土壤铜污染对水稻生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜(Cu)是植物生长所必需的元素,但土壤Cu浓度过高会给植物生长造成伤害。一般认为,清洁土壤(一级农田)的Cu浓度为35 mg·kg-1,轻污染土壤(二级农田)的Cu浓度为100 mg·kg-1,重污染土壤(三级农田)的Cu浓度为400 mg·kg-1。随着现代工业的迅速发展和含Cu农药的大量使用,Cu污染土壤的面积逐年扩大。为了明确土壤Cu污染对群体条件下水稻生长发育的影响,本研究设土壤Cu浓度为一级农田(CK,Cu浓度为30.13 mg·kg-1土)、200 mg·kg-1和400 mg·kg-1 (三级农田)3个水平,研究其对4个籼稻品种生长发育及其产量形成的影响,以期为土壤Cu污染地区的水稻栽培和品种选择提供依据。主要结果如下:
     (1)土壤铜处理使4个籼稻品种不同生育时期根系、茎鞘、叶片和穗的铜浓度均极显著提高,品种间差异显著。土壤铜处理对不同生育时期根系铜浓度的提高幅度差异不大,对茎鞘和叶片铜浓度的提高幅度为分蘖期>抽穗期>成熟期,对穗部铜浓度的提高幅度为抽穗期>成熟期。品种与铜处理对分蘖期根系、茎鞘和叶片铜浓度以及对抽穗期穗部铜浓度的影响有显著性互作效应。
     (2)土壤铜处理使4个籼稻品种分蘖期和抽穗期地上部诸器官与根系铜浓度的百分比均大幅度下降。分蘖期叶片铜浓度与根系铜浓度的百分比品种间有显著差异,分蘖期茎鞘铜浓度与根系铜浓度的百分比以及抽穗期地上部诸器官铜浓度与根系铜浓度的百分比品种间无显著差异。品种×铜处理对不同生育时期地上部器官铜浓度与根系铜浓度百分比的影响均无互作效应。
     (3)土壤铜处理使4个籼稻品种的生育期日数明显增加,使分蘖期、抽穗期的叶面积指数显著变小。土壤铜处理使水稻生育初期的主茎出叶速度明显变慢、功能叶叶色明显变淡、株高明显变矮、分蘖数明显减少,对主茎叶片数和功能叶叶色影响的时期分别为移栽后28和21天之内,对株高和茎蘖数的影响的时期为移栽后28天之内,且土壤铜处理浓度越高,影响程度越大。土壤铜处理对水稻生育中、后期的主茎出叶速度、功能叶叶色、株高、分蘖发生影响不大。
     (4)土壤铜处理极显著降低了4个籼稻品种分蘖期、抽穗期的单株不定根总数、不定根总长度、单株根系总干重和分蘖期不定根平均长度及单株α-萘胺氧化力,极显著增加了水稻抽穗期不定根根粗,但对抽穗期每条不定根平均长度和分蘖期单位干重α-萘胺氧化力无显著影响。分蘖期和抽穗期的单株不定根总数、单株根系干重、单位干重α-萘胺氧化力,抽穗期不定根根粗、每株不定根总长度和单株α-萘胺氧化力的品种间差异达极显著水平。品种×铜处理对水稻抽穗期根系总干重有极显著互作效应,对分蘖期与抽穗期单株不定根总数、每株不定根总长度、每条不定根平均长度、不定根根粗、单位干重α-萘胺氧化力、单株α-萘胺氧化力以及分蘖期根干重的影响无显著互作效应。
     (5)200 mg·kg-1、400 mg·kg-1土壤铜处理使4个籼稻品种分蘖期的干物重均极显著降低,且铜处理浓度越高降低幅度越大。200 mg·kg-1土壤铜处理对4个籼稻品种抽穗期和成熟期的干物重影响不大,但400 mg·kg-1土壤铜处理使4个籼稻品种抽穗期和成熟期的干物重极显著降低(下降幅度明显小于分蘖期)。土壤铜处理对于不同生育时期干物质在不同器官中的分配几乎没有影响(除了200 mg·kg-1处理降低了成熟期穗部比例之外)。
     (6)土壤铜处理极显著地降低了4个供试籼稻品种的产量,且铜处理浓度越高,产量降低幅度越大。土壤铜处理对水稻产量构成因素中每穗颖花数和千粒重的影响较大,达到极显著水平,对单位面积穗数和结实率的影响未达到显著水平。单位面积产量、单位面积穗数、每穗颖花数、结实率和千粒重品种间的差异均达到极显著水平。品种×铜处理对单位面积穗数、每穗颖花数和千粒重有显著性互作效应。
Copper (Cu) is an essential element for plants, but the excessive soil Cu could have adverse effects on plant growth. According to soil quality assessment, the Cu concentration of the clean soil (first class farmland) was 35 mg·kg-1, light polluted soil (second class farmland) was 100 mg·kg-1, and heavy polluted soil (third class farmland) was 400 mg·kg-1. With the rapid development of industry and large-scaled using of herbicides and pesticides which contains Cu, the area of soil contaminated by Cu expanded every year. In order to clarify the effect of soil copper contamination on growth and development of rice, a soil culture experiment was conducted using 4 indica rice cultivars with 3 levels of soil Cu treatment(CK, none Cu addition, 30.13 mg·kg-1; 200 mg·kg-1; 400 mg·kg-1)under mimic-field conditions. Main results are as follows:
     (1) Soil Cu treatments significantly increased the Cu concentrations in roots, stem-sheaths, leaves and panicles of all test varieties at tillering, heading and maturity stages; but different varieties responded differently. There were little differences on the increase of root Cu concentrations between growth stages, but the stem-sheath concentration was increased more at tillering compared with heading and maturity stages; likely, panicle Cu concentration at heading was increased more than that at maturity stage. Significant interactive effects between varieties and Cu treatments were detected on the Cu concentration of roots, stem-sheaths and leafs at tillering stage, and on the panicle Cu concentration at heading stage.
     (2) At tillering and heading stages, the soil Cu treatments greatly decreased the ratio of Cu concentration of aerial parts (leaf, stem, and panicle) to the roots (RCAR) of all varieties. However, there were no significant differences on RCAR except the ratio of leaves to roots at tillering stages between varieties. At heading stage, no significant differences on all RCARs were detected between varieties. There was no significant interactive effect on RCAR between varieties and Cu treatments at different growth stages.
     (3) Soil Cu treatments significantly prolonged the growth period, decreased leaf area index (LAI) of four varieties at tillering and heading stages. Soil Cu treatments also greatly slowed down the speed of leave emergence of main stems, reduced the plant height and tillers number. The effects of soil Cu treatment on leaf emergence rate, the plant height and tiller number were disappeared 28 days after transplanting (DAT). Soil Cu treatments caused interveinal chlorosis symptoms on the functional leaves, but the effects were apparent only before 21 DAT. The impact of 400 mg·kg-1Cu treatment was greater than that of 200 mg·kg-1. In the middle and late growth stages, there were little effects of higher soil Cu concentration on the leaf emergence rate, functional leave color, plant height and total tiller number.
     (4) Soil Cu treatments significantly reduced the number and total length of adventitious roots per-plant, significantly decreased the dry weight of roots per-plant at tillering and heading stages, reduced the average length of adventitious roots andα-naphthylamine (α-NA) oxidizing capacity per-plant at tillering stage, significantly increased the diameter of adventitious root at heading stage; Soil Cu treatments affected little on the average length of adventitious root at heading stage andα-NA oxidizing capacity at tillering stage based on dry weight. There were significant differences between varieties on the number of adventitious roots per-plant, the root dry weight per-plant,α-NA oxidizing capacity per-gram dry weight at tillering and heading stages, as well as the diameter of adventitious root, total length of adventitious roots per-plant andα-NA oxidizing capacity per-plant at heading stage. Significant interactive effects between varieties and Cu treatments were detected on the root dry weight at heading stage, but no effect was detected on number and total length of adventitious roots per-plant, the average length of adventitious roots, the diameter of adventitious root,α-NA oxidizing per-weight,α-NA oxidizing per-plant at tillering and heading stages, and the plant root dry weight at tillering stage.
     (5) Both 200 mg·kg-1and 400 mg·kg-1 soil Cu treatments significantly reduced the dry weight at tillering stage of all tested varieties, and the higher the concentration, the greater the reduction. As to heading and maturity stages, 200 mg·kg-1 soil Cu treatment had no effects on dry weight of all tested varieties, while 400 mg·kg-1 had significant negative effects on dry weight (But the negetive effect was smaller than that at tillering stage). Soil Cu treatment had no effect on the dry matter distribution of different organs at all growth stages, except that the 200 mg·kg-1 treatment reduced the proportion of dry matter in panicles at harvest.
     (6) Soil Cu treatments significantly reduced the grain yield of all varieties, and the higher the concentration, the greater the yield decreased. There were significant differences on spikelet number per panicle and 1000-grain weight with different soil Cu treatments, while no effect was detected on the panicle number per area and filled grain percentage. There were significant differences between varieties of gain yield per area, panicle number per area, the spikelet number per panicle, seed setting rate and 1000-grain weight. There was significant interactive effect between varieties and Cu treatments on panicle number per area, the spikelet number per panicle and 1000-grain weight.
引文
1. Cao ZH, Hu ZY, Wong MH. Copper contamination in paddy soils irrigated with wastewater Special issue of Environmental contamination, toxicology and health. Chemosphere, 2000, 41: 326
    2. Graham H, Timmer L W and Farddmann D. Toxicity of fungicidal copper in soil to citrus seedlings and Vesicular-Arbuscular Mycorrhizal Fungi. Phytopathology, 1986, (76): 66-70
    3. Lidon FC and Henriques FS. Copper toxicity in rice: Diagnositic criteria and effect on tissue Mn and Fe. Soil Sci, 1992, 154 (2): 130-135
    4. Lindon FC and Henriques FS. Effects of increasing concentrations of Cu on metal uptake kinetics biomass yields. Soil Sci. 1992, 154 (1): 44-49
    5. Merry RH. Plant and Soil, 1986, 91: 115-1281
    6. P?tsikk? E, Kairavuo M. Excess copper predisposes photosystemⅡto photoinhibition in Vivo by out competing iron and causing decrease in leaf chlorophyll. Plant Physiol, 2002, 129: 1359-1367
    7. Vardaka E, Cook C E, Lanaras T. Interelemental relationship in the soil and plant tissue and photosynthesis of field cultivated wheat growing in naturally enriched copper soil. J PlantNutr, 1997, 20 (415): 441-453
    8. Wang K R. Tolerance of Cultivated Plants to Cadmium and their Utilization in Polluted Farmland Soils[J]. Acta Biotechnol, 2002, 22: 189-198
    9. Wang SC, Li XD, Zhang G, et al. Heavy metals in agricultural soil of the Pearl River Delta[J], South China. Environmental Pollution, 2002, 119 :33-44
    10.陈树元,徐和宝,谢明云,等.Cu、砷在水稻—土壤体系中的迁移及其对水稻影响的研究.农村生态环境, 1995, 11 (3): 15-18
    11.曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究.天津农林科技, 1999, 6: 12-17
    12.查燕,杨居荣,刘虹,等.污染谷物中重金属的分布及加工过程的影响.环境科学, 2002, 21 (3): 52-55
    13.常红岩,孙百晔,刘春生.植物铜素毒害研究进展[J].山东农业大学学报(自然科学版), 2000, 31(2): 227- 230.
    14.陈怀满,郑春荣,王慎强,等.不同来源重金属污染的土壤对水稻的影响.农村生态环境, 2001, 17 (2): 35-40
    15.陈树元,徐和宝,谢明云,等. Cu、砷在水稻-土壤体系中的迁移及其对水稻影响的研究.农村生态环境, 1995, 11( 3) : 7~11
    16.川上润一郎著(郭学兴译).重金属对水稻的影响.国外农业科技, 1982, 8: 17-21
    17.董克虞,陈家梅.镉对农作物生长发育的影响与吸收积累的关系.环境科学, 1982, 3 (4): 31-34
    18.葛才林,杨小勇,刘向农,等.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报, 2002, 28( 5) : 363-368
    19.葛才林,杨小勇,刘向农,等.重金属胁迫引起的水稻和小麦幼苗DNA损伤.植物生理与分子生物学学报, 2002, 28( 6) : 419-424
    20.葛才林,杨小勇,金阳,等.重金属胁迫对水稻不同品种超氧化物歧化酶的影响.核农学报, 2003, 17 (4): 286-291
    21.葛才林,杨小勇,朱红霞,等.重金属胁迫对水稻叶片过氧化氢酶活性和同功酶表达的影响.核农学报, 2002, 16 (4): 197-202
    22.国家环境保护局, GB15618-1995.土壤环境质量标准.北京:中国标准出版社,1995.
    23.胡斌,段昌群,刘醒华.云南寻定几种农作物籽粒中重金属的比较研究.重庆环境科学, 1999, 21 (6): 45-47
    24.胡正义,沈宏,曹志洪.Cu污染土壤-水稻系统中Cu的分布特征.环境科学, 2000, 2: 62-65
    25.华珞,刘秀珍,夏立江,等.土壤对铜、镉、铅、氟的吸附及改良剂对土壤—植物系统中养分元素有效性的影响.华北农学报,1994, 9(1): 51-62
    26.康立娟,赵明宪,赵成爱.Cu对水稻的影响及迁移积累规律的研究.广东微量元素科学, 1999, 6 (4): 43-44
    27.康立娟,赵明宪,庄国臣. Cu的单元及复合污染中水稻对Cu吸收积累规律的研究.农业环境科学学报, 2003, 22( 4) : 503-504
    28.康立娟,霍庆来,谢忠雷.Cu镍铅砷对水稻复合污染的研究.吉林农业大学学报, 2002, 24 (4): 80-82, 94
    29.李花粉,张福锁,李春俭,等.Fe对不同品种水稻吸收Cd的影响.应用生态学报, 1998, 9 (1): 110-112
    30.李花粉.根际重金属污染.中国农业科技导报, 2000, 2: 54-60
    31.李勋光,李小平.见陈怀满主编(1996)土壤-植物系统中的重金属.北京:科学出版社, 1991, p.32-70
    32.李正文,张艳玲,潘根兴,等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险.环境科学, 2003, 24 (3): 112-115
    33.林琦,郑春荣,陈怀满.根际环境中Cd的形态转化.土壤学报, 1998, 35: 461-467
    34.刘凤枝.农业环境监测实用手册,土壤环境质量标准.北京:中国标准出版社, 2001, 9: 609
    35.刘文菊,张西科,尹君,等.镉在水稻根际的生物有效性.农业环境保护, 2000,
    19 (3): 184-187
    36.刘永厚,黄细花,赵振纪,等.铜对紫云英固氮作用及养分吸收的影响[J].土壤肥料. 1993, (5): 23-27
    37.马忠明,孙宝腾,李淑兰.Cu2+对水稻幼苗某些生理特性的影响.临沂师范学院学报, 2000, 22 (3): 41-42
    38.莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布,环境化学, 200221( 2) : 110-116
    39.邵邻相,黄伯钟,丁淑静.锌、锰、铁和铜离子对水稻幼苗生长及SOD活性的影响.种子, 2001, 6: 16-17
    40.苏流坤,袁焕祥.土壤铜、砷对水稻生长发育影响的研究.热带亚热带土壤科学, 1997, 6( 3) : 194-197
    41.苏应生,曹宇,谢明云,等.土壤单一添加或复合添加铜和砷对水稻的影响.植物资源与环境.1994, 3 (4): 23-28
    42.王宏康,阎寿沧.污泥施肥时铜对农作物的污染.环境科学, 1990, 11( 3) : 6-11
    43.王凯荣.Cd对不同基因型水稻生长毒害影响的比较研究.农村生态环境, 1996, 12 (3): 18-23
    44.王松华,杨志敏,徐朗来.植物铜素毒害及其抗性机制研究进展[J].生态环境, 2003, 12(3): 336-341
    45.王新,梁仁禄.土壤-水稻系统中重金属复合污染物交互作用及生态效应的研究.生态学杂志, 2000, 19 (4): 38-42
    46.王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究.农业环境保护, 1998, 17 (5): 193-196
    47.王新,梁仁禄.土壤-水稻系统中重金属复合污染物交互作用及生态效应的研究.生态学杂志, 2000, 19 (4): 38-42
    48.王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究.农业环境保护, 1998, 17 (5): 193-196
    49.王新,吴燕玉.重金属在土壤-水稻系统中的行为特性.生态学杂志, 1997, 16 (4): 99, 19 (1), 104-107
    50.吴燕玉,余国营,王新,等.Cd, Pb, Cu, Zn, As复合污染对水稻的影响.农业环境保护, 1998, 17 (2): 49-54
    51.夏增禄.中国土壤环境容量研究.气象出版社, 1986
    52.徐加宽,杨连新,王志强,等.土壤铜浓度对水稻生长发育和产量形成的影响.中国水稻科学, 2005 , 19(3) :262-268
    53.徐加宽,杨连新,王余龙,王志强.水稻对重金属元素的吸收与分配机理的研究进展.植物学通报, 2005, 22 (5): 614-622
    54.徐加宽,杨连新,王志强,董桂春,黄建晔,王余龙.土壤铜浓度对水稻生长发育和产量形成的影响.中国水稻科学, 2005, 19 (3): 262-268
    55.徐加宽.土壤Cu浓度对水稻产量和品质的影响及其原因分析,扬州大学博士论文,2005.
    56.许嘉琳,鲍子平,杨居荣,等.农作物体铅、镉、铜的化学形态研究.应用生态学报, 1991, 2 (3): 244-248
    57.杨保华,官春云,陈剑虹.威优207水稻种子对汞铜锌胁迫的耐抗性研究.湖南农业科学, 2004, (2): 22-25
    58.杨桂芬,李德波.我国南方某些铜矿附近水稻土铜污染的调查研究.农村生态环境, 1990, (4): 55-59
    59.杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探.中国环境科学, 1999, 19 (6): 500-504
    60.依纯真,傅桂平.不同钾肥对水稻隔吸收和运移的影响.中国农业大学学报, 1996, 1 (3): 65-70
    61.袁玲,祝莉莉,何光存.Cu2+、Ag+在水稻种子萌发及幼苗生长中的作用.湖北农业科学, 2000, 2: 24-25
    62.张潮海,华村章,邓汉龙,等.水稻对污染土壤中隔、铅、铜、锌的富集规律的探讨.福建农业学报, 2003, 18 (3): 147-150
    63.张纪伍,梁伟,李德波,等.土壤铜铅锌复合污染对水稻的生态效应.农村生态环境, 1997, 13 (1): 16-20
    64.赵振纪,黄细花,刘永厚,等.铜对土壤—植物系统的影响及其临界值指标的研究.环境与开发, 1993, 8 (1): 4-91
    65.朱红霞,杨小勇,葛才林,等.重金属对水稻过氧化物酶同功酶的影响.核农学报, 2004, 18 (3): 233-236