互花米草入侵对长江口盐沼湿地线虫群落的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵是全球性的重大生态学和环境问题之一。近年来随着科学家对土壤生态系统重要性认识的深入,评价外来植物入侵对土壤生物多样性及生态系统功能的影响已经成为当前入侵生态学领域的一个研究热点。河口盐沼湿地是联结陆地、河流和海洋三大生态系统的枢纽,拥有独特而不可替代的自然资源,同时也是一个非常脆弱的生态系统,被认为是最易入侵的生态系统之一。在长江口盐沼湿地,外来植物互花米草(Spartina alterniflora)正大面积扩散,并和土著植物芦苇(Phragmites australis)和海三棱麃草(Scirpus mariqueter)形成强烈竞争。线虫是土壤动物中的优势类群,在生态系统物质循环中扮演着重要的角色,且直接受植物群落改变的影响,是评价植物入侵对盐沼湿地生物多样性影响的很好的指示生物。本论文通过野外调查,研究了互花米草入侵长江口盐沼湿地对土壤线虫群落和植物附生线虫群落的影响,并进一步采用凋落盒分解实验和植物移栽实验,分别研究了“凋落物输入”和“根际输入”两种途径在互花米草入侵影响盐沼湿地线虫群落中的作用。主要研究结果如下:
     1)共发现长江盐沼湿地线虫70属,隶属于2纲7目39科。
     2)为了解互花米草入侵对土壤线虫群落的影响,以长江口三个潮间带盐沼湿地为研究地点,比较互花米草与两种土著植物(芦苇和海三棱蔗草)典型植物群落中的土壤线虫群落。结果显示互花米草群落中土壤线虫的营养多样性低于两种土著植物群落,表明互花米草入侵降低了长江口盐沼湿地土壤生物的功能多样性,土壤食物网结构趋于简化。互花米草群落中的食细菌线虫比例高于芦苇群落,显示互花米草取代芦苇群落可能改变了凋落物分解速率和途径。互花米草与两种土著植物群落的土壤线虫群落结构均存在显著差异,而互花米草与海三棱麃草间线虫群落结构的差异小于互花米草与芦苇间,可见互花米草入侵不同的土著植物群落所产生的影响会有程度上的区别。互花米草入侵对土壤线虫的密度、属数、多样性等的影响存在地点间的差异,表明植物入侵的生态影响还可能与被入侵生态系统的生境特性相关。
     3)为了解互花米草入侵对植物附生线虫群落的影响,以崇明东滩盐沼湿地为研究地点,比较互花米草和芦苇典型群落斑块中附生在活秆和枯秆上的附生线虫群落。结果显示在各季节,互花米草与芦苇茎秆上附生线虫的群落结构均存在显著差异,表明互花米草入侵长江口盐沼湿地显著改变了植物附生线虫的群落结构。互花米草活秆和枯秆附生线虫的数量在各季节都高于芦苇,表明互花米草的入侵可能使盐沼湿地中附生生物数量增加。附生在互花米草枯秆上的食细菌线虫数量显著高于芦苇,并主要体现在参与盐沼植物凋落物分解的Diplolaimelloides数量的显著增加,由此我们认为两种植物茎秆分解过程的差异可能是引起枯秆附生线虫数量变化的一个重要原因。
     4)为了解凋落物输入途径在互花米草入侵改变线虫群落中的作用,采用凋落盒方法,比较了外来种互花米草与土著种芦苇的茎秆分解过程以及线虫群落在这个过程中的集群定居和生态演替。结果显示,与芦苇茎秆相比,互花米草茎秆凋落物具有较高的氮浓度和较低的碳氮比,其降解更为迅速。互花米草凋落盒中的线虫数量最多,其次为芦苇,而对照中线虫数量始终都维持在较低水平,线虫数量的变化主要是由食细菌类群的数量变化决定。与芦苇凋落盒及对照相比,互花米草凋落盒中的食细菌线虫数量显著较高。Diplolaimelloides和Diplolaimella是参与植物凋落物分解的主要线虫类群,分别占凋落物中线虫总数量的53%和28%。参与互花米草茎秆分解的线虫群落成熟指数和结构指数都低于芦苇,表明互花米草入侵可能通过凋落物输入降低土壤线虫群落结构的复杂性。
     5)为了解根际输入途径在互花米草入侵影响线虫群落中的作用,采用植物移栽实验,比较研究了互花米草与两种土著植物生长过程中根际线虫的群落演替规律。结果表明,互花米草与两种土著植物生长过程中根际线虫的密度、属的丰富度、多样性、营养多样性及群落结构在植物间均没有显著差异,这显示根际输入在互花米草影响土壤线虫群落过程中的作用可能不明显。对线虫食性类群的进一步分析表明,互花米草根际土壤中食细菌线虫数量显著低于芦苇,这与野外调查及凋落物分解实验的结果刚好相反。与土著植物海三棱麃草相比,入侵植物互花米草根际的植物寄生线虫数量显著低于海三棱麃草,显示互花米草抗寄生线虫能力较强。
Invasions of exotic species have caused serious environmental problems in the world. As increasing attention has been paid to underground in recent years, the impact of exotic plant invasions on the composition and function of soil communities has emerged as an essential issue in invasion ecology. Coastal and estuarine salt marshes are the critical transition zones between terrestrial and aquatic ecosystems which play major roles in conserving biodiversity. Compared with other ecosystems, the salt marshes have widely been recognized as one of the most heavily invaded ecosystems. In Yangtze River estuarine salt marshes, the ecosystems are now heavily infested with an introduced exotic plant Spartina alterniflora. S. alterniflora spreads to most of the wetlands and is competing with native plant species by forming dense monocultures. This study aims to evaluate the impacts of S. alterniflora invasions on soil biodiversity by using nematodes as indicators and to explore the mechanisms by which S. alterniflora affect the structure and function of soil nematodes. Nematodes are selected as indicators because they are the most abundant soil metazoan taxon, closely linked with plants and mineralization processes, and can provide unique insights into many aspects of ecosystem processes.
     During the study, a total of 70 nematode genera were found from the salt marsh wetlands of the Yangtze River estuary belonging to 39 families, 7 orders and 2 classes. Photographs of 37 common genera were presented to show their main characteristics.
     To assess the effect of S. alterniflora invasion on soil nematodes, I compared the nematode communities in marshes respectively dominated by invasive S. alterniflora and native Scirpus mariqueter and Phragmites australis at three local sites in the Yangtze River estuary over two seasons. S. alterniflora stands had generally lower nematode trophic diversity than the stands of the 2 native plants, suggesting that the exotic plant led to a simplified benthic food web. The relative abundance of bacterial-feeding nematodes tended to increase in S. alterniflora marshes compared to P. australis marshes. The increased bacterial-feeding nematodes in S. alterniflora stands are likely to reflect the altered decomposition processes, rates and pathways, which may, in turn, modify belowground nutrient cycling of the estuarine ecosystems. The dissimilarity in nematode community structure between S. alterniflora and S. mariqueter marshes was smaller than that between S. alterniflora and P. australis marshes, suggesting that the detection of the ecological consequences of plant invasions depends on which native plant species is considered. In addition, site effects were generally detected in the comparison of sediment properties and nematodes among 3 plant marshes.
     To assess the effect of S. alterniflora invasion on epiphytic nematodes, I compared epiphytic nematode communities associated with standing live and dead stems of P. australis and S. alterniflora at Dongtan of Chongming Island across three seasones. In each sampling season, the dissimilarities in epiphytic nematode communities between P. australis and S. alterniflora were significant. S. alterniflora stems supported more abundant epiphytic nematodes comparing to P. australis stems. These results suggest that the invasion of S. alterniflora increase the epiphytic nematode abundance and altered the epiphytic community composition. Greater abundances of epiphytic bacterial nematodes were found on dead stems of S. alterniflora than on those of P. australis, which was mainly due to the decomposing nematode Diplolaimelloides. It indicates that the dissimilarity of stem litter quality between S. alterniflora and P. australis may be important in shaping nematode communities associated with dead stems.
     To test whether the exotic plant invasions affect soil nematode communities through litter inputs, I compared mass loss and nematode colonization during the stem litter decomposition of invasive S. alterniflora and native P. australis in salt marshes of the Yangtze River estuary. With higher nitrogen content and lower C:N ratio, stem litter of the invasive S. alterniflora decayed faster than the native P. australis. The total nematode abundance was the highest in S. alterniflora litter at each experimental stage, followed by P. australis and control. The total nematode abundance remained low in control containers throughout the experiment. Most changes of nematode abundance were due to the change in bacterivores. Compared to P. australis, the greater nematode abundance in S. alterniflora was mainly due to two dominant genera of bacterial nematodes. Diplolaimelloides and Diplolaimella were dominant genera in both S. alterniflora and P. australis litter, contributing 53% and 28% to the total abundance, respectively. Lower values of maturity index and structure index in S. alterniflora than in P. australis litter indicate that a more degraded food web condition resulted from the invasion of S. alterniflora by producing higher quality of litter than the native P. australis.
     To test whether the exotic plant invasions affect soil nematode communities through altering root inputs, I conducted a two-year pot experiment grown with S. alterniflora and two native plant monocultures. The plant species identity did not affect the biomass, genus richness and diversity, trophic diversity and community structure of rhizosphere nematodes, which suggests a relatively weak rhizosphere effect. Contrary to the findings from litter decomposition experiment, the abundance of bacterial nematodes in rhizosphere of P. australis significantly increased than that of S. alterniflora. The abundance of plant-feeding nematodes was found significantly decreased in rhizosphere of S. alterniflora compared to S. mariquete, suggesting that the invasive S. alterniflora is less vulnerable than the native S. mariquete.
引文
[1]陈兵,康乐.生物入侵及其与全球变化的关系[J].生态学杂志,2003,22:31-34.
    [2]陈吉余,徐海根.三峡工程对长江河口的影响[J].长江流域资源与环境,1995,4:242-246.
    [3]陈吉余,杨启伦,赵传絪.上海市海岸带和海涂资源综合调查报告[M].上海:上海科学技术出版社,1988:
    [4]陈家宽.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社,2003:251
    [5]陈小云,刘满强,胡锋,毛小芳,李辉信.根际微型土壤动物——原生动物和线虫的生态功能[J].生态学报,2007,27:3132-3143.
    [6]陈中义,付萃长,王海毅,李博,吴纪华,陈家宽.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学,2005,3:1-7.
    [7]陈中义,李博,陈家宽.米草属植物入侵的生态后果及管理对策[J].生物多样性,2004,12:280-289.
    [8]陈中义.互花米草入侵国际重要湿地崇明东滩的生态后果[D].上海:复旦大学博士学位论文,2004:
    [9]高慧,彭筱葳,李博,吴千红,董慧琴.互花米草入侵九段沙河口湿地对当地昆虫多样性的影响[J].生物多样性,2006,14:400-409.
    [10]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49:1226-1233.
    [11]胡锋,李辉信,史玉英,武心齐,王道军.两种基因型小麦根际土壤生物动态及根际效应[J].土壤通报,1998,29(3):133-135.
    [12]胡锋,李辉信,谢涟琪,吴珊眉.土壤食细菌线虫与细菌的相互作用及其对N、P矿化生物固定的影响及机理[J].生态学报,1999,19:914-920.
    [13]华建峰,姜勇,梁文举.植被覆盖对土壤线虫营养类群空间分布的影响[J].应用生态学报,2006,17:195-299.
    [14]黄华梅,张利权,高占国.上海滩涂植被资源遥感分析研究[J].生态学报,2005,25:2686-2693.
    [15]蒋福兴,王维中,黄耀生,赵清良,徐家铸.大米草—双齿围沙蚕相关性初探[J].生态学报,1992,12:84-88.
    [16]李博,陈家宽.入侵生态学:成就与挑战[J].世界科技研究与发展,2002,24:26-36.
    [17]李贺鹏,张利权,王东辉.上海地区外来种互花米草的分布现状[J].生物多样性,2006,14:114-120.
    [18]李琪,梁文举,姜勇.农田土壤线虫多样性研究现状及展望[J].生物多样性,2007,15:134-141.
    [19]李玉娟,吴纪华,陈慧丽,陈家宽.线虫作为土壤健康指示生物的方法及应用[J].应用生态学报,2007,16:1541-1546.
    [20]廖成章.互花米草入侵对长江口盐沼生态系统碳氮循环的影响[D].上海:复旦大学博士学位论文,2007:
    [21]刘志磊,徐海根,丁晖.外来入侵植物紫茎泽兰对昆明地区土壤动物群落的影响[J].生态与农村环境学报,2006,22:31-35.
    [22]牛红榜,刘万学,万方浩.紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响[J].生态学报,2007,27:3051-3060.
    [23]彭少麟,向言词.植物外来种入侵及其对生态系统的影响[J].生态学报,1999,19:560-568.
    [24]邵元虎,傅声雷.试论土壤线虫多样性在生态系统中的作用[J].生物多样性,2007,15:116-123.
    [25]邵元虎,夏汉平,周丽霞,林永标,赵灿灿,傅声雷.香根草属与狼尾草属植物对土壤线虫营养类群的影响[J].热带亚热带植物学报,2007,15:1-8.
    [26]沈荔花,郭琼霞,林文雄,陈颖,黄振.加拿大一枝黄花对土壤微生物区系的影响研究[J].中国农学通报,2007,23:323-327.
    [27]孙书存,蔡永立,刘红.长江口盐沼海三棱蔗草在高程梯度上的生物量分配[J].植物学报,2001,48:178-185.
    [28]唐廷贵,张万均.论中国海岸带大米草生态工程效益与“生态入侵”[J].中国工程科学,2003,5:15-20.
    [29]童远瑞,孟文新,徐琴.大米草潮间带的动物调查[J].南京大学学报(自然科学专刊),1985,40:133-140.
    [30]汪家旭,潘沧桑.潜根线虫的种类[J].厦门大学学报(自然科学版),1999,38:297-304.
    [31]王蒙.长江口九段沙湿地盐沼植物根围细菌群落结构和多样性的研究[D].上海:复旦大学博士学位论文,2006:
    [32]王卿,安树青,马志军,赵斌,陈家宽,李博.入侵植物互花米草——生物学、生态学及管理[J].植物分类学报,2006,44:559-588.
    [33]王卿.长江口盐沼植物群落分布动态及互花米草入侵的影响[D].上海:复旦大学博士学位论文,2007:
    [34]王逸难.厦门地区3种野生菊科植物根周土壤线虫的调查[J].厦门大学学报,2006.45:122-125.
    [35]吴纪华,宋慈玉,陈家宽.食微线虫对植物生长及土壤养分循环的影响[J].生物多样性,2007,15:124-133.
    [36]吴纪华.中国淡水和土壤线虫的研究[D].武汉:中国科学院水生所,1999:
    [37]吴纪华.崇明岛湿地围垦对线虫群落结构的影响[D].上海:复旦大学博士后出站报告,2001:
    [38]谢一民.上海湿地[M].上海:上海科学技术出版社,2004:
    [39]徐炳声.上海植物志[M].上海:上海科学技术文献出版社,1998:
    [40]徐宏发,赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社,2005:
    [41]徐汝梅,叶万辉.生物入侵:理论与实践[M].北京:科学出版社,2003:
    [42]徐万国,卓荣宗.我国引种互花米草(Spartina alterniflora)的初步研究(Ⅰ)[J].南京大学学报(自然科学专刊),1985,40:212-225.
    [43]杨泽华,童春富,陆健健.盐沼植物对大型底栖动物群落的影响[J].生态学报,2007,27:4387-4393.
    [44]袁兴中,陆健健,刘红.长江口底栖动物功能群分布格局及其变化[J].生态学报,2002,22:2054-2062.
    [45]袁兴中,陆健健.潮滩微地貌元素生物结构与小型底栖动物的空间分布[J].生态学杂志,2003,22:124-126.
    [46]张瑞清,孙振钧,王冲,葛源,乔玉辉,庞军柱,袁堂玉.西双版纳热带雨林凋落叶分解过程Ⅱ微生物与线虫的群落动态[J].生态学报,2007,27,640-650.
    [47]周虹霞,刘金娥,钦佩.外来种互花米草对盐沼土壤微生物多样性的影响——以江苏滨海为例[J].生态学报,2005,25:2304-2311.
    [48]周晓,葛振鸣,施文或,王天厚.长江口新生湿地大型底栖动物群落时空变化格局[J].生态学杂志,2007,26:372-377.
    [49]周晓,王天厚,葛振鸣,施施施,周立晨.长江口九段沙湿地不同生境中大型 底栖动物群落结构特征分析[J].生物多样性,2006,14(2):165-171.
    [50] Abrams BI, Mitchell MJ. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition [J]. Oikos, 1980, 35: 404-410.
    [51] Alkemade R, Wielemaker A, de Jong SA, Sandee AJJ. Experimental evidence for role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulation the mineralization of Spartina anglica detritus [J]. Marine Ecology-Progress Series, 1992a, 90: 149-155.
    [52] Alkemade R, Wielemaker A, Hemminga MA. Correlation between nematode abundance and decomposition rate of Spartina anglica leaves [J]. Marine Ecology-Progress Series, 1993, 99: 293-300.
    [53] Alkemade R, Wielemaker A, Hemminga MA. Stimulation of decomposition of Spartina anglica leaves by the bacterivorous marine nematode Diplolaimelloides bruciei (Monhysteridae) [J]. Journal of Experimental Marine Biology and Ecology, 1992b, 159: 267-278.
    [54] Alkemade R, Wielemaker A, Herman PMJ, Hemminga MA. Population dynamics of Diplolaimelloides bruciei, a nematode associated with the salt marsh plant Spartina anglica [J]. Marine Ecology-Progress Series, 1994, 105: 277-284.
    [55]Alphei J, Bonkowski M, Scheu S. Protozoa, nematoda and lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth [J]. Oecologia, 1996, 106: 111-126.
    [56] Anderson RV, Coleman DC, Cole CV. Effects of saprotrophic grazing on net mineralization [J]. Ecological Bulletin, 1981, 33: 201-216.
    [57]Andrassy I. A short consensus of free-living nematodes [J]. Fundamental and Applied Nematology, 1992, 15: 187-188.
    [58]Andrassy. A taxonomic review of the Suborder Rhabditina (Nematoda: Secernentia) [M]. Paris: Orstom Press, 1983:
    [59] Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M. Microbial colonization of beech and spruce litter - influence of decomposition site and plant litter species on the diversity of microbial community [J]. Microbial Ecology, 2006, 52: 127-135.
    [60]Angeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland [J]. FEMS Microbiology Letters, 2006, 263: 86-92.
    [61]Angradi TR, Hagan SM, Able KW. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. Spartina [J]. Wetlands, 2001,21: 75-92.
    [62]Aplet GH. Alteration of earthworm community biomass by the alien Myrica faya in Hawaii [J]. Oecologia, 1990, 82: 414-416.
    [63]Babiuk LA, Paul EA. The use of fluorescein isothiocyanate in the determination of the bacterial biomass of a grassland soil [J]. Canadian Journal of Microbiology, 1970, 16: 57-62.
    [64]Barajas-Guzman G, Alvarez-Sanchez J. The relationships between litter fauna and rates of litter decomposition in a tropical rain forest [J]. Applied Soil Ecology, 2003,24:91-100.
    [65]Bardgett RD, Cook R, Yeates GW, Denton CS. The influence of nematodes on below-ground processes in grassland ecosystems [J]. Plant and Soil, 1999, 212: 23-33.
    [66]Beare MH. Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralization in arable soil [A]. In: Brussaard L, Ferrera-Cerrato R. Soil ecology in sustainable agricultural systems [M]. Boca Raton, FL: Lewis, 1997: 37-70.
    [67]Belnap J, Phillips SL. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion [J]. Ecological Applications, 2001, 11: 1261-1275.
    [68]Bertness MD, Leonard GH. The role of positive interactions in communities: lessons from intertidal habitats [J]. Ecology, 1997, 78: 1976-1989.
    [69]Bertness MD. Ribbed mussels and Spartina alterniflora production in a New England salt marsh [J]. Ecology, 1984, 65: 1794-1807.
    [70] Bertness MD. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh [J]. Ecology, 1991, 72:138-148.
    [71]Bjornlund L, Christensen S. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest [J]? Soil Biology and Biochemistry, 2005, 37: 203-213.
    [72] Blair JM, Parmelee RW, Beare MH. Decay rates, nitrogen fluxes and decomposer communities in single and mixed species foliar litter [J]. Ecology, 1990, 71: 1976-1985.
    [73] Bohlen PJ. Biological invasions: Linking the aboveground and belowground consequences [J]. Applied Soil Ecology, 2006, 32: 1-5.
    [74]Bongers T, Bongers M. Functional diversity of nematodes [J]. Applied Soil Ecology, 1998,10: 239-251.
    [75] Bongers T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition [J]. Oecologia, 1990, 83: 14-19.
    [76]Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited [J]. New Phytologist, 2004, 162: 617-631.
    [77] Bruno JF. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora [J]. Ecology, 2000, 81: 1179-1192.
    [78]Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion [J]. Nature, 2004, 427: 731-733.
    [79]Chapin FS, Matson PA, Mooney HA. Principles of terrestrial ecosystem ecology [M]. New York: Springer, 2002: 436.
    [80] Chen H, Li B, Hu J, Chen J, Wu J. Benthic nematode communities in the Yangtze River estuary as influenced by Spartina alterniflora invasions [J]. Marine Ecology-Progress Series, 2007, 336: 99-110.
    [81] Chen ZY, Li B, Zhong Y, Chen JK. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences [J]. Hydrobiologia, 2004, 528: 99-106.
    [82] Cheng W, Zhang Q, Coleman DC. Is available carbon limiting microbial respiration in the rhizosphere [J]? Soil Biology and Biochemistry, 1996, 28: 1283-1288.
    [83] Cheng X, Luo Y, Chen J, Lin G, Chen J, Li B. Short-term C_4 plant Spartina alterniflora invasions change the soil carbon in C_3 plant-dominated tidal wetlands on a growing estuarine island [J]. Soil Biology and Biochemistry, 2006, 38: 3380-3386.
    [84] Christensen S, Griffiths BS, Ekelund F, Ronn R. Huge increase in bacterivores on freshly killed barley roots [J]. FEMS Microbiology Ecology, 1992, 86: 303-310.
    [85] Clarke KR, Warwick RM. Change in marine communities: an approach to statistical analysis and interpretation [M]. Plymouth: Plymouth Marine Laboratory, 1994:
    [86]Cohen AN, Carlton JT. Accelerating invasion rate in a highly invaded estuary [J]. Science, 1998, 279: 555-558.
    [87]Coleman DC, Cole CV, Elliot ET. Decomposition, organic matter turnover, and nutrient dynamics in agroecosystems [A]. In: Lowrance R, Stinner BR, House GJ. Agricultural Ecosytems Unifying Concepts [M]. New York: Wiley, 1984: 83-104.
    [88]Coleman MD, Dickson RE, Isebrands JG.Contrasting fine-root production, survival and soil CO_2efflux in pine and poplar plantations [J]. Plant and Soil, 2000, 225: 129-139.
    [89] Conn C, Dighton J. Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid Phosphatase activity [J]. Soil Biology and Biochemistry, 2000, 32: 489-496.
    [90]Copley J. Ecology goes underground [J]. Nature, 2000, 406: 452-454.
    [91]Coull BC, Giere O. The history of meiofaunal research [A]. In: Higgins RP, Thiel H. Introduction to the Study of Meiofauna [M]. Washington: Smithsonian Institution Press, 1988: 14-17.
    [92]Coull BC. Are members of the meiofauna food for higher trophic levels [J]? Transactions of the American Microscopical Society, 1990, 109: 233-246.
    [93]Coull BC. Role of meiofauna in estuarine soft-bottom habitats [J]. Australian Journal of Ecology, 1999, 24: 327-343.
    [94] D'Antonio CM, Kark S. Impacts and extent of biotic invasions in terrestrial ecosystems [J]. Trends in Ecology and Evolution, 2002, 17: 202-204.
    [95] De Deyn GB, Raaijmakers CE, Van Ruijven J, Berendse F, van der Putten WH. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web [J]. Oikos, 2004, 106: 576-586.
    [96] De Mesel I, Derycke S, Moens T, van der Gucht K, Vincx M, Swings J. Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study [J]. Environmental Microbiology, 2004, 6 : 733-744.
    [97] De Mesel I, Derycke S, Swings J, Vincx M, Moens T. Influence of bacterivorous nematodes on the decomposition of cordgrass [J]. Journal of Experimental Marine Biology and Ecology, 2003, 296: 227-242.
    [98]Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth [J]. Soil Biology and Biochemistry, 2004a, 36: 323-331.
    [99]Djigal D, Sy M, Brauman A, Diop TA, Mountport D, Chotte JL, Villenave C. Interactions between Zeldia punctata (Cephalobidae) and bacteria in the presence or absence of maize plants [J]. Plant and Soil, 2004b, 262: 33-44.
    [100]Duda JJ, Freeman DC, Emlen JM, Belnap J, Kitchen SQ Zak JC, Sobek E, Tracy M, Montante J. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus [J]. Biology and Fertility of Soils, 2003, 38: 72-77.
    [101]Dumbauld BR, Peoples M, Holcomb L, Ratchford S. The potential influence of the aquatic weed Spartina alterniflora and control practices on clam resources in Willapa Bay, Washington [A]. In: Pattern K. Proceedings of the Second International Spartina Conference [M]. Olympia: Washington State University, 1997: 51-57.
    [102]Ehrenfeld JG, Scott N. Invasive species and the soil: effects on organisms and ecosystem processes [3]. Ecological Applications, 2001, 11: 1259-1260.
    [103]Ehrenfeld JG.Effects of exotic plant invasions on soil nutrient cycling processes [J]. Ecosystems, 2003, 6: 503-523.
    [104]Ehrenfeld JG, Ravit B, Elgersma K. Feedback in the plant-soil system [J]. Annual Review of Environment and Resources, 2005, 30: 75-115.
    [105]Elkins NZ, Whitford WG. The role of microarthropods and nematodes in decomposition in a semi-arid ecosystem [J]. Oecologia, 1982, 55: 303-310.
    [106]Eom A, Hartnett DC, Wilson GWT. Host plant species effect on arbuscular mycorrhizal fungal communities in tallgrass prairie [J]. Oecologia, 2000, 122: 435-444.
    [107]Ettema CH, Bongers T. Characterization of nematode colonization and succession in disturbed soil using the Maturity index [J]. Biology and Fertility of Soils, 1993, 16:79-85.
    [108]Ettema CH. Soil nematode diversity: species coexistence and ecosystem function [J]. Journal of Nematology, 1998, 30: 159-169.
    [109] Ferris H, Bongers T, de Goede RGM. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept [J]. Applied Soil Ecology, 2001,18: 13-29.
    [110] Ferris H, Matute MM. Structural and functional succession in the nematode fauna of a soil food web [J]. Applied Soil Ecology, 2003, 23: 93-110.
    [111]Ferris H, Venette RC, Lau SS. Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets [J]. Soil Biology and Biochemistry, 1997,29: 1183-1194.
    [112]Ferris H, Venette RC, van der Meulen HR, Lau SS. Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement [J]. Plant and Soil, 1998,203:159-171.
    [113]Fleeger JW, Carman KR, Webb S, Hilbun N, Pace MC. Consumption of microalgae by the grass shrimp Palaemonetes pugio [J]. Journal of Crustacean Biology, 1999, 19: 324-336.
    [114]Freckman DW, Blackburn TH, Brussaard L, Hutchings P, Palmer MA, Snelgrove PVR. Linking biodiversity and ecosystem functioning of soils and sediments [J].Ambio, 1997, 26: 556-562.
    [115]Freckman DW. Bacterivorous nematodes and organic matter decomposition [J]. Agriculture Ecosystems and Environment, 1988,24: 195-218.
    [116] French K, Major RE. Effect of an exotic Acacia (Fabaceae) on ant assemblages in South African fynbos [J]. Austral Ecology, 2001, 26: 303-310.
    [117] Fu S, Cheng W. Rhizosphere priming effects on the decomposition of soil organic matter in C4 and C3 grassland soils [J]. Plant and Soil, 2002, 238: 289-294.
    [118] Fu SL, Coleman DC, Hendrix PF, Crossley DA. Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes [J]. Soil Biology and Biochemistry, 2000, 32: 1731-1741.
    [119] Fu SL, Ferris H, Brown D, Plant R. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size [J]? Soil Biology and Biochemistry, 2005, 37: 1979-1987.
    [120] Gee JM, Somerfield PJ. Do mangrove diversity and leaf litter decay promote meiofaunal diversity [J]? Journal of Experimental Marine Biology and Ecology, 1997,218: 13-33.
    [121]Gee JM. An ecological economic review of meiofauna as food for fish [J]. Zoological Journal of the Linneaus Society, 1989, 96: 243-261.
    [122]Georgieva S, Christensen S, Stevnbak K. Nematode succession and microfauna - microorganism interactions during root residue decomposition [Jj. Soil Biology and Biochemistry, 2005, 37: 1763-1774.
    [123]Gessner MO. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake [J]. Aquatic Botany. 2000, 66: 9-20.
    [124]Goodey JB. Soil and freshwater nematodes [M]. London: Methuen, 1963:
    [125]Goodfriend WL, Olsen MW, Frye RJ. Decomposition of seawater-irrigated halophytes: implications for potential carbon storage [Jj. Plant and Soil, 1998, 202: 214-250.
    [126]Gratton C, Denno RF. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis [J]. Restoration Ecology, 2005, 13: 358-372.
    [127]Grayston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability [J]. Applied Soil Ecology, 1997, 5: 29-56.
    [128]Grayston SJ, Wang S, Campbell CD, Edwards AC. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biology and Biochemistry, 1998, 30: 369-378.
    [129] Gregg CS, Fleeger JW. Grass shrimp Palaemonetes pugio predation on sediment- and stem-dwelling meiofauna: field and laboratory experiments [J]. Marine Ecology-Progress Series, 1998, 175: 77-86.
    [130] Gregory PJ. Roots, rhizosphere and soil: the route to a better understanding of soil science [J]? European Journal of Soil Science. 2006, 57: 2-12.
    [131]Gremmen N, Chown SL, Marshall DJ. Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic [J]. Biological Conservation, 1998, 85: 223-231.
    [132] Griffiths B, Welschen R, van Arendonk JJCM, Lambers H. The effect of nitrate-nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species [J]. Oecologia, 1992, 91: 253-259.
    [133] Griffiths BS, Boag B, Neilson R, Palmer L. The use of colloidal silica to extract nematodes from small samples of soil and sediment [J]. Nematologica, 1990, 36: 465-473.
    [134] Griffiths BS, Bonkowski M, Dobson G, Caul S. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa [J]. Pedobiologia, 1999,43: 297-304.
    [135] Griffiths BS, Caul S. Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues [J]. Biology and Fertility of Soils, 1993, 15: 201-207.
    [136] Griffiths BS, Young IM, Boag B. Nematodes associated with the rhizosphere of barly (Hordeum vulgare) [J]. Pedobiologia, 1991, 35: 265-272.
    [137] Griffiths BS. A comparison of microbial feeding nematodes and protozoa in the rhizosphere of different plants [J]. Biology and Fertility of Soils, 1990, 9: 83-88.
    [138]Griffiths BS. Microbial-feeding nematodes and protozoa in soil: their effects on microbial activity and nitrogen mineralization in decomposing hotspots and the rhizosphere [J]. Plant and Soil, 1994, 164: 25-33.
    [139]Grosholz E. Ecological and evolutionary consequences of costal invasions [J]. Trends in Ecology and Evolution, 2002, 17: 22-27.
    [140] Hanson SR, Osgood DT, Yozzo DJ. Nekton use of a Phragmites australis marsh on the Hudson River, New York, USA [J]. Wetlands, 2002, 22: 326-337.
    [141]Healy B, Walters K. Oligochaeta in Spartina stems: the microdistribution of Enchytraeidae and Tubificidae in a salt marsh, Sapelo Island, USA [J]. Hydrobiologia, 1994,278: 111-123.
    [142] Hedge P, Kriwoken LK. Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania [J]. Austral Ecology, 2000,25: 150-159.
    [143]Hofman TW, s'Jacob JJ. Distribution and dynamics of mycophagous and microbivorous nematodes in potato fields and their relationship to some food sources [J]. Annals of Applied Biology, 1989, 115: 291-298.
    [144] Hopper BE, Fell JW, Cefalu RC. Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system [J]. Marine Biology, 1973, 23: 293-296.
    [145] Hopper BE. Diplolaimelloides bruciei: n. sp. (Monhysteridae: Nematoda), prevalent in marsh grass, Spartina alterniflora Loisel [J]. Canadian Journal of Zoology, 1970,48:573-575.
    [146] Hunt DJ. Aphelenchida, Longidoridae and Trichodoridae. Their systematics and bionomics [M]. UK: CAB international, 1993:
    [147]Hutsch BW, Augustin J, Merbsch W. Plant rhizodeposition - An important source for carbon turnover in soils [J]. Journal of Plant Nutrition and Soil Science, 2002, 165: 397-407.
    [148]Hyman LB. The Invertebrates: Acanthocephala, Aschelminthes and Entoprocta [M]. New York: Maple Press, 1951:
    [149] Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi, and their nematode grazers: effect on nutrient cycling and plant growth [J]. Ecological Monographs, 1985, 55: 119-140.
    [150]Jairajpuri MS, Ahmad W. Dorylaimida - Free-living, predaceous and plant-parasitic nematodes [M]. NewDelhi: Pauls Press, 1992:
    [151] Jonathan EI, Velayutham B. Evaluation of yield loss due to rice root nematode Hirschmanniella oryzae [J]. International Nematology Newsletter, 1987, 4: 8-9.
    [152]Kappes H, Lay R, Topp W. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion [J]. Ecosystems, 2007, 10: 734-744.
    [153]Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis [J]. Trends in Ecology and Evolution, 2002, 17: 164-170.
    [154]Kemp PF. The fate of benthic bacterial production [J]. Critical Review of Aquatic Sciences, 1990,2: 109-124.
    [155]Kennish MJ. Environmental threats and environmental future of estuaries [J]. Environmental Conservation, 2002, 29: 78-107.
    [156]Kneib RT. Patterns in the utilization of the intertidal salt marsh by larvae and juveniles of Fundulus heteroclitus (L.) and Fundulus luciae (Baird) [J]. Journal of Experimental Marine Biology and Ecology, 1984, 83: 41-51.
    [157] Knox OGG, Killham K, Artz RRE, Mullins CE, Wilson MJ. Effect of nematodes on rhizosphere colonization by seed-applied bacteria [J]. Applied and Environmental Microbiology, 2004, 70: 4666-4671.
    [158]Knox OGG, Killham K, Mullins CE, Wilson MJ. Nematode-enhanced microbial colonization of the wheat rhizosphere [J]. FEMS Microbiology Letters, 2003, 225: 227-233.
    [159]Kourtev PS, Ehrenfeld JG, Haggblom M. Exotic plant species alter the microbial community structure and function in the soil [J]. Ecology, 2002a, 83: 3152-3166.
    [160]Kourtev PS, Ehrenfeld JQ Haggblom M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities [J]. Soil Biology and Biochemistry, 2003, 35: 895-905.
    [161]Kourtev PS, Ehrenfeld JG, Huang WZ. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey [J]. Soil Biology and Biochemistry, 2002b, 34: 1207-1218.
    [162]Kourtev PS, Huang WZ, Ehrenfeld JG.Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species [J]. Biological Invasions, 1999, 1: 237-245.
    [163]Kraffczyk I, Trolldenier G, Beringer H. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms [J]. Soil Biology and Biochemistry, 1984, 16: 315-322.
    [164]Laakso J, Setala H. Population- and ecosystem- level effects of predation on microbial-feeding nematodes [J]. Oecologia, 1999, 120: 279-286.
    [165]Lana P, Guiss C. Influence of Spartina alterniflora on structure and temporal variability of macrobenthic associations in a tidal flat of Paranagua Bay, Brazil [J]. Marine Ecology-Progress Series, 1991, 73: 231-234.
    [166]Lenz R, Eisenbeis G. The vertical distribution of decomposition activity and of litter-colonizing nematodes in soils under different tillage [J]. Pedobiologia, 1998,42: 193-204.
    [167] Levin LA, Bosch DF, Covich A, Dahm C and 8 others. The function of marine critical transition zones and the importance of sediment biodiversity [J]. Ecosystems, 2001, 4: 430-451.
    [168] Levin LA, Neira C, Grosholz ED. Invasive cordgrass modifies wetland trophic function [J]. Ecology, 2006, 87: 419-432.
    [169]Levine JM, Vila M, D'Antonio CM, Dukes JS, Grigulis K, Lavorel S. Mechanisms underlying the impacts of exotic plant invasions [J]. Proceedings of The Royal Society of London Series B-Biological Sciences, 2003, 270: 775-781.
    [170] Li B, Chen ZY, Wu JH, Liao CZ, Wang Q, Zhao B, Chen HL, Ma ZJ, An SQ, Chen JK. Spartina alterniflora invasions in the Yangtze River estuary, China: current status and ecological effects [A]. In: Strong D. Invasive Spartina [M]. Cambridge: Cambridge Publications, 2005:
    [171]Liao CZ, Luo YQ, Fang CM, Chen JK, Bo Li. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary [J]. Oecologia, 2008, (in press).
    [172]Lorenzen S. Determination of chlorophyll and pheopigments: Spectrophotometric equations [J]. Limnology and Oceanography, 1967,12: 343-346.
    [173]Lorenzen S. Freilebende meeresnematoden aus dem Schlickwatt und den Salzwieesen der Nordseekuste [J]. Veroff Inst Meeresforsch Bremerh. 1969, 11: 195-238.
    [174]MacIntyre HL, Geider RJ, Miller DC. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production [J]. Estuaries, 1996, 19: 186-201.
    [175] Mao X, Hu F, Griffiths BS, Li HX. Bacterial-feeding nematodes enhance root growth of tomato seedlings [J]. Soil Biology and Biochemistry, 2006, 38: 1615 -1622.
    [176]Marschner P, Yang CH, Lieberei R, Crowley DE. Soil and plant specific effects on bacterial community composition in the rhizosphere [J]. Soil Biology and Biochemistry. 2001, 33: 1437-1445.
    [177] Mayer PM, Tunnell SJ, Engle DM, Jorgensen EE, Nunn P. Invasive grass alters litter decomposition by influencing macrodetritivores [J]. Ecosystems, 2005, 8: 200-209.
    [178]McSorley R, Dickson DW. Vertical distribution of plant-parasitic nematodes in sandy soil under maize [J]. Plant and Soil, 2006, 123: 95-100.
    [179]McSorley R, Frederick JJ. Nematode population fluctuations during decomposition of specific organic amendments [J]. Journal of Nematology, 1999,31:37-44.
    [180]Mille-Lindblom C, Fischer H, Tranvik LJ. Litter-associated bacteria and fungi -a comparison of biomass and communities across lakes and plant species [J]. Freshwater Biology, 2006, 51: 730-741.
    [181]Miller DC, Geider RJ, MacIntyre HL. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. IL Role in sediment stability and shallow-water food webs [J]. Estuaries, 1996, 19: 202-212.
    [182]Neher DA, Wu J, Barbercheck ME, Anas O. Ecosystem type affects interpretation of soil nematode community measures [J]. Applied Soil Ecology, 2005, 30: 47-64.
    [183]Neher DA. Role of Nematodes in Soil Health and Their Use as Indicators [J]. Journal of Nematology, 2001, 33: 161-168.
    [184]Neira C, Grosholz ED, Levin LA, Blake R. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid [J]. Ecological applications, 2006, 16: 1391-1404.
    [185]Neira C, Levin LA, Grosholz ED. Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hydrid Spartina with comparison to uninvaded habitats [J]. Marine Ecology-Progress Series, 2005, 292: 111-126.
    [186]Newell SY. Decomposition of shoots of a salt-marsh grass: methodology and dynamics of microbial assemblages [J]. Advances in Microbial Ecology, 1993, 13:301-326.
    [187]Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls [J]. Agronomie, 2003, 23: 375-396.
    [188]Nickle WR. Plant and Insect Nematodes [M]. New York: Basel, Marcel Dekker, 1984: 95-146.
    [189]Normile D. Invasive species - expanding trade with China creates ecological backlash [J]. Science, 2004: 306: 968-969.
    [190] O'Cornell KA. Effects of invasive Atlantic smooth-cordgrass (Spartina alterniflora) on infaunal macroinvertebrate communities in southern Willapa Bay, WA [D]. WA: western Washington University, 2002:
    [191]Okada H, Ferris H. Effect of temperature on growth and nitrogen mineralization of fungi and fungal-feedingnematodes [J]. Plant and Soil, 2001, 234: 253-262.
    [192]Olason JS. Energy storage and the balance of producer and decomposers in ecological systems [J]. Ecology, 1963, 44: 322-331.
    [193]Osgood DT, Yozzo DJ, Chambers RM, Jacobson D, Hoffman T, Wnek J. Tidal hydrology and habitat utilization by resident nekton in Phragmites and non-Phragmites marshes [J]. Estuaries, 2003, 26: 522-533.
    [194] Plat HM, Warwick RM. Freeliving marine nematodes. Part I. British Enoplids [M]. Synopses of the British Fauna No. 28. Cambridge: Cambridge University Press, 1983:
    [195]Plat HM, Warwick RM. Freeliving marine nematodes Part II. British Chromadorids [M]. Synopses of the British Fauna No. 38. Leiden: EJ. Brill/W Backhuys, 1988:
    [196]Poinar GO. The Natural History of Nematodes [M]. New Jersey: Prentice-Hall Press 1983:
    [197]Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes [J]. Ecological Monographs, 2003, 73: 377-395.
    [198]Posey MH, Alphin TD, Meyer DL, Johnson JM. Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay [J]. Marine Ecology-Progress Series, 2003, 261: 51-61.
    [199]Posey MH, Wigand C, Stevenson JC. Effects of an introduced aquatic plant, Hydrilla verticillata on benthic communities in the upper Chesapeake Bay [J]. Estuarine, Coastal and Shelf Science, 1993, 37: 539-555.
    [200]Posey MH. Community changes associated with the spread of an introduced seagrass, Zoster a japonica [J]. Ecology, 1988, 69: 974-983.
    [201]Pradhan GB, Senapati BK, Dash MC. Relationship of soil nematode populations to carbon: nitrogen in tropical habitats and their role in decomposition of litter amendments [J]. Revue d'Ecologia et de Biologie du Sol, 1988, 25:59-76.
    [202]Ratsirarson H, Robertson HG, Picker MD, van Noort S. 2002. Indigenous forests versus exotic eucalypt and pine plantations: a comparison of leaf-litter invertebrate communities [J]. African Entomology, 10: 93-99.
    [203]Ravit B, Ehrenfeld JG, Haeggblom MM, Bartels M. The effects of drainage and nitrogen enrichment on Phragmites australis, Spartina alterniflora, and their root-associated microbial communities [J]. Wetlands, 2007, 27: 915-927.
    [204]Ravit B, Ehrenfeld JG, Haggblom M. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey [J]. Estuaries, 2003, 26: 465-474.
    [205] Ravit B, Ehrenfeld JG, Haggblom MM. Effects of vegetation on root associated microbial communities: a comparison of disturbed versus undisturbed estuarine sediments [J]. Soil Biology and Biochemistry, 2006, 38: 2359-2371.
    [206]Reinhart KO, Callaway RM. Soil biota facilitate exotic Acer invasions in Europe and North America [J]. Ecological Applications, 2004,14: 1737-1745.
    [207]Reinhart KO, Callaway RM. Soil biota and invasive plants biota [J]. New Phutologist, 2006,170: 45-457.
    [208] Robertson TL, Weis JS. A comparison of epifaunal communities associated with the stems of salt marsh grasses Phragmites australis and Spartina alterniflora [J]. Wetlands, 2005, 25: 1-7.
    [209] Robertson TL, Weis JS. Interactions between the grass shrimp Palaemonetes pugio and the salt marsh grasses Phragmites australis and Spartina alterniflora [J]. Biological Invasions, 2007, 9: 25-30.
    [210]Rovira AD. Biology of the soil-root interface [A]. In: Harley JL, Scott-Russell R. The Soil Root Interface [M]. New York: Academic Press, 1979: 145-160.
    [211]Ruess L. Nematode soil faunal analysis of decomposition pathways in different ecosystems [J]. Nematology, 2003, 5: 179-181.
    [212] Ruiz GM, Carlton JT, Grosholz ED, Hines AH. Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences [J]. American Zoologist, 1997, 37: 621-632.
    [213]Rutledge PA, Fleeger JW. Abundance and seasonality of meiofauna, including harpacticoid copepod species, associated with stems of the salt-marsh cord grass, Spartina alterniflora [J]. Estuaries, 1993, 16: 760-768.
    [214] Saggar S, McIntosh PD, Hedley CB, Knicker H. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.) [J]. Biology and Fertility of Soils, 1999, 30: 232-238.
    [215]Samways MJ, Caldwell PM, Osborn R. Ground-living invertebrate assemblages in native, planted and invasive vegetation in South Africa [J]. Agriculture Ecosystems and Environment, 1996, 59: 19-32.
    [216] Santos PF, Philips J, Whitford WG. The role of mites and nematodes in early stages of buried litter decomposition in a desert [J]. Ecology, 1981, 62: 664-669.
    [217]Sharma J, Huettel RN, Bush JK. Spatial zonation of nematodes in a West Texas salt marsh [J]. Journal of Nematology, 2006, 38: 292-293.
    [218]Siddiqi MR. Tylenchida. Parasites of plants and insects [M]. UK: Commonwealth Institute of Parasitology, 1986:
    [219]Simenstad CA, Thorn RM. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest estuaries [J]. Hortus Northwest, 1995, 6: 9-12, 38-40.
    [220] Smith VC, Bradford MA. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time [J]. Applied Soil Ecology, 2003, 24: 197-203.
    [221]Soetaert K, Vincx M, Wittoeck J, Tulkens M. Meiofauna distribution and nematode community structure in five European estuaries [J]. Hydrobiologia, 1995,311: 185-206.
    [222] Sohlenius B. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems [J]. Oikos, 1980, 34: 186-194.
    [223] Sohlenius B, Bostrom S, Sandor A. Long-term dynamics of nematode communities in arable soil under four cropping systems [J]. Journal of Applied Ecology, 1987,24: 131-144.
    [224] Sohlenius B, Bostrom S. Colonization, population development and metabolic activity of nematodes in buried barley straw [J]. Pedobiologia, 1984, 27:67-78.
    [225]Talley TS, Levin LA. Modification of sediments and macrofauna by an invasive marsh plant [J]. Biological Invasions, 2001, 3: 51-68.
    [226] Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test [J]. Ecology, 1989, 70: 97-104.
    [227] Teal JM, Wieser W. The distribution and ecology of nematode in Georgia salt marsh [J]. Limnology Oceanography, 1966, 11: 217-222.
    [228]Trofymow JA, Coleman DC. The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition [A]. In: Freckman DW. Nematodes in Soil Ecosystems [M]. Texas: University of Texas Press, 1982: 117-138..
    [229] van der Putten WH, Yeates GW, Duyts H, Reis CS, Karssen G. Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges [J]. Biological Invasions, 2005, 7: 733-746.
    [230]Vestergaard P, Ronn R, Christensen S. Reduced particle size of plant material does not stimulate decomposition, but affects the microbivorous microfauna [J]. Soil Biology and Biochemistry, 2001, 33: 1805-1810.
    [231]Viketoft M, Palmborg C, Sohlenius B, Huss-Danell K, Bengtsson J. Plant species effects on soil nematode communities in experimental grasslands [J]. Applied Soil Ecology, 2005, 30: 90-103.
    [232]Viketoft M. Effects of six grassland plant species on soil nematodes: A glasshouse experiment [J]. Soil Biology and Biochemistry, 2008, 40: 906-915.
    [233]Villenave C, Ekschmitt K, Nazaret S, Bongers T. Interactions between nematodes and microbial communities in a tropical soil following manipulation of the soil food web [J]. Soil Biology and Biochemistry, 2004, 36: 2033-2043.
    [234]Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA. Biological invasion by Myrica faya alters ecosystem development in Hawaii [J]. Science, 1987, 238: 802-804.
    [235] Wall DH, Palmer MA, Snelgrove PVR. Biodiversity in critical transition zones between terrestrial, freshwater, and marine soils sediment: processes, linkages, and management implications [J]. Ecosystems, 2001,4: 418-420.
    [236] Walters K, Jones E, Etherington L. Experimental studies of predation on metazoans inhabiting Spartina alterniflora stems [J]. Journal of Experimental Marine Biology and Ecology, 1996, 195: 251-265.
    [237] Wang KH, McSorley R, Marshall AJ, Gallaher RN. Nematode community changes associated with decomposition of Crotalaria juncea amendment in litterbags [J]. Applied Soil Ecology, 2004, 27: 31-45.
    [238] Wang M, Chen JK, Li B. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA [J]. Pedosphere, 2007, 17: 545-556.
    [239] Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats [J]. Biological Invasions, 2006, 8: 1547-1560.
    [240]Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota [J]. Science, 2004, 304: 1629-1633.
    [241]Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties [J]. Ecological Monographs, 1999, 69: 535-568.
    [242]Wardle DA, Lavelle P. Linkages between soil biota, plant litter quality and decomposition [A]. In: Giller KE, Cadisch G. Driven by nature-plant litter quality and decomposition [M]. Wallingford: CAB International, 1997: 107-120.
    [243]Wardle DA, Yeates GW, Barker GM, Bonner KI. The influence of plant litter diversity on decomposer abundance and diversity [J]. Soil Biology & Biochemistry, 2006, 38: 1052-1062.
    [244]Wardle DA, Yeates GW, Williamson W, Bonner KI. The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups [J]. Oikos, 2003, 102: 45-56.
    [245] Wardle DA, Yeates GW. The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food webs [J]. Oecologia, 1993, 93: 303-306.
    [246] Wardle DA. Communities and ecosystems: linking the aboveground and belowground components [D]. New Jersey: Princeton University Press, 2002:
    [247] Wardle DA. The influence of biotic interactions on soil biodiversity [J]. Ecology Letters, 2006, 9: 870-886.
    [248] Warwick RM, Plat HM, Soerfield PJ. Freeliving marine nematodes. PartIII Monhysterids [M]. Synopses of the British Fauna No. 53. Shrewsbury: Field Studies Council, 1998:
    [249] Warwick RM. Meiofauna: their role in marine detrital systems. Detritus and microbial ecology in aquaculture [J]. ICLARM Conference Proceedings, 1987, 14: 282-295.
    [250] Wasilewake L. Participation of soil nematodes in grass litter decomposition under diverse biocenotic conditions of meadows [J]. Ekologia Polske, 1992, 40: 75-100.
    [251] Wasilewska L, Paplinska E, Zielinski J. The role of nematodes in decomposition of plant material in a rye field [J]. Pedobiologia, 1981, 21: 182-191.
    [252] Wasilewska L. Long-term changes in communities of soil nematodes on fen peat meadows due to time since their drainage [J]. Ekologia Polska, 1991, 39: 59-104.
    [253]Watzin MC. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities [J]. Oecologia, 1983, 59: 163-166.
    [254] Weis JS, Weis P. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster [J]? Marine Pollution Bulletin, 2003,46: 816-820.
    [255] Whitcraft C, Levin LA. Regulation of benthic algal and animal communities by salt marsh plants: impact of shading [J]. Ecology, 2007, 88: 904-917.
    [256] White TA, Campbell B, Kemp PD, Hunt C. Impacts of extreme climatic events on competition during grassland invasions [J]. Global Change Biology, 2001, 7: 1-13.
    [257]Wieser W. Die Beziehung zwischen Mungdhlengestalt, Ernahrungsweise und vorkommen bei freilebenden marine nematoden [J]. Archives fur Zoologie, 1953, 4: 436-484.
    [258]Windham L. Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay) in brackish tidal marsh of New Jersey [J]. Wetlands, 2001, 21: 179-188.
    [259] Wolfe BE, Klironomos JN. Breaking new ground: soil communities and exotic plant invasion [J]. Bioscience, 2005, 55: 477-487.
    [260] Wu J, Fu C, Chen S, Chen J. Soil faunal response to land use: effect of estuarine tideland reclamation on nematode communities [J]. Applied Soil Ecology, 2002, 21: 131-147.
    [261] Wu JH, Fu CZ, Lu F, Chen JK. Changes in free-living nematode community structure in relation to progressive land reclamation at an intertidal marsh [J]. Applied Soil Ecology, 2005, 29: 47-58.
    [262] Yang SL, The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary [J]. Estuarine, Coastal and Shelf Science, 1998, 47: 227-233.
    [263] Yang SL. Sedimentation on a growing intertidal Island in the Yangtze River Mouth [J]. Estuarine Coastal and Shelf Science, 1999, 49: 401-410.
    [264] Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. Feeding habitats in soil nematode families and genera-an outline for soil ecologists [J]. Journal of Nematology, 1993, 25: 315-331.
    [265] Yeates GW, Stannard RE, Barker GM. Vertical distribution of nematodes in Horotiu soils [J]. New Zealand Soil Bureau Scientific Report, 1983, 60: 1-14.
    [266]Yeates GW, Williams PA. Influence of three invasive weeds and site factors on soil microfauna in New Zealand [J]. Pedobiologia, 2001,45: 367-383.
    [267]Yeates GW. Nematode populations in relation to soil environmental factors: a review [J]. Pedobiologia, 1981,22: 312-338.
    [268] Yeates GW. How plant affect nematodes [J]. Advances in Ecological Research, 1987,17:63-113.
    [269]Yeates GW. Effects of plant on nematode community structure [J]. Annual Review of Phytopathology, 1999, 37: 127-149.
    [270] Yuhas CE, Hartman JM, Weis JS. Benthic communities in Spartina alterniflora-and Phragmites australis- dominated salt marshes in the Hackensack meadowlands, New Jersey [J]. Urban Habitats, 2005, 3: 158-191.
    [271]Zedler JB, Kercher S. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes [J]. Critical Reviews in Plant Sciences, 2004,23:431-452.
    [272] Zhou H. Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong [J]. Journal of Experimental Marine Biology and Ecology, 2001, 256: 99-121.
    [273] Zipper VT. Ecological effects of the introduced cordgrass, Spartina alterniflore, on the benthic community structure of Willaps Bay, Washington [D]. WA: University of Washington, 1996: