovery of deacetylated gellan gum was 1130000,890g/cm2,79.9%,71% respectively.
引文
[1]詹晓北,朱莉.新型微生物多糖胶联多糖[J].工业微生物,1996,26(2):27-34,45.
    [2]Banik RM, Kanari B, Upadhyay SN. Exopolysaccharide of the gellan family: prospects and potential[J]:World Journal of Microbiology & Biotechnology,2000, 16(5):407-414.
    [3]Jay AJ, Colquhou IJ, Ridout MJ, et al. Analysis of structure and function of gellans with different substitution patterns[J]. Carbohydrate Polymers, 1998,35(3-4):179-188.
    [4]Willoughby LE, Kasspis S. The influence of sucrose upon the gelation of gellan gum in large deformation Compression analysis[J]. Food Science and Technology Tady,1994, (8):227-233.
    [5]胡国华.功能性食品胶[M].北京:化学工业出版社,2004:237-254.
    [6]Kang KS, Veeder GT, Mirrasoul PJ, et al. Agar-like polysaccharide produced by a pseudomonas species-production and basic properties[J]. Applied and Environmental Microbiology,1982,43(5):1086-1091.
    [7]文一,赵国华.一种新型微生物胞外多糖——结冷胶[J].中国食品添加剂,2003,3:49-52.
    [8]Tang JM, Tung MA, Zeng YY. Compression strength and deformation of gellan gels formed with mono- and divalent cations[J]. Carbohydrate Polymers,1996,29(1): 11-16.
    [9]Chandrasekaran R, Thailambal VG. The influence of calcium-ions, acetate and 1-glycerate groups on the gellan double-helix[J]. Carbohydrate Polymers,1990, 12(4):431-442.
    [10]王珊杰.结冷胶的生产菌种选育及发酵工艺的研究[硕士学位论文].无锡,江南大学,2009,3.
    [11]聂凌鸿,彭华松.微生物胞外多糖—结冷胶的生产与应用前景[J].生命的化学,2002,22(2):178-181.
    [12]李璠,朱家壁.新型高分子材料结冷胶的性质和应用[J]-中国药业,2007,16(9),1-3.
    [13]Nickerson MT, Paulson AT, Speers RA. Rheological properties of gellan solutions:effect of calcium ions and temperature on pre-gel formation[J]. Food Hydrocolloids,2003,17(5):577-583.
    [14]Huang YQ, Singh PP, Tang JM, et al. Gelling temperatures of high acyl gellan as affected by monovalent and divalent cations with dynamic rheological analysis[J]. Carbohydrate Polymers,2004,56(1):27-33.
    [15]Mao R, Tang J, Swanson BG. Texture properties of high and low acyl mixed gellan gels[J]. Carbohydrate Polymers,2000,41(4):331-338.
    [16]Morrisson MA, Sworn G, Clark RC, et al. New textures with high acyl gellan gum[J]. Royal Society Of Chemistry Special Publications,2002,278:297-305.
    [17]Williams PA. Special issue:10th Gums & Stabilisers for the Food Industry[J]. Food Hydrocolloids,2000,14(3):189-189.
    [18]Papageorgiou M, Kasapis S. The effect of added sucrose and corn syrup on the physical-properties of gellan-gelatin mixed gels[J]. Food Hydrocolloids,1995,9(3): 211-220.
    [19]Martins LO, Sacorreia I. Gellan gum biosynthetic-enzymes in producing and nonproducing variants of pseudomonas-elodea[J]. Biotechnology and Applied Biochemistry,1991,14(3):357-364.
    [20]Huang YQ, Tang JM, Swanson BG, et al. Effect of calcium concentration on textural properties of high and low acyl mixed gellan gels[J]. Carbohydrate Polymers, 2003,54(4):517-522.
    [21]Videira PA, Cortes LL, Fialho AM, et al. Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461[J]. Applied and Environmental Microbiology,2002,66(5):2252-2258.
    [22]Marques AR, Ferreira PB, Sa-Correia I, et al. Characterization of the ugpG gene encoding a UDP-glucose pyrophosphorylase from the gellan gum producer Sphingomonas paucimobilis ATCC 31461 [J]. Molecular Genetics and Genomics, 2003,268(6):816-824.
    [23]Martins LO, Sacorreia I. Gellan gum biosynthetic-enzymes in producing and nonproducing variants of pseudomonas-elodea[J]. Biotechnology and Applied Biochemistry,1991,14(3):357-364.
    [24]Vincent C, Duclos B, Grangeasse C, et al. Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria[J]. Journal of Molecular Biology,2000,304(3):311-321.
    [25]Sa-Correia I, Fialho AM, Videira P, et al. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461:Genes, enzymes and exopolysaccharide production engineering[J]. Journal of Industrial Microbiology & Biotechnology, 2002,29(4):170-176.
    [26]Harding NE, Patel YN, Coleman RJ. Organization of genes required for gellan polysaccharide biosynthesis in Sphyingomonas elodea ATCC 31461 [J]. Journal of Industrial Microbiology & Biotechnology,2004,31(2):70-82.
    [27]李海军,颜震.结冷胶的研究进展[J].食品与药品,2005,7(12A):3-8.
    [28]Bajaj IB, Saudagar PS, Singhal RS, et al. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461[J]. Journal of Bioscience And Bioengineering,2006,102(3):150-156.
    [29]Ashtaputre AA, Shah AK. Studies on the exopolysaccharide from sphingomonas paucimobilis-gsl-nutritional-requirements and precursor-forming enzymes [J].Current Microbiology,1995,31(4):234-238.
    [30]Nampoothiri KM, Singhania RR, Sabarinath C, et al. Fermentative production of gellan using Sphingomonas paucimobilis[J]. Process Biochemistry,2003,38(11): 1513-1519.
    [31]Fialho AM, Martins LO, Donval ML, et al. Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactase compared with those produced from glucose and from cheese whey[J]. Applied and Environmental Microbiology,1999,65(6):2485-2491.
    [32]Kanari B, Banik RR, Upadhyay SN. Effect of environmental factors and carbohydrate on gellan gum production[J]. Applied Biochemistry and Biotechnology, 2002,102:129-140.
    [33]彭志英,张红城.少动鞘脂单胞菌S1胞外多糖发酵工艺条件研究[J].微生物学通报,2000,27(2):97-100.
    [34]李海军,颜震,朱希强等.结冷胶发酵生产工艺的优化[J].食品与药品,2007,9(11):7-12.
    [35]West TP, Strohfus B. Influence of yeast extract on gellan production by Sphingomonas paucimobilis ATCC 31461[J]. Microbios,1999,97(387):85-93.
    [36]Jin H, Lee NK, Shin MK, et al. Production of gellan gum by Sphingomonas paucimobilis NK2000 with soybean pomace[J]. Biochemical Engineering Journal, 2003,16(3):357-360.
    [37]Banik RM, Santhiagu A, Upadhyay SN. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology[J]. Bioresource Technology,2007,98(4): 792-797.
    [38]West TP. Effect of temperature on bacterial gellan production[J]. World Journal of Microbiology & Biotechnology,2003,19(6):649-652.
    [39]West TP, Fullenkamp NA. Effect of culture medium pH on bacterial gellan production[J]. Microbios,2001,105(142):133-140.
    [40]Banik RM, Kanari B, Upadhyay SN. Exopolysaccharide of the gellan family: prospects and potential[J]. World Journal of Microbiology & Biotechnology,2000, 16(5):407-414.
    [41]Nampoothiri KM, Singhania RR, Sabarinath C, et al. Fermentative production of gellan using Sphingomonas paucimobilis[J]. Process Biochemistry,2003,38(11): 1513-1519.
    [42]K.S. Kang, G.T. Veeder. Polysaccharide S-60 and bacterialfermentation process for its preparation. Usa, US patent,43377636,1982.
    [43]Bitter T, Muir HM. A modified uronic acid carbazole reaction[J]. Analytical Biochemistry,1962,4(4): 330-334.
    [44]West TP, Strohfus B, Santiago MF. A colorimetric assay for gellan elaborated by Sphingomonas paucimobilis ATCC 31461 [J]. World Journal of Microbiology & Biotechnology,2000,16(6):529-531.
    [45]Craston DH, Farnell P, Francis JM, et al. Determination of gellan gum by capillary electrophoresis and CE-MS[J]. Food Chemistry,2001,73(1):103-110.
    [46]Martins LO, Sacorreia I. Temperature profiles of gellan gum synthesis and activities of biosynthetic-enzymes[J]. Biotechnology and Applied Biochemistry, 1994,20:385-395.
    [47]Mccomb EA, Mccready RM. Determination of acetyl in pectin and in acetylated carbohydrate polymers-hydroxamic acid reaction[J]. Analytical Chemistry,1957, 29(5):819-821.
    [48]毕喜婧,刘德华.絮凝在生物技术中的发展及应用[J].化工进展,2002,21(11):845-850.
    [49]Mill PJ. Nature of interactions between flocculent cells in flocculation of saccharomyces cerevisiae[J]. Journal of General Microbiology,1964,35(1):61-68.
    [50]Miki BLA, Poon NH, James AP, et al. Possible mechanism for flocculation interactions governed by gene flol in saccharomyces-cerevisiae[J]. Journal of Bacteriology,1982,150(2):878-889.
    [51]Stratford M, Keenan MHJ. Yeast flocculation-kinetics and collision-theory[J]. Yeast,1987,3(3):201-206.
    [52]Stanley SO, Rose AH. On clumping of corynebacterium xerosis as affected by temperature[J]. Journal of General Microbiology,1967,48(1):9-10.
    [53]Hiemenz PC. Principles of Colloid and surface science[M]. New york:Mercel Dekker,1997,352-391.
    [54]Salt DE, Hay S, Thomas ORT, et al. Selective flocculation of cellular contaminants from soluble-proteins using polyethyleneimine-a study of several organisms and polymer molecular-weights[J]. Enzyme and Microbial Technology, 1995,17(2):107-113.
    [55]马青山,贾瑟.絮凝化学和絮凝剂[M].北京:中国环境科学出版社,1988,49-60.
    [56]赵保国,冯裕新.发酵液凝聚和絮凝除菌体的研究试验[J].中国调味品,1997,6: 8-12.
    [57]云逢霖,杨志敏.发酵液絮凝除菌提取谷氨酸的研究[J].华南理工大学学报:自然科学版,1993,A11:20-26.
    [58]云逢霖,崔焕明.谷氨酸发酵液絮凝除菌的研究[J].微生物学通报,1996,23(2):91-94.
    [59]吴振强,高孔荣.肌苷发酵液絮凝除菌体的研究[J].华南理工大学学报:自然科学版,1993(A11):75-78.
    [60]李十中,李晓岩.膜分离法回收土霉素结晶母液中的土霉素[J].中国抗生素杂志,2002,27(1):25-27.
    [61]王佳玉,徐更.青霉素发酵液膜过滤工艺研究[J].河北化工,2008,31(2):50-51.
    [62]韩少卿,叶骥,薛强.超滤和纳滤膜分离技术提取螺旋霉素[J].中国抗生素杂志,2005,30(1):52-55.
    [63]高红要,金万勤.陶瓷微滤膜与大孔吸附树脂联用精制苦参水提液中总黄酮[J].中成药,2001,23(9):629-631.
    [64]于涛,钱和.膜分离技术在提取银杏叶黄酮类化合物中的应用[J].无锡轻工大学学报:食品与生物技术,2004,23(6):55-58.
    [65]韩永萍,林强,何绪文.无机陶瓷微滤膜处理虫草菌丝体粗多糖溶液的研究[J].食品与发酵工业,2008,34(2):90-93.
    [66]许学锋,莘仲明,陈浩.反渗透膜技术制取医药纯化水[J].机电信息,2006,4:46-48.
    [67]王淑庆,严宝霞.运用反渗透技术制备高纯度注射用水[J].中国医院药学杂志,1995,15(12):562-563.
    [68]龚承元,刘红斌.反渗透—电去离子技术制备药用水可行性分析[J].膜科学与技术,2000,20(5):55-59.
    [69]朱剑宏,蒙昌智等.复合微滤膜在白酒降度除浊、改进品质中的应用研究[J].酿酒,2001,28(3):63-65.
    [70]孙荣泉.超滤用于白酒除浊的工艺研究[J].水处理技术,1999,21(5):275-276.
    [71]褚良银,陈文梅.生啤酒膜滤除菌技术试验研究[J].食品与机械,1999,1:18-19.
    [72]尹军峰,权启爱,罗龙新等.超滤膜澄清乌龙茶饮料技术的研究[J].茶叶科学,2003,23(D06):58-62.
    [73]龙飞燕,肖斌.超滤膜在山楂果汁加工中的研究[J].广州食品工业科技,1999,15(4):34-37,57.
    [74]王熊,郭宏.膜分离技术在山楂加工中的应用[J].膜科学与技术,1998,18(1):22-26.
    [75]李涛,王春满.不同型号膜分离设备对乳清液中蛋白质和乳糖分离效果的对比分析[J].中国乳业,2004,1:30-32.
    [76]王旻,于景华.鲜奶微过滤除菌初探[J].中国乳品工业,2000,28(2):13-14.
    [77]张力,陈波.膜分离技术处理含氰废水[J].长春大学学报,2008,18(6):86-90.
    [78]梁舒萍,陆冠棋.用液膜分离技术处理含铅废水[J].化工环保,1998,18(4):224-228.
    [79]郭晓,王艺等.低渗油层石油废水的回用技术[J].中国给水排水,2002,18(4):80-82.
    [80]钱伯章.膜分离气体净化节能技术[J].气体净化,2009,9(1):11-18.
    [81]刘建军,屠原祯.采用气体膜分离技术降低高温陶瓷窑炉内NOx的研究[J].陶瓷学报,2005,26(1):49-52.
    [82]孙彦.生物分离工程.北京:化学工业出版社,2005,56-57.
    [83]李旭祥.分离膜制备与应用.北京:化学工业出版社,2004:16.
    [84]田婧.聚醚砜酮微孔分离膜在酱油除菌中的应用[硕士学位论文]大连大连理工大学,2007,5.
    [85]刘茉娥.膜分离技术.北京:化学工业出版社,2000,21.
    [86]吕忠良.多聚谷氨酸PGA_的分离纯化研究[硕士论文],杭州,浙江大学,2008,12-13.
    [87]谌晓华,金磊,春禹.管式膜海绵球清洗[J].清洗世界,2010,26(5):10-1332.
    [88]叶亚云,袁晓东,向霞,等.用激光清洗金膜表面硅油污染物[J].强激光与粒子束,2010,22(5),968-972.
    [89]于海琴,杨成永,张慧,等.腐殖酸污染膜的超声波强化清洗[J].北京交通大学学报:自然科学版,2009,33(1):95-98.
    [90]付振生,金江.陶瓷膜分离提纯绿原酸提取液的膜清洗研究[J].水处理技术,2010,36(5):111-114.
    [91]骆燕萍,潘名宾,余太平,等.用于反冲洗水回收的超滤膜的化学清洗方法研究[J].城镇供水,2010,2:73-76.
    [92]董金冀,陈小青.超滤膜化学清洗技术的探讨与改进[J].清洗世界,2008,26(4):38-40.
    [93]王丽丽,宋武昌,尘福魁.膜生物反应器化学清洗技术研究[J].能源与环境,2008,2:98-100.
    [94]www.baidu.com[百度百科].
    [95]徐怀德.色素的种类及应用[J].农产品加工,2008,9:14-15.
    [96]付学鹏,杨晓杰.植物多糖脱色技术的研究[J].食品研究与开发,2007,28(1):166-169.
    [97]陈丽华.龙眼壳多糖的提取、分离纯化与性质研究[硕士学位论文].2006,重庆,西南大学,3.
    [98]郑宝华.南方红豆杉叶中活性多糖提取与纯化研究[硕士学位论文].杭州,浙江大学,2006,9-10.
    [99]曹鹏伟.灵芝多糖脱色研究[硕士学位论文].无锡,江南大学,2009,6-7.
    [1O0]www.baidu.com离子交换树脂[百度百科].
    [101]陈国强,宋伟杰,苏仪超滤技术在生物分离中的应用[J].生物产业技术,2010.3:69-74.
    [102]王维香,王晓君,黄潇.川芎多糖脱色方法比较[J].离子交换与吸附,2010,1:74-82.
    [103]邓先伦,蒋剑春.活性炭对柠檬酸及其盐溶液中色素的吸附机理和应用研究[J].林产化学工业,2002,22(1):55-58.
    [104]莎娜,王国泽.活性炭对甘薯果脯废糖液的脱色效果研究[J].安徽农业科学,2009,37(36):18145-18146.
    [105]张子兴,刘海龙,杨凤玲.双氧水氧化盐湖卤水脱色的研究[J].2008,40(3):49-51.
    [106]王燕,车振明,万国福.南瓜果胶脱色工艺的研究[J].食品工业科技,2005,26(6):121-122.
    [107]刘昌盛,黄风洪,夏伏建.茶皂素脱色工艺研究[J].粮食与油脂,2006,12:26-27.
    [108]陈瑞.吸附树脂法在泽泻提取物的脱色及高纯度泽泻醇制备中的应用研究[J].离子交换与吸附,2009,25(6):550-558.
    [109]陆顺忠,李秋庭,刘洁,等.大孔吸附树脂对莽草酸粗提液的脱色研究[J].食品与发酵工业,2009,10:172-175.
    [110]刘海霞,牛鹏飞,王峰大孔吸附树脂对大枣多糖提取液的脱色条件研究[J].食品与发酵工业,2007,33(10):180-184.
    [111]王兢,江波,冯骉.阴离子交换树脂对γ-氨基丁酸发酵液的脱色性能研究[J].食品与机械,2006,22(3):8-10 13.
    [112]肖静怡,黄可龙,洪涌等.阳离子树脂对香菇多糖中色素的吸附性能研究[J].中国生化药物杂志,2007,28(6):386-390.
    [113]范云鸽,施荣富.离子交换树脂对三七叶总皂苷的脱色精制研究[J].中国中药杂志,2008,33(20):2320-2323.
    [114]李平凡,聂青玉,林海平.超滤膜用于谷氨酸钠液脱色的工艺优化[J].食品研究与开发,2009,8:129-131.
    [115]周尽花,吴宇雄,周春山.柚皮果胶提取液的超滤膜法浓缩与脱色[J].食品研究与开发,2010,31(1):5-8.
    [116]陈颖,杜邵龙,曾祥奎.超滤脱色苹果汁应用工艺[J].食品与发酵工业,2005,31(9):138-140.
    [117]Dixon M, Webb EC. Enzyme fractionation by salting-out:a theoretical note[J]. Advances in Protein Chemistry,1961,16:197-219.
    [118]曹学君.用锌郭从人尿中分离尿激酶[J].华东理工大学学报:自然科学版,1998,24(4):427-430.
    [119]韩涛,崔哲,李宝库等.发酵液中纤溶酶盐析法分离纯化的研究[J].科技信息,2009,4:63-64.
    [120]郑树贵,董维国,孙泽威等.等电点沉淀法分离大豆球蛋白酸性亚基和碱性亚基[J].大豆科学,2009,28(1):136-139.
    [121]石彦国,郑佳,马永强.等电点冷沉法分离大豆11S的研究[J].中国食品学报,2010,1:146-150.
    [122]扈瑞平,张兴夫,杜玲,等.沙葱多糖Sevage法除蛋白工艺的研究[J].内蒙古大学学报:自然科学版,2009,40(6):658-662.
    [123]方升平,王维香,雒小龙.川芎多糖除蛋白方法研究[J].时珍国医国药,2009,20(9):2176-2177.
    [124]刘晓艳,于纯淼,张妍.复合动物蛋白酶水解蛋清蛋白最优工艺的研究[J].中国调味品,2010,6:62-65.
    [125]白小佳,宋庆明,肖萍.碱性蛋白酶水解蚕豆蛋白的条件优化[J].食品研究与开发,2010,31(4):126-129.
    [126]蔡云升.结冷胶的特性及其在冰淇淋生产中的应用[J].冷饮与速冻食品工业,2005,11(4):27-29.
    [127]李静,连宾.细菌多糖及其在食品工业中的应用[J].食品科学,2006,27(4):255-256.
    [128]Bitter T, Muir HM. A modified uronic acid carbazole reaction[J]. Analytical Biochemistry,1962,4(4):330-334.
    [129]秦方,詹晓北.Gellan Gum (激冷胶)中酰基含量的测定[J].食品与机械,1997,5:32-33.
    [130]赵谋明.新型食品添加剂gellan gum[J]食品工业科技,1996,6:71-75.