泡沫金属发泡基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔泡沫金属是近年来发展起来的一种结构-功能一体化的新型材料。其优异的性能和广泛的应用前景吸引了众多科技研究者的注意。但是对于发泡过程基础理论研究还不够全面,特别是气孔的发泡机制即气孔在基体金属内随外界条件变化而发生的形核、生长、运动和消亡等热、动力学条件的研究很少。
     因此,论文在综述了泡沫金属发泡理论的最新研究成果的基础上,从微观机制出发,将发泡过程分为发泡剂分解、气体形核、气泡长大、合并、破裂等阶段,通过大量的热力学分析,得出了发泡过程中发泡剂分解以及气体的均匀形核和非均匀形核、气孔的生长和运动等热力学条件,揭示了气孔演化的趋势;论文根据内生气源发泡的特点,针对发泡过程各个阶段进行了动力学理论的研究,然后综合考虑各个阶段对最终孔结构和性能的影响,初步建立了泡沫金属发泡过程的动力学方程。该方程基本能从微观的角度预测最终气孔的平均半径,这对解决多孔泡沫金属制备中遇到的相关问题有一定指导意义。
Porous metal is a new structural and functional composite material developed in recent years. Its excellent properties and applied prospects have drawn attention of technologists. But the basic theories producing porous metals in high temperature were not yet fully understood, especially the foaming mechanism, foaming thermo-dynamics study on nucleation, growth, movement and rupture of gas bubble were rarely researched.
    This paper narrate the latest progress in the foaming theory of metal foams. Acording to the micromechanism, the foaming process consist of decomposition of the foaming agent TiH2, homogeneous and heterogeneous bubble nucleation, bubble growth, bubble merge and rupture. The thermodynamic analysis of decomposition of the foaming agent TiH2, homogeneous and heterogeneous nucleation in high-temperature, growth and movement were achieved to demonstrate the trend of pore evolvement in this paper. Moreover, according to the characteristics of in-situ gas foaming, every stage of foaming kinetics was studied, then comprehensive considering the influence of every stage to the pore structure and property ,we established the foaming kinetics equation of metal foams.From the microscopic view ,the equation can forecast the mean radius of the final pore ,it help to solve some problem in the production.
引文
[1] B. Sosnik. US Patent 2434775,1948.
    [2] J. C. Elliot. US Patent 2751259,1956.
    [3] 文凡.高强度轻质多孔金属材料.金属功能材料,2000(20):44.
    [4] 上野英俊,秋山茂.轻金属(日),1987(37):42.
    [5] G. J. DVIES, SHU ZHEN. Metallic foams: their production, properties and applications. Journal of Materials Science, 1983(18): 1899-1911.
    [6] L. J. Gibson, M. F. Ashby. Cellur Solids: Structure and Properties. Pergamon Press, Oxford, 1988.
    [7] M. F. Ashby, L. J. Gibson. Metal Foams. Pergamon Press, Oxford, 1988.
    [8] J. Banhart. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Progr. Mater. Sci, 2001.
    [9] H. P. Degischer. Handbook of Cellular Metals. WILEY-VCH Gerlag GmbH, 2002.
    [10] http://www.metalfoam.net.
    http://www.npl.co.uk/npl/cmmt/metalfoam/index.html.
    http://www.msm.cam.ac.uk/mmc.
    [11] 王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(1).轻合金加工技术,1999(10):5-8.
    [12] 石井 荣一.发泡制造方法吸音特性.R&D神户制钢技报,1991(2):59.
    [13] 杨守春.孔向一致的莲藕型通多孔质金属.现代材料动态,2000(10):5.
    [14] J. Banhart, M. F. Ashby, N.A. Fleck. Metal Foams and Porous Metal Structure. Verlag MIT Publishing, Bremen, Germany, 1999: 5.
    [15] 张勇等.充满生机的新型功能材料—泡沫铝.山东工程学院学报,1994(3):1-6.
    [16] 宋振伦,何德坪.铝熔体泡沫形成过程中粘度对孔结构的影响.材料研究学报,1997(11):275-279.
    [17] 谢梁德.熔融法泡沫铝制备工艺的初步研究:[硕士学位论文].北京:北京科技大学,1995.
    [18] 吴照金,何德坪.熔体Al孔结构的影响因素.材料研究学报,2000(6).
    [19] 何德坪等.发展中的新型多孔泡沫金属.材料导报,1993(4):11-15.
    [20] 许庆彦等.多孔泡沫金属的研究现状.铸造设备研究,1997(1):18-24.
    [21] 李惠萍.制造泡沫铝合金材料的新技术.轻金属,1993(11):63.
    [22] 薛涛.多孔金属材料泡沫铝的发展.机械工程材料,1992(2):4-5.
    [23] 左孝青,杨晓源,李成华.多孔泡沫金属研究进展.昆明理工大学报,1997(2):90-93.
    [24] 王芳,王录才.泡沫金属的研究与进展.铸造设备研究,2000(1):48-51.
    [25] 王录才,陈新.熔模铸造法通孔泡沫铝制备工艺研究.铸造,1999(1):8-10.
    [26] 王斌,何德坪.泡沫Al合金的压缩性能极其能量吸收.金属学报,2000(36):10-15.
    [27] 何德坪,马立群等.新型通孔泡沫铝的传热特性.材料研究学报,1997(8):431-434.
    [28] 宋振纶,马立群等.铝熔体泡沫化过程中孔结构的控制.铸造,1997(4):9-11.
    
    
    [29] 王斌,何德坪等.铝合金泡沫化过程中影响成核的两个工艺因素对孔结构的影响.铸造,1998(4):8-11.
    [30] 宋振纶,马立群等.铝熔体泡沫化过程体积变化与胞状组织的演变.材料科学与工艺,2000(3):21-24.
    [31] H. P. Degischer. Handbppk of Cellular Metals. WILEY-VCH Gerlag GmbH, 2002.
    [32] S. Akiyama et al. European Patent 0210803,1986.
    [33] J. Iljoon et al. US Patent 511697,1992.
    [34] B. C. Allen. US Patent 3087807, 1963.
    [35] 舒震.铸造金属泡沫材料.机械工程材料,1984(5):11-13.
    [36] V. Gergely, D.C. Curran and T. W. Clyne. ADVANCES IN THE MELT ROUTE PRODUCTION OF CLOSED CELL ALUMINIUM FOAM USING GAS-GENERATING AGENTS. Processing and Properties of Lightweight Cellular Metals and Structure Edited by Amit Ghosh, Tom Sanders and Dennis Clar, TMS, 2002, 97-104.
    [37] J. T. Wood. Production and Application of Continuously Cast. Foamed Aluminum, Proc. Fraunhofer USA Metal Foam Symposium, 7-80ct. 1997, Stanton,Delaware.
    [38] 张勇等.用低压渗流法制备泡沫铝合金.材料科学进展,1993,7(6):473-477.
    [39] 许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状.铸造设备研究,1997(1):21.
    [40] 王录才,陈新等.熔模铸造法通孔泡沫铝制备工艺研究.铸造,1999(1):8-10.
    [41] Ashwin Hattiangadi, Amit Bandyopadhyay. MODELING OF MULTIPLE PORE CERAMIC MATERIALS FABRICATED VIA FUSED DEPOSITION PROCESS. Scripta mater,2000(42): 581-588.
    [42] 刘菊芬,刘荣佩,史庆南,左孝青.新型泡沫铝制备工艺研究.材料导报,2002,16(8):65-67.
    [43] C. Park, S.R. Nutt. PM synthesis and properties of steel foams. Materials Science and Engineering, A288(2000): 111-118.
    [44] C. Park, S.R. Nutt. Effects of parameters on steel foam synthesis. Materials Science and Engineering, A297(2001): 62-68.
    [45] S. B. KULKARNI AND P. RAMAKRISHNAN. Foamed Aluminum. Inter. Journal of Powder Metallurgy, 1973(9): 41-45.
    [46] B. C. Allen. A powder method for fabricating metal foams was invented at the Fraunhofer Institute for Applied Materials Research. Adv. Mater.Process, 1998(11): 24.
    [47] Fusheng Han, Zhengang Zhu. Damping behavior of Foamed aluminum,Metallurgical And Materials Transactions: A Physical Metallurgy And Materials Science, 1999(30A): 165-170.
    [48] 赵增典,张勇,李杰.泡沫金属的研究及其应用进展.轻合金加工技术,1998(26):1-10.
    [49] 王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(2).1999(27):1-6.
    [50] S. K. MAITI, L. J. GIBSON, M. F. ASHBY. Deformation and energy absorption diagrams for cellular solids. Acta Mater, 1984(32): 1963-1975.
    [51] T. J. LU, C. CHEN. Thermal transport and retardance properties of cellular aluminum alloys. Acta Mater, 1989(47): 1469-1485.
    
    
    [52] Y. SUGIMURA, J. MEYER, M.Y. HE. On the mechanical performance of closed cell Al alloy foams. Acta mater, 1997(45): 5245-5259.
    [53] T. MUKAI, H. KANAHASHI, T. MIYOSHI. EXPERIMENTAL STUDY OF ENERGY ABSORPTION IN A CLOSED-CELL ALUMINUM FOAM UNDER DYNAMIC LOADING. Scripta Materialia, 1999(40): 921-927.
    [54] E. W. ANDREWS, J. S. HUANG, L. J. GIBSON. Creep behavior of a closed-cell aluminum foam. Acta Mater, 1999(47): 2853-2863.
    [55] K. Y. G. M_cCULLOUGH, N. A. FLECK, M. F. ASHBY. Uniaxial stress behavior of aluminum alloy foams. Acta mater, 1999(47): 2323-2330.
    [56] H. P. Degischer. Handbook of Cellular Metals. WILEY-VCH Gerlag GmbH, 2002: 300,
    [57] 李保山等.发泡金属的开发、性质及应用(Ⅱ)-发泡金属的性质及应用.机械工程,1998(12):46.
    [58] 王芳,王录才.泡沫金属的研究与发展.铸造设备研究,2000(1):51.
    [59] W. U. Bende, Guo Fuhe. Advances in Powder Metallurgy and Particulate Materials. Vol. 6, J. M. Capus, R.M. German(eds). Metal Powder Industries Federation, Princeton, NJ1992, P. 145.
    [60] Bing-Yun Li et al. A recent development in producing porous NJ-Ti shape memory alloys. Intermetallics, 8(2000): 881-884.
    [61] 赵增典,张勇,李杰.泡沫金属的研究及其应用进展.轻合金加工技术,1998(26):4.
    [62] W. Frischmann. European Patent Application. EP 0666129, 1995.
    [63] H. Swars. German Patent Application 3619360, 1987.
    [64] ERG Inc, Oakland. USA. Product information of "Duocel" 1996. and http://www.ergaerospace.com.
    [65] SEAC International BV, Kirmpen, Netherlands. Product data sheet of "Recemat" 1998, and http://www.seac.nl.
    [66] J. Banhart. German Patent Application 10015409, 2000.
    [67] Inco Ltd, Canada. Product data sheet of "Incofoam" 1998. and http://www.inco.com.
    [68] V. Ettel, in proc. NiCd 98. Prague, 21-22, Sept, 1998.
    [69] I. Matsumoto, T. Iwaki, N. Yanagihara. US Patent 4251603, 1981.
    [70] J. G. Ibanez, A. Fresan, A. Fregoso, K. Rajeshwar, S. Basak, Proc. Electrochem.Soc, 1995, 12,102-108.
    [71] K. lida, K. Mizuno, K. Kondo. US patent 4726444, 1988.
    [72] 王月.压缩率和密度对泡沫铝吸声性能的影响.机械工程材料,2002,Vol 26(3):29-31.
    [73] I. DUARTE and J. Banhart. A Study of Aluminium foam formation kinetics and microstructure. Acta mater, 48(2000): 2349-2362.
    [74] J. Banhart et al. Metal foam evolution by synchrotron radioscopy. APPLIED PHYSICS LETTERS, Vol78(9): 1152-1154.
    [75] J. Banhart et al. Real-time X-ray Investigation of Aluminum Foam Sandwich Production. ADVANCED ENGINEERING, 2001, 3, No6, 407-411.
    [76] 吴铿.泡沫冶金熔体的基础理论.北京:冶金工业出版社,2000.
    [77] 左孝青等.泡沫铝发泡过程热力学.昆明理工大学学报,2003,Vol.28(5):7-11.
    
    
    [78]左孝青,王茗,顾昆.泡沫铝发泡过程动力学.昆明理工大学学报,2003,Vol.28(3):6-9.
    [79]C. Krner and R. F. Singer. Numerical Simulation of Foam Formation and Evolu-tion with Modified Cellular Automata in Metal Foams and Porous Metal Struc-tures. J. Banhart, M. F. Ashby and N. A. Fleck(Ed.). MIT Publishing, 1999: 91-6.
    [80]Shaw.D.J.胶体与表面化学导论.第三版.张中路等译.北京:化学工业出版社,1989.
    [81]Szekely.J(舍克里).冶金中的流体流动现象.彭一川,徐匡迪,樊养颐译.北京:冶金工业出版社,1985:334-336.
    [82]Aubert. J. H, Kraynik. A.M, Rand. P.B. Waessrige Schaeume Spektrumder Wissenschaft. Berlin: 1986.
    [83]周祖康,顾惕人,马季范.胶体化学基础.北京:北京大学出版社,1989.
    [84]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987.
    [85][苏联]列维奇著,戴干策等译.物理—化学流体动力学.上海:上海科学技术出版社,1965.
    [86]潜伟.冶金熔体非牛顿流体流变特性及其对泡沫化影响的研究.[硕士学位论文].北京:北京科技大学,1997.
    [87]Ogawa. Y. Slag foaming in smelting reduction and its control with carbonaceous material. ISIJ, 1988(5): 382.
    [88]Iglesias. E, Anderz. J, Forgiarini. A. A new method to estimate the stability of short-life foams. Colloids and Surface A, 1995(98): 167.
    [89]傅志红.微孔塑料气泡成核的聚合物刷子模型.[博士学位论文].广州:华南理工大学,2001.
    [90]J.W. Falconer, W. Nazarov, etal. Lower Density Disc Shape Microcellular Polymeric Foams. Journal Cellular Plastics, 1997, 33: 129-139.
    [91]L.M. Matuana, C. B. Park. etal. Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Choride. Cellular Polymers, 1998, 17(1): 1-16.
    [92]D.F. Baldwin, C. B. Park, N, P. Suh. A microcellular processing study of poly(ethylene terephthalates)in the amorphous and semicrystalline states part Ⅱ: cell growth and process design. Polym. Eng. Sci, 1996, 36: 1446-1453.
    [93]刘小平.挤出发泡过程中泡体密度变化的研究.[硕士学位论文],华南理工大学,1993.
    [94]陈国华,彭玉成.国外微孔塑料物理发泡研究现状.中国塑料,1998,12,(1):15.
    [95]刘小平.对塑料发泡膨胀过程中气相热动力学行为的研究.高分子材料科学与工程,2002,Vol.18.No.3:187-189.
    [96]S. F. Edvards, K. D. Pithia. A model for the formation of foams. Physica A, 1995, 215, 270-276.
    
    
    [97] L. D. Landau, E. M. Lifschitz. Hydrodynamik, Akademie-Verlag. Berlin, 1974.
    [98] P. Lutze, J. Ruge. Wasserstoff in Aluminium and seinen Legierungen. METALL 1990, 65, 649-652.
    [99] J. S. Colton, N. P. Suh. Nucleation of microcellular foam: theory and practice. Polym. Eng. Sci. 1987, 27(7), 500-503.
    [100] C. Korner et al. Influence of processing conditions on morphology of metal foams produced from metalpowder. Mater. Sci. Technol. 2000, 8, 781-784.
    [101] A. E. Bhakta, E. Ruckenstein. Decay of standing foams:drainage, coalescence and collapse. Adv. Colloid Interface Sci. 1997,70,1-124.
    [102] B. Illerhaus, E. Jasiuniene, k. Kottar, J. Goebels. 3D Micro Tomography(μ CT) of Cellular Metals Using an Up to320 Kv X-RAY Tube, Processing and Properties of Lightweight Cellular Metals and Structures. Edited by Amit Ghosh, Tom Sanders and Dennis Claar, TMS 2002, 271-279.
    [103] Omar Belkessam, Udo Fritsching. Modelling and simulation of continuous metal foaming process. Modelling Simul. Mater. Sci. Eng. 11(2003): 823-837.
    [104] 叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002.
    [105] Aubert. J. H, Kraynik. A.M, Rand. P.B. Waessrige Schaeume Spektrumder Wissenschaft. Berlin: 1986.
    [106] 陶东平著.液态合金和熔融炉渣的性质.云南:云南科技出版社,1997:316.
    [107] 方丁酉编.两相流动力学.长沙:国防科技大学出版社,1988.
    [108] 果世驹编著.粉末烧结理论.北京:冶金工业出版社,1998:119.
    [109] 沈兴.差热、热重分析与非等温固相反应动力学.北京:冶金工业出版社,1995.
    [110] 冯仰婕.应用物理化学.上海:华东化工学院出版社,1991.