农药在土壤粘粒矿物表面的吸附解吸与生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸附和降解是农药在土壤环境中行为和归宿的两个重要过程。农药在土壤粘土矿物上的吸附影响着农药在土壤中的迁移、转化和生物利用等过程。降解作用是农药消失的主要途径,是土壤净化功能的重要表现。了解农药在土壤中的吸附/解吸与生物降解规律,对于预测和评价农药对土壤、地下水存在的潜在危害性、开展土壤的化学修复和生物修复等都具有十分重要的意义。本文以蒙脱石、高岭石和针铁矿三种土壤粘粒矿物为吸附材料,研究了甲基对硫磷、西维因及其降解菌在矿物表面的吸附/解吸特征,探讨了固定态甲基对硫磷和西维因的降解动力学以及粘粒矿物对细菌活性的影响,主要内容如下:
     1.运用吸附-解吸等化学方法和傅立叶变换红外光谱(FTIR)技术,讨论了甲基对硫磷和西维因在蒙脱石、高岭石和针铁矿表面的吸附-解吸特征,基本揭示了两种农药在不同粘粒矿物表面的结合机制。甲基对硫磷在三种矿物表面的吸附较好地符合Freundlich方程,而西维因在矿物表面的吸附更好地符合Langmuir方程;蒙脱石对两种农药的吸附量均大于针铁矿和高岭石;用动力学方程对这两种农药的吸附过程进行拟合,Elovich方程为最佳模型,相关系数在0.93~0.98之间,说明该吸附过程为非均相扩散过程;两种农药的粘附量均随初始pH的升高先减小后增大;三种矿物对农药的亲和力大小为:蒙脱石>高岭石>针铁矿;两种农药可通过氢键、静电引力与矿物发生结合。
     2.首次研究了粘粒矿物固定甲基对硫磷的生物降解特性,用微量热仪测定了甲基对硫磷降解菌在不同粘粒矿物存在下的代谢活性,以及该菌利用游离与固定态甲基对硫磷进行生长代谢的热动力学特征。甲基对硫磷的生物降解明显受到农药浓度和矿物类型的影响。对于游离态甲基对硫磷,低浓度时开始具有较大的降解率,而高浓度时降解相对平缓。在降解初期(前7h),固定态甲基对硫磷的降解速率高于所有游离态。随着时间延长,固定态甲基对硫磷降解速率减慢,明显低于游离态。固定在不同矿物上的甲基对硫磷,其降解行为也存在明显差异。蒙脱石固定的甲基对硫磷,其降解百分数最大,高岭石次之,针铁矿最低。蒙脱石和高岭石对细菌第一次指数生长期有抑制作用,但促进了细菌的二次生长,且蒙脱石的促进作用大于高岭石,针铁矿则对细菌的代谢活性一直有抑制作用。矿物的存在显著影响了细菌活性,进而成为影响固定态甲基对硫磷生物降解的主要因素,矿物对甲基对硫磷的吸附作用则可能是次要的影响因素。
     3.运用吸附-解吸等化学方法研究了甲基对硫磷降解菌在不同粘粒矿物表面的吸附/解吸特征,结合FTIR技术探讨了其结合机制,研究了该固定菌对甲基对硫磷的降解动力学,并首次用微量热仪测定了不同粘粒矿物固定菌利用甲基对硫磷生长代谢的热动力学特征。甲基对硫磷降解菌在矿物表面的吸附量大小和结合强度均为:针铁矿>高岭石>蒙脱石。在pH等于或接近蒙脱石和高岭石的等电点时,细菌在这两种矿物表面的吸附量最大。细菌与粘粒矿物之间有多种作用力,包括范德华力、静电力、配体交换、氢键等,这些作用力对吸附的贡献大小也不一样。细菌与蒙脱石之间可能是范德华力占主导地位,与高岭石之间可能是非静电力(如氢键)起主要作用,与针铁矿之间则可能是配体交换、静电力发挥主要作用。细菌被粘粒矿物固定后,其降解甲基对硫磷的能力与游离菌明显不同。在低浓度农药下,游离菌的降解能力比固定菌要强。而在高浓度下,矿物的存在起初(前12h)有利于农药的降解,随着时间延长,固定菌对甲基对硫磷的降解程度渐渐低于游离菌。不同矿物固定菌的降解能力为:蒙脱石>高岭石>针铁矿。从吸附强度看,蒙脱石对甲基对硫磷降解菌的亲和力最弱,但它对细菌的代谢活性起到促进作用,有利于农药的生物降解;而针铁矿与细菌之间的键合强度最大,细菌活性因此受到抑制,不利于农药的生物降解。
     4.首次研究了粘粒矿物固定西维因的降解动力学,用微量热仪测定了不同矿物对西维因降解菌代谢活性的影响,结合前面的吸附实验分析了固定态西维因生物降解的影响因素。固定态西维因的降解速率和程度明显受矿物的影响,其影响程度随时间的延长而变化。在降解初期(前20h),固定态西维因的降解速率高于游离态,随着时间延长,其降解速率渐渐低于游离态。固定在不同矿物上的西维因,其降解率大小为:蒙脱石>高岭石>针铁矿,这与矿物对西维因键合强度的顺序一致。蒙脱石和高岭石可以强化西维因降解菌的代谢活性,有利于西维因的降解,而针铁矿对细菌的活性有抑制作用,不利用农药降解。固定态西维因的生物降解主要受到微生物活性的控制,矿物与西维因之间的吸附机制可能是次要的影响因素。
Sorption and degradation are the two important processes governing the fate of pesticides in soil system.Sorption on minerals is shown to control the transport, transformation and biological processes of pesticides in the subsurface.Biodegradation is a fundamental attenuation process for pesticides and an important performance of soil purification.It is meaningful to investigate the sorption-desorption and biodegradation of pesticides for evaluating the potential effects on soil and groundwater and developing the soil chemical remediation and bioremediation.In this study,montmorillonite,kaolinite and goethite were selected as model minerals.The adsorption and desorption characteristics of methyl parathion(MP),carbaryl and their degrading cells on clay minerals were obtained.Batch experiments were applied to determine the biodegradation kinetics of the immobilized pesticides.Microbial activities in the absence and presence of montmorillonite,kaolinite or goethite were monitored by microcalorimetry.The main contents were outlined as follow:
     1.Chemical adsorption-desorption and Fourier transform infrared spectra(FTIR) were employed to investigate the adsorption characteristics of MP and carbaryl on soil clay minerals.The results showed that the adsorption of MP on clay minerals fitted Freundlich equation very well,and the adsorption of carbaryl more fitted Langmuir equation.Montmorillonite had a greater adsorption capacity for the two pesticides than goethite and kaolinite.Elovich equation was the optimum model for their adsorption kenitics,of which the coefficients(R~2) ranged between 0.93 and 0.98,indicating that the adsorption was a non-homogeneous diffusion process.In addition,the adsorption amounts of pesticides first decreased then increased with the increasing of the pH value. The binding strength of pesticides on minerals followed the sequence:montmorillonite>kaolinite>goethite.The FTIR spectra demonstrated that hydrogen bond and electrostatic bond could be formed in the adsorption process.
     2.The biodegradation kinetics of mineral-sorbed MP was determined.The metabolic activities of MP-degrading cells in the presence of various clay minerals or using free/immobilized MP were monitored by microcalorimetry.The biodegradation of MP was significantly impacted by the concentration of pesticide and the nature of minerals.For the free MP,the pesticide with a low concentration was degraded more rapidly than that with a high concentration.The degradation of sorbed MP proceeded at a rate faster than free pesticide over the initial 7 h of incubation.However,the percent degradation of free MP was obviously higher than that of immobilized pesticides afterwards.The differences of biodegradation were also observed when MP was sorbed on various minerals.The percent degradation of sorbed MP followed the sequence: montmorillonite>kaolinite>goethite,which was in accordance with the binding strength of MP on minerals.The presence of montmorillonite or kaolinite depressed the first exponential growth of MP-degrading cells but stimulated their second growth. However,goethite displayed inhibitory effect on bacterial activity at all times.The biodegradation of sorbed MP may be dominantly controlled by the activities of the MP-degrading microorganisms.The sorption characteristics of methyl parathion on minerals could be the secondary factors.
     3.Chemical adsorption-desorption and FTIR were employed to investigate the adsorption characteristics and mechanisms of MP-degrading cells on soil clay minerals. The kinetics of MP biodegradation by the immobilized cells were investigated.The metabolism curves of free/immobilized cells using MP were monitored by microcalorimetry.The adsorption amounts and the binding strength of MP-degrading cells on minerals examined followed the sequence:montmorillonite>kaolinite>goethite.The maximum adsorption of cells adsorption on montmorillonite and kaolinite occurred at pHs equivalent or close to the zero point charge of the two clay minerels. There were a variety of forces such as Van der Waals forces,electrostatic interactions, ligand exchange and hydrogen bonding in the process of MP-degrading cells adsorbed on minerals.The Van der Waals forces could dominated cells adsorption on montmorillonite, and the cells were adsorbed on kaolinite predominantly by non-electrostatic forces(e.g. hydrogen bond).The ligand exchange and electrostatic force were considered to be the main forces controlling the sorption of cells on goethite.Compared to free cells,the metabolism abilities of immobilized cells significantly weaken in the low MP concentration system.The presence of minerals enhanced the MP degradation in the high pesticide concentration system at the first 12h.Afterwards,the percent degradation of MP by immobilized cells was lower than that by free cells.The percent degradation of MP were different when cells sorbed on various minerals,which followed the sequence of montmorillonite>kaolinite>goethite.Montmorillonite presented a lower affinity for cells as compared to goethite and kaolinite,but it could enhance the activity of MP-degrading cells and further stimulated the bioavailability of pesticide.However, goethite displayed an inhibitory effect on the bacterial activity because of the tight attachment of bacterial cells and hindered the substrate biodegradation.
     4.The biodegradation kinetics of mineral-sorbed carbaryl was determined and the metabolic activities of carbaryl-degrading cells in the presence of various clay minerals were assessed by microcalorimetric technique for the first time.The impact on sorbed carbaryl bioavailability were illustrated by microbial activity and previous sorption experiments.The results showed that both degradation efficiency and rate of sorbed carbaryl were significantly impacted by the presence of minerals.The degradation of mineral-sorbed carbaryl proceeded at a rate faster than free pesticide over the initial 20 h of incubation.However,the percent degradation of aqueous carbaryl was obviously higher than that of immobilized pesticides afterwards.The differences of biodegradation were also observed when carbaryl was sorbed on various minerals.The percent degradation of sorbed carbaryl followed the sequence:montmorillonite>kaolinite>goethite,which is in accordance with the binding strength of carbaryl on minerals.The presence of montmorillonite or kaolinite enhanced the bacterial activity and further stimulated the bioavailability of carbaryl.However,goethite displayed inhibitory effect on bacterial activity and reduced the substrate degradation.The biodegradation of mineral-sorbed carbaryl may be dominantly controlled by the activities of the carbaryl-degrading cells.The sorption characteristics of carbaryl on minerals were considered to be the secondary factors.
引文
1.柏文琴,何凤琴,邱星辉.有机磷农药生物降解研究进展.应用与环境生物学报,2004,10(5):675-680
    2.卞永荣,蒋新,王代长,赵振华,孙磊,陈亮,周道斌.五氯酚在酸性土壤表面的吸附-解吸特征研究.土壤,2004,36(2):181-186.
    3.曹慧,崔中利,周育,滕齐辉,王兴祥,李顺鹏.甲基对硫磷对红壤地区土壤微生物数量的影响.土壤,2004,36(6):654-657
    4.钞亚鹏,赵永芳.甲基营养菌WB-1甲胺磷降解酶的产生、部分纯化及性质.微生物学报,2000,40(5):523-527
    5.陈亚丽,张先恩.甲基对硫磷降解菌假单胞菌WBC-3的筛选及降解性能的研究.微生物学报,2002,42(2):490-497
    6.方晓航,仇荣亮.农药在土壤环境中的行为研究.土壤与环境,2002,11(1):94-97
    7.冯波,章永化,龚克成.蒙脱石一有机化合物的相互作用.化学通报,2002,(7):440-444
    8.冯慧敏,何红波,武叶叶,张旭东,张明.黑土环境中乙草胺的微生物降解特征研究.土壤通报,2008,39(2):379-383
    9.姜红霞,王圣惠,薛庆节,闫艳春.甲基对硫磷降解菌Alcaligenes.sp.YcX-20的分离鉴定及降解性能研究.农业环境科学学报2005,24(5):962-965
    10.李克斌,季谨.苯达松在单离子蒙脱石上的吸附机理研究.环境科学与技术,1998,(3):5-7
    11.李克斌,刘广深,刘维屏.酰胺类除草剂在土壤上吸附的位置能量分布分析.土壤学报,2003,40(4):574-580
    12.李克斌,许中坚,刘维屏.农药在土壤上吸着/解吸及其对生物利用率影响的研究进展.环境污染治理技术与设备,2002,3(4):18-24
    13.李晓军,李培军,蔺昕.土壤中难降解有机污染物锁定机理研究进展.应用生态学报,2007,18(7):1624-1630
    14.林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.北京:化学工业出版社,1999:174-176
    15.刘维屏,Cessa C.利谷隆在土壤中的吸附过程与机理.环境科学,1995,16(1):16-18
    16.刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素——吸附和脱附.中国环境科学,1996,16(1):25-30
    17.刘维屏.粘土矿物、腐植酸对异丙甲草胺的吸附.上海环境科学,1995,14(12): 42-44
    18.罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况.化工技术与开发,2004,33(1):12-16
    19.罗启士,张锡辉,王慧.生物修复中有机污染物的生物可利用性.生态环境,2004,13(1):85-87
    20.马爱军,何任红,周立祥.除草剂草萘胺在土壤-水环境中的吸附行为及其机理.环境科学学报,2006,26(7):1159-1163
    21.马立新,陈吉平,郭荣波,倪余文,梁鑫淼.农药保棉磷、敌草隆、莠去津和扑草净在土壤中不可逆吸附研究.精细化工,2004,21(6):456-459
    22.马瑛,张甲耀,管筱武.原毛平革菌堆肥处理有害废弃物的可行性.环境科学,1999,20(6):67-70
    23.莫测辉,蔡全英.城市污泥与玉米秸秆堆肥中多环芳烃(PAHs)的研究.农业工程学报,2001,17(5):73-77
    24.欧晓明,罗玲,王晓光,樊德方.黏土矿物和腐植酸对新农药硫肟醚的吸附及其机理研究.农业环境科学学报,2006,25(1):211-218
    25.欧晓明,王晓光,樊德方,喻快.农药细菌降解研究进展.世界农药,2003,25(6):30-36
    26.欧阳天贽,叶发兵,李学垣.苄嘧磺隆在几种氧化物表面的吸附及氯离子对吸附的影响.中国农业科学,2003,36(12):1614-1617
    27.邵颖,刘维屏.除草剂普杀特在粘土矿物上的作用行为研究.上海环境科学,1996,15(12):40-41
    28.司友斌,周静,王兴祥,周东美.除草剂苄嘧磺隆在土壤中的吸附.环境科学,2003,24(3):122-125
    29.王军,朱鲁生,林爱军,刘爱菊,孙瑞莲.二甲戊乐灵在土壤中的吸咐及微生物降解.农业环境科学学报,2003,22(4):488-492
    30.王琪全.除草剂灭草烟在土壤中的吸附、脱附.中国环境科学,1998,18(4):314-318
    31.王倩如,叶晶菁.甲胺磷农药废水生化处理高效菌选育的研究.化工环保,1995,15(4):205-210
    32.王永杰.有机磷农药广谱活性降解菌的分离及其生理性研究.南京农业大学学报,1999,22(2):42-45
    33.吴平霄,廖宗文.农药在蒙脱石层间域中的环境化学行为.环境科学进展,1999,7(3):70-77
    34.杨波,曾清如,马云龙,杨成建.有机膨润土对水溶液中甲基对硫磷的吸附特性研究.农药环境科学学报,2007,26(5):1698-1701
    35.杨景辉.土壤污染与防治.北京:科学出版社,1995.294-295
    36.杨克武,安凤春.单甲脒在土壤中的吸附.环境化学,1995,14(5):431-435
    37.杨小红,李俊,葛诚,沈德龙.微生物降解农药的研究新进展.微生物学通报,2003,30(6):93-96
    38.于天任.土壤化学原理.北京:科学出版社,1987
    39.曾清如,周细红,杨仁斌,郭正元,铁柏青.CTMAB-膨润土对水溶液中4种农药的吸附特性.农药学学报,2000,2(3):80-84
    40.张瑞福,崔中利,何健,黄婷婷,李顺鹏.甲基对硫磷长期污染对土壤微生物的生态效应.农村生态环境,2004,20(4):1-5
    41.郑永良,刘德立,陈舒丽,赵莉,肖文精.一株甲基对硫磷高效降解菌的鉴定及特性研究.环境科学研究,2006,19(4):100-105
    42.朱馨乐,李萍,胡俊喆,冯小刚,袁春伟.TiO_2光催化降解哒螨酮机理研究.环境科学学报,2004,24:50-56
    43.Aelion C M,Swindoll C M,Pfaender F K.Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer.Appl.Environ.Microbiol.,1987,53:2212-2217
    44.Airoldi C,Prado A G S.The inhibitory biodegradation effects of the pesticide 2,4-D when chemically anchored on silica gel.Thermochim.Acta,2002,394:163-169
    45.Akyuz S,Akyuz T.FT-IR spectroscopic investigation of adsorption of pyrimidine on sepiolite and montmorillonite from Anatolia.J.Incl.Phenom.Macro.,2003,46:51-55
    46.Amiel C,Mariey L,Denis C,Pichon P,Travert J.FTIR spectroscopy and taxonomic purpose:Contribution to the classification of lactic acid bacteria.Lait,2001,81:249-255
    47.Arnaud B,Samira A,Michel S,Martinus T,Van G.2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils.Environ.Pollut.,2005,138:92-99
    48.Atkinson R J,Posnel A M,Quisk J P.Adsorption of potential-determining ion at ferrio aqueous electrolyte interface.J.Phys.Chem.,1967,71:511
    49.Baldauf N A,Rodriguez-Romo L A,Manning A,Yousef A E,Rodriguez-Saona L E.Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-transform mid-infrared spectroscopy.J.Microbiol.Meth.,2007,68:106-114
    50.Barja I,Nunez L.Microcalorimetric measurements of the influnence of glucose concentration on microbial activity in soils.Soil Bio.Biochem.,1999,31:441-447
    51.Brajesh K.Singh A W,Lun J A.Role of Soil pH in the Development of Enhanced B iodegradation of Fenamiphos.Appl.Environ.Microbiol.,2003,12:7035-7043.
    52. Calvet R. Adsorption of organic chemicals in soils. Environ. Health Persp., 1989, 83: 145-177
    53. Caron D A, Davis P G., Madin L P, Sieburth J M. Heterotrophic bacteria and bacteriovorous protozoa in oceanic macroaggregates. Science, 1982, 218: 795-797
    54. Cavanna S, Garatti E, Rastelli E, Molinari G P. Adsorption and desorption of bensulfuron-methyl on italian paddy field soils. Chemosphere, 1998, 37: 1547-1555
    55. Clausen L, Fabricius I, Madsen L. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina. J. Environ. Qual, 2001,. 30: 846-857
    56. Crocker F H, Guerin W F, Boyd S A. Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ. Sci. Technol, 1995, 29: 2953-2958
    57. Doddamani H P, Ninnekar H Z. Biodegradation of carbaryl by a micrococcus species, Curr. Microbiol, 2001, 43: 69-73
    58. Erhardt H M, Rehm H J. Phenol degradation by microorganisms adsorbed on activated carbon. Appl. Microbiol. Biotechnol., 1985, 21: 32-36
    59. Feng Y, Park J H, Voice T C, Boyd S A. Bioavailability of soil-sorbed biphenyl to bacteria. Environ. Sci. Technol. 2000, 34: 1977-1984
    60. Fushiwaki Y, Urano K. Adsorption of pesticides and their biodegraded products on clay minerals and soils. J. Health Sci., 2001. 47(4): 429-432
    61. Fusi P, Arfaioli P, Calamai L, Bosetto M. Interactions of two acetanilide herbicides with two clay surfaces modified with Fe(III)oxyhydroxides and hexaclocytri methyl ammonium. Chemosphere, 1993, 27(5): 765-771
    62. Gevao B, Semple K T, Jones K C. Bound pesticide residues in soils: a review. Environ. Pollut., 2000, 108: 3-14
    63. Gordon A S, Millero F J. Adsorption mediated decrease in the biodegradation rate of organic compounds. Microbiol. Ecol., 1985, 11: 289-298
    64. Guo L, Jury W A, Wagenet R J, Flury M. Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. J. Contam. Hydrol., 2000,43: 45-62
    65. Haque R, Coshow W R. Adsorption of isocil and bromacil from aqueous solution onto some mineral surfaces. Environ. Sci. Technol., 1971, 5: 139-141
    66. Haynes C A, Norde W J. Structures and stabilities of adsorbed proteins. J. Colloid Interface Sci., 1995, 169:313-328
    67. Hundt k, Wagner M, Becher D. Effect of selected environmental factors on degradation and mineralization of biaryl compounds by bacterium ralstonia pickettii in soil and compost. Chemosphere, 1998, 36(10): 2321-2335
    68. Jaga K, Dharmani C. Methyl parathion: an organophosphate insectcide not quite forgotten. Rev. Environ. Health, 2006, 21(1): 57-67
    69. Jana T K, Das B. Sorption of carbaryl(1-napthyl n-methyl carbamate) by soil. Bull. Environ. Contam. Toxicol., 1997, 59: 65-71
    70. Jiang D, Huang Q, Cai P, Rong X, Chen W. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloids Surfaces B, 2007, 54(2): 217-221
    71. Kishk F M, Abu-Sharar T M, Bakry N M, Abou-Donial M B. Sorption-desorption characteristics of methyl parathion by clays. Arch. Environ. Con.Tox., 1979, 8 (6): 637-645
    72. Laird D A, Barriuso E, Dowdy R H, Koskinen W C. Adsorption of atrazine on smectites. Soil Sci. Soc. America, 1992, 56: 62-67
    73. Lee S, Kommalapati R R, Valsaraj K T, Pardue J H, Constant W D. Bioavailability of reversibly sorbed and desorption-resistant 1, 3-dichlorobenzene from a Louisiana superfund site soil. Water Air Soil Poll. 2004,158: 207-221
    74. Mihelcic J R, Lueking D R, Mitzell R J, Stapleton J M. Bioavailability of sorbed-and separate-phase chemicals. Biodegradation, 1993,4: 141-153
    75. Neera S, Megharaj M, Gates W P, Churchman G J, Anderson J, Kookana R S, Naidu R, Chen Z, Slade P G, Sethunathan N. Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J. Agric. Food Chem., 2003, 51: 2653-2658
    76. Nishino S F, Spain J C. Cell density-dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol. Environ. Sci. Technol., 1993, 27: 489-494
    77. Nkedi-kizza P, Brown K D. Sorption, degradation, and mineralization of carbaryl in soils, for single-pesticide and multiple-pesticide systems. J. Environ. Qual., 1998, 27: 1318-1324
    78. Ogram A V, Jessup R E, Lou L T, Rao P S C. Effects of sorption on biological degradation rates of (2,4-Dichlorophenoxy) acetic acid in soils. Appl. Environ. Microbiol., 1985,49:582-587
    79. Ohmura N, Kitamura K, Saiki H. Mechanism of microbial flotation using thiobacillus ferrooxidans for pyrite suppression. Biotechnol. Bioeng., 1993, 41(6): 671-676
    80. Oliveira M F D, Johnston C T, Premachandra G S, Teppen B J, Li H, Laird D A, Zhu D, Boyd S A. Spectroscopic study of carbaryl sorption on smectite from aqueous suspension. Environ. Sci. Technol., 2005, 39: 9123-9129
    81. Ortega-Calvo J J, Fesch C, Harms H. Biodegradation of sorbed 2,4-Dinitrotoluene in a clay-rich, aggregated porous medium. Environ. Sci. Technol., 1999, 33: 3737-3742
    82. Park J H, Feng Y, Ji P, Voice T C, Boyd S A. Assessment of bioavailability of soil-sorbed atrazine. Appl. Environ. Microb., 2003, 69: 3288-3298.
    83. Phippa M A, Mackin L A. Application of isothermal microcalorimetry in solid state drug development. Pharm. Sci. Technol. Today, 2000: 3: 9-17
    84. Prado A G S, Airoldi C. A toxicity view of the pesticide picloram when immobilized onto a silica gel surface. Anal. Bioanal. Chem., 2003, 376: 686-690
    85. Prado A G S, Airoldi C. Effect of the pesticide 2,4-D on microbial activity of the soil monitored by microcalorimetry. Thermochim. Acta, 2000, 349: 17-22
    86. Prado A G S, Airoldi C. Microcalorimetry of the degradation of the herbicide 2,4-D via the microbial population on a typical brazilian red Latosol soil. Thermochim. Acta, 2001,371: 169-17
    87. Rijnaarts H H M, Bachmann A, Jumelet J C, Zehnder A J B. Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of a-HCH in a contaminated calcareous soil. Environ. Sci. Technol., 1990, 24(9): 1349-1354
    88. Rivera-Tinoco R, Bouallou C. Kinetic study of carbonyl sulfide (COS) absorption by methyldiethanolamine aqueous solutions from 415 mol/m(3) to 4250 mol/m(3) and 313 K to 353 K. Ind. Eng. Chem. Res., 2007, 46(20): 6430-6434
    89. Rong X, Huang Q, Chen W. Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite. Appl. Clay Sci., 2007, 38: 97-103
    90. Rong X, Huang Q, He X, Chen H, Cai P, Liang W. Interaction of Pseudomonas putida with kaolinite and montmorillonite:A combination study by equilibrium adsorption, ITC, SEM and FTIR, Colloids Surfaces B, 2008, 64: 49-55
    91. Russell J D, Crus M I, White J L. The adsorption of 3-aminotriazole by montmorillonite. J. Agr. Food Chem., 1968, 16: 21-24
    92. Sannino F, Filazzola M T, Violante A. Adsorption-desorption of simazine on montmorillonite coated by hydroxy aluminum species. Environ. Sci. Technol., 1999, 33:4221-4225
    93. Shashikala A R, Raichur A M. Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz. Colloids Surfaces B, 2002,24:11-20
    94. Shelton D R, Doherty M A. Estimating losses of efficacy due to pesticide biodegradation in soil: Model simulations. Soil Sci. Soc. Am. J., 1997, 61: 1085-1090
    95. Tenbrook P L, Kendall S M, Tjeerdema R S. Toxicokinetics and biotransformation of p-nitrophenol in white sturgeon (Acipenser transmontanus). Ecotoxicol. Environ. Saf., 2006, 64(3): 362-368
    96. Theng B K G, Aislabie J, Fraser R. Bioavailability of phenanthrene intercalated into an Alkylammonium-rnontmorillonite clay. Soil Biol. Biochem., 2001, 33: 845-848
    97. Theng B K G, Orchard V A. Interactions of clays with microorganisms and bacterial survival in soil: A physicochemical perspective, 1995: 123-139. In P. M. Huang, J. Berthelin, Bollag J M, McGill W. B. (ed.), Environmental impact of soil component interactions: metals, other inorganics, and microbial activities. CRC Press, Florida.
    98. Unanue M, Ayo B, Azua I, Barcina I, Irriberri J. Temporal variability of attached and free-living bacteria in coastal waters. Microb. Ecol., 1992, 23: 27-39
    99. van Loosdrecht M C M , Lyklema J, Norde W, Schraa G, Zehnder A J B. The role of bacteria] wall hydrophobicity in adhesion. Appl. Environ. Microb., 1987, 53: 1893-1897
    
    100.Weber J B, Coble H D. Microbial decomposition of diquat adsorbed on montmorillonite and kaolonite clays. J. Agric. Food. Chem., 1968, 16: 475-478
    101.Weber J B. Adsorption of s-triazines by montmorillonite as a function of pH and molecular structure. Soil Sci. Soc. Am. Proc, 1970, 34: 401-404
    102.Weed S B, Weber J B. The effect of cation exchange capacity on the retention of diquat and paraquat by three-layer type clay minerals: adsorption and release. Soil Sci. Soc. Am. Proc, 1969, 33: 379-382
    103.Yang Y, Zhu J, Liu Y, Shen P, Qu S. Microcalorimetry is a sensitive method for studying the effect of nucleotide mutation on promoter activity. J. Biochem. Bioph. Meth., 2005, 62: 183-189
    104.Younes M, Galal-Gorchev H. Pesticides in drinking water-a case study. Food Chem. Toxicol., 2000, 38, 87-90
    105.Yu Y, Zhou Q X. Adsorption characteristics of pesticides methamidophos and glyphosate by two soils. Chemosphere, 2005, 58: 811-816
    106.Zeng Q R, Liao B H, Yang B, Tang H X, Xue N D. Sorption of methyl-parathion and carbaryl by an organo-bentonite. Biol. Fert. Soils, 2006. 42(5): 457-463
    107.Zhang L X, Liu Y, Cia L H, Hu Y J, Yin J, Hu P Z. Inhibitory study of some novel Schiff base derivatives on Staphylococcus aureus by microcalorimetry. Thermochim. Acta. 2006,440:51-56