岷江上游辐射松人工林种质资源及土壤生物肥力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
已有干旱河谷植被恢复与重建侧重于通过表形对抗性树种的引种和筛选,有关基因水平的种质资源研究,以及林地土壤生物肥力(Soil bio-fertility)恢复与重建研究略显不足,以至生态恢复与重建的效果不甚明显。结合岷江上游干旱河谷土壤生态环境特性以及应正在实施的生态建设工程等需求,对岷江上游干旱河谷区的引种辐射松(Pinus radiata D.Don)进行了种质资源评价,进而通过辐射松与乡土树种油松(Pinustabulaeformis)的抗旱性比较评价了辐射松在引种地的生态适应性,以及评价引种辐射松造林对林地土壤生物肥力的影响。于汶川和理县1998~2004年间营造的辐射松人工林中,以典型抽样采集21份辐射松新梢针叶样本,运用SSR分子标记技术进行群落亲缘关系研究,评价辐射松人工林种质资源;以取自四川省阿坝州林科所(汶川县)营养袋育2a生引种辐射松、乡土树种油松幼苗,在四川农业大学温室大棚内以土壤盆栽方式按单因素试验设计进行较为系统的干旱梯度胁迫比较实验,研究其抗旱特性和机理;在岷江上游干旱河谷区的茂县、汶川和理县以空间代替时间,于环境条件等基本一致,而造林时期不同的林分中,选取10个不同林龄的辐射松林,林内设置20m×20m固定样地,进行土壤微生物与土壤酶特性和人工林土壤生物肥力研究。为岷江上游干旱河谷及相似区域的植被恢复与重建、低效林改造、迹地更新等生态建设提供优树选择和促进岷江上游引种辐射松林分种质资源管理提供一定的科学依据。具体研究结果如下。
     (1)SSR分子标记技术对21份供试材料分析结果显示,以遗传相似系数GS0.8041为阈值,将21份材料分为3大类:第一大类为17个地理种源的辐射松,包括材料1~6、材料10~19和材料21,按引种地划分这17份供试材料覆盖了引自美国、澳大利亚、墨西哥和新西兰的辐射松,其中引自新西兰辐射松的供试材料达11个;第二大类为3个地理种源的辐射松,它们是材料7~9,均为引自新西兰的辐射松;第三大类仅为1个引自新西兰的辐射松,即材料20。表明近20a来,岷江上游引种辐射松的种质资源主要以来自新西兰的辐射松材料为主。以遗传相似系数GS0.8247为阈值,以上3大类中仅第一大类可进一步分为3个亚类(Ⅰ_1,Ⅰ_2,Ⅰ_3)。其中,Ⅰ_1由材料1~6组成,而材料1和2、材料3和4无法区分,或差异不在所检测的SSR位点之内,可分别视为基因型相同;Ⅰ_2由材料10~12组成;Ⅰ_3由材料13~19和材料21组成,而材料15和17无法区分,可视为基因型相同。结果表明SSR分子标记技术能有效揭示岷江上游干旱河谷引种辐射松人工林群落内种质资源的亲缘关系,也表明群落的种质资源遗传多样性较高,适宜性较广,利于种群繁衍。但3对样本材料(材料1和2、材料3和4、材料15和17)无法区分其遗传差异,或差异不在所检测的SSR位点之内,说明群落内的引种种源存在部分基因型相同,但却异名的现象,这不利于辐射松种质资源的评价、保存与开发利用。
     (2)对引种辐射松幼苗和乡土树种油松幼苗进行梯度干旱胁迫比较研究,随干旱胁迫时间的延长,盆栽辐射松、油松幼苗的土壤含水量均呈不断下降趋势,且表现为胁迫前期下降速率快于后期。辐射松幼苗在处理24d时,土壤含水量为6.45%,失水率66.55%,日均失水2.77%;处理48d时,土壤含水量为4.48%,失水率76.76%,日均失水1.60%,此时幼苗干枯死亡。油松幼苗在处理24d时,土壤含水量为4.72%,失水率79.79%,日均失水3.32%;处理56d时土壤含水量降至3.21%,失水率82.26%,日均失水1.47%,此时幼苗逐渐死亡。表明辐射松、油松幼苗具较强抗旱性,但辐射松幼苗抗旱能力不及油松幼苗。
     整个干旱胁迫期间,两树种幼苗针叶形态均通过增加角质层、表皮、下皮层厚度来减少体内水分流失,以减少蒸腾;通过缩小自身叶肉细胞体积减轻失水带来细胞收缩产生的机械损伤,通过减小气孔开度减缓体内水分蒸腾速度,保持体内水分以利度过干旱。辐射松针叶角质层、表皮、下皮层厚度和组织紧密度分别增加了16.33%、72.23%、80.16%和88.02%;油松针叶的上述指标则分别增加了53.06%、74.91%、29.14%和73.85%。辐射松针叶的绿色折叠组织厚度和气孔开度分别下降了34.55%和45.11%;油松则分别下降了39.51%和32.62%。表明两树种叶片的解剖形态对干旱胁迫都具有较强的适应特性,但它们适应干旱的程度有所不同。
     (3)两树种幼苗在抵御干旱胁迫过程中,叶片相对含水量、水分饱和亏缺、叶保水力(失水速率)等指标均表现出较大的变化,但变化程度有差异。随干旱胁迫时间的延长,它们的相对含水量呈极显著降低,水分饱和亏缺均表现为上升,叶保水力(失水速率)在胁迫前期均快速下降,但随胁迫时间延长(24d后),辐射松幼苗叶保水力值呈迅速升高趋势(回升率94.84%),油松幼苗的该值升幅较小(回升率14.75%)。结果说明两树种均能通过降低相对含水量,增加细胞浓度以抵御干旱,而从水分饱和亏缺、叶保水力(失水速率)指标看,油松幼苗的抗旱性优于辐射松幼苗。
     (4)干旱胁迫对两树种幼苗体内的质膜透性(PMP)、丙二醛(MDA)、游离脯氨酸(Pro)、可溶性糖(WSS)、叶绿素含量(chla、chlb、chlab)等生化指标表现出较大影响。随干旱胁迫程度加剧,两树种相对电导率都分别有所增加,辐射松在处理56d时与对照比增加了58.43%,油松增加了54.14%,胁迫前期增加不显著,后期各处理间差异达显著水平;MDA含量随干旱胁迫时间延长均表现为先略下降,后有所上升的趋势;Pro、WSS、ABA含量在整个干旱胁迫实验期间均有增加,方差分析Pro、WSS、ABA增加达显著水平。表明两树种幼苗对干旱胁迫的机制基本一致。
     (5)在岷江上游干旱河谷引种辐射松林地按造林时间不同选取立地条件相似的10个固定样地,进行土壤有机质含量的时间序列研究:以样地Ⅰ(1991年造林)和样地Ⅱ(1992年造林)的有机质含量最高,样地Ⅸ(2004年造林)最低,并且各样地土壤有机质含量以秋季最高,春季和冬季次之,夏季含量最低。表明该区土壤有机质含量有随造林时间延长而增加的趋势。
     (6)微生物总量有随造林时间的增长而增加的趋势。样地Ⅱ的微生物总量最大(4.96×10~6个·g~(-1)干土),样地Ⅷ(2003年造林)最低(1.33×10~6个·g~(-1)干土)。微生物总量值由大到小的顺序为:Ⅱ(1992年造林,植被盖度10%)>Ⅰ(1991年造林,植被盖度20%)>Ⅲ(1998年造林,植被盖度70%)>Ⅶ(2003年造林,植被盖度25%)>Ⅳ(1998年造林,植被盖度15%)>Ⅴ(1999年造林,植被盖度15%)>Ⅸ(2004年造林,植被盖度10%)>Ⅹ(2005年造林,植被盖度2%)>Ⅵ(2002年造林,植被盖度30%)>Ⅷ(2003年造林,植被盖度5%)。也就是说随着造林时间的延长,林地土壤微生物总量和土壤生物肥力有提高的趋势。但因植被盖度的影响,个别样地特别是新造林地的土壤微生物总量与造林时间并未表现出完全的一致,表明影响土壤生态性质的因素存在复杂性。
     (7)微生物类群中各类微生物占微生物总量的比例为细菌(54.81~75.13%)>放线菌(24.87~46.38%)>固氮菌(3.03~5.06%)>真菌(0.03~0.14%)。总趋势显示微生物总量、细菌数量、放线菌数量和真菌数量均为秋季最多,春季和冬季次之,夏季最少。各样地土壤酶活性的季节动态变化有差异,但总体表现为秋季最高。各样地酶类活性表现为样地Ⅰ、Ⅱ的蔗糖酶活性与过氧化氢酶活性最高,Ⅹ最低;Ⅳ的酶活性最高,Ⅷ最低;Ⅰ的磷酸酶活性最高,Ⅸ最低。4种土壤酶活性均表现为土壤上层>下层。其中,脲酶活性在土壤上层是下层的1.102~3.251倍;磷酸酶活性在土壤上层是下层的1.389~5.471倍;蔗糖酶活性在土壤上层是下层的1.315~2.546倍;过氧化氢酶活性在土壤上层是下层的1.022~1.673倍。表明土壤酶类的活性各有特点,但总体趋势仍表现出造林时间越长,土壤酶活性越高,越利于土壤质量的改善。
     相关性分析结果显示:细菌与放线菌、固氮菌、过氧化氢酶均达极显著正相关水平,相关系数分别为0.818、0.812、0.806、0.691;细菌与蔗糖酶达显著正相关水平,相关系数为0.691;放线菌与固氮菌、蔗糖酶呈极显著正相关,相关系数分别为0.843、0.798,与过氧化氢酶呈显著正相关,相关系数为0.637;过氧化氢酶与蔗糖酶呈显著正相关,相关系数为0.681。表明土壤微生物数量与土壤酶活性之间总体上存在着很好的正相关性。
     (8)对表征土壤生物肥力的土壤有机质、土壤微生物与土壤酶进行主成分分析,第一主成分线性组合主要是有机质、脲酶、蔗糖酶、过氧化氢酶、细菌、放线菌等变量,占信息总量的44.96%,其特征值达4.047;第二主成分线性组合主要是真菌、固氮菌、细菌、放线菌等变量,占信息总量的27.74%,其特征值为2.497;第三主成分主要是磷酸酶、蔗糖酶等变量,占信息总量的17.33%,其特征值为1.560。前3个主成分累积贡献率达90.04%,表明可以其评价土壤生物肥力,综合评价结果为Ⅱ>Ⅰ>Ⅲ>Ⅳ>Ⅵ>Ⅶ>Ⅴ>Ⅹ>Ⅸ>Ⅷ。说明岷江上游干旱河谷引种辐射松造林后,林地土壤微生物量与酶活性均表现出增加的趋势和改善林地土壤质量的趋势。
Many previous studies have been widely emphasized the introduction and selection of species with high resistibility during vegetation restoration and rebuilding in dry valley. Few attentions have paid to soil bio-fertility,which greatly limited the effects of restoration and rebuilding practice.Therefore,the evaluation of germplasm resource of P.radiata plantation in the upper reach of Minjiang River were studied in combined with soil characters and the urgent needs of ecological constitution,and through the varieties of seedlings resistibility between P.radiata and P.tabulaeformis,the evaluation of the soil bio-fertility and community relationships of Pinus radiata plantations was studied also. The results were expected to provide effective theory for vegetation restoration and rebuilding,low-effect forest modification,and community succession in the upper reach of Mingjiang River and other regions,and provide scientific data for germplasm resource management of introduced P.radiata plantation.Ten plantations with different forest age were selected under the same environmental conditions in Maoxian.Wenchuan and Lixian in the upper reach of Minjiang River,20 m×20 m sampling plots in each plantation were selected for soil microbial and soil enzyme research.21 typical fresh leaf samples were collected to community relationships research by SSR molecular method.2-year-old seedlings of P.radiata and P.tabulaeformis from Aba institute of forestry research were used for drought stress experiment in the greenhouse in Sichuan Agricultural University. The results as follows:
     (1) The results from SSR molecular method to 21 sampling material indicated that three groups could be formed by the limited genetic similarity coefficient GS0.8041.The 1~(st) Group included the P.radiata from 17 geomorphic resources,including material 1-6, 10-19 and 21,which introduced from the USA,Australian,Mexico and New Zealand,11 samplings were introduced from New Zealand.The 2~(nd) Group included the P.radiata from three geomorphic resources,including material 7-9,which introduce from New Zealand. The 3~(rd) Group included only one P.radiata(material 20) from New Zealand.GroupⅠcould be divided into three sub-groups(Ⅰ_1,Ⅰ_2,Ⅰ_3) by the limited genetic similarity coefficient GS0.8247.GroupⅠ_1,groupⅠ_2 and groupⅠ_3 included the samples 1-6,the samples 13-19 and the sample 21,respectively.Samples 1-4 could be looked as the same gene type and sample 15 and 17 could also be looked as the same gene type.The results suggested that SSR molecular method could effectively reveal the relationships among the introduced P.radiata plantations in the upper Minjiang River,which also indicated that P. radiata communities could be beneficial to gene flow and population reproduction due to high genetic diversity.However,the plantations were not called the same name although which with the same gene type,which was not facility to the evaluation,conservation and exploration of P.radiata germplasm resource.
     (2) Soil water content decreased with the increase of drought stress time in planting both P.radiata and P.tabulaeformis seedlings in the greenhouse experiment,showing more rapid in the early period.After 24d treatment,soil water content was 6.45%,water loss rate was 66.55%,daily loss rate 2.77%in planting P.radiata seedlings.After 48d treatment,the seedling died,soil water content was 4.48%,water loss rate 76.76%,daily loss rate 1.60%.After 24d treatment,soil water content was 4.72%,water loss rate was 79.79%,daily loss rate 3.32%in planting P.tabulaeformis seedlings.After 56d treatment, the seedling died,soil water content was 3.21%,water loss rate 82.26%,daily loss rate 1.47%.The results suggested that the seedlings of P.radiata had lower drought resistibility compared to that in P.tabulaeformis seedlings.
     The seedling of both species reduced the transpiration rate by increasing the depth of horn,pellicle and hypoderm and decreasing stomata conductance during the whole drought stress period.Needle horn,pellicle,and hypoderm and organize density of P.radiata increased to 16.33%,72.23%,80.16%and 88.02%,while 53.06%,74.91%,and 73.85% for P.tabulaeformis,respectively.The depth of green collapsed organism and stomata conductance of P.radiata needles were decreased to 34.55%and 45.11%,while 39.51 and 32.62%for P.tabulaeformis,respectively.Although both species showed high adaptation by analyzed needle anatomies character,their adaptive types were different,their adaptive degrees of drought were different.
     (3) The relative water content,water saturation deficient,water conservation ability of seedling needles were different between species.The relative water content of needles was significantly decreased as drought stress proceeded,but water saturation deficient increased.Water conservation ability decreased more rapidly in the early period of drought stress,but increased after 24d for P.radiata seedlings with 94.84%ascend ratio,14.75% for P.tabulaeformis.The results indicated that both species could resist to drought by decreasing relative water content,although water saturation deficient,water conservation ability of seedling needles were higher for P.radiata than that for P.tabulaeformis.
     (4) Drought stress had significant effects on PMP,MDA,Pro,WSS,Chla,Chlb and Chlab of seedlings.The relative conductance increased with increasing drought stress, 58.43%for P.radiata and 54.14%for P.tabulaeformis after 56d drought treatment.The content of MDA decreased in the early period of drought treatment,and then increased in the later period.The content of Pro,WSS and ABA increased with the increasing drought stress.The results indicated that the mechanism of drought stress of the both species seedlings were similar.
     (5) Ten plantations with different forest age were selected in the upper reach of Minjiang River,and the soil organic matter content was studied:the maximum number was inⅠandⅡsampling plots and the minimum number inⅨsampling plots,the soil organic matter content was exhibited obvious seasonal varieties with highest in autumn,then spring and winter,lowest in summer also.The results suggested that the soil organic matter content was increased with the increase of plantation time.
     (6) Microbe number increased with the increase of plantation time with the maximum number(4.96×10~6·g~(-1)) inⅡsampling plots and minimum(1.33×10~6·g~(-1)) number inⅧsampling plots,showed the order as:Ⅱ(1992 plantation,coverage 10%)>Ⅰ(1992 plantation,coverage 20%)>Ⅲ(1998 plantation,coverage 70%)>Ⅶ(2003 plantation, coverage 25%)>Ⅳ(1998 plantation,coverage 15%)>Ⅴ(1999 plantation,coverage 15%)>Ⅸ(2004 plantation,coverage 10%)>Ⅹ(2005 plantation,coverage 2%)>Ⅵ(2002 plantation,coverage 30%)>Ⅷ(2003 plantation,coverage 5%).This suggested that the soil microbe number and bio-fertility were increased with the increase of plantation time. However,some specific plantations especially for new plantation were not similarity with the orderliness which indicated that the factors which affecting ecological characteristics of soil were complex.
     (7) The ratio of microbial community in the total as the order:bacteria(54.81~75.13%)>actinomycetes(24.87~46.38%)>azotobacteria(3.03~5.06%)>fungus(0.03~0.14%) with maximum in autumn,then in spring and winter,minimum in summer.The seasonal dynamics of soil enzyme activity in the sampling plots were different,and the general tendency was highest in autumn.Invertase and catalase activity were highest inⅠandⅡsampling plots,Ⅹwere lowest;urea activity was highest inⅣplantation,and lowest inⅧplantation;phosphatase activity was highest inⅠplantation,the lowest inⅨplantation.The topper soil was higher in the four plantations than that in lower soil.The results suggested that soil enzyme activity increased with the increase of plantation time, which be beneficial to the improvement of soil quality.
     Bacteria were correlated positively with actinomycetes(0.818),azotobacteria(0.812), catalase(0.806) and invertase(0.691).Actinomycetes were positively correlated with azotobacteria(0.843),catalase(0.637) and invertase(0.798).Catalase was correlated positively with invertase(0.681).The results suggested the significant positive relationships between microbe number and soil enzymes.
     (8) PCA statistics in soil organic matter,soil microbe number and soil enzyme indicated that:the first components are soil organic matter,invertase,urea,catalase, bacteria and actinomycetes,which accounted for 44.96%of total information,the characteristics value was 4.047;the second components were bacteria,azotobacteria, fungus and actinomycetes,which accounted for 27.74%of total information,the characteristics value was 2.497;the third components were phosphatase and invetase, which accounted for 17.33%of total information,the characteristics value was 1.560.The accumulated contribution rate of the total of three components was 90.04%,suggesting that the parameters could be indicators in evaluating soil bio-fertility.As the result of it,the order of synthetic evaluation in soil bio-fertility for sampling plots were:Ⅱplantation> Ⅰplantation>Ⅲplantation>Ⅳplantation>Ⅵplantation>Ⅶplantation>Ⅴplantation>Ⅹplantation>Ⅸplantation>Ⅷplantation.The results suggested that introduced P.radiata plantation could be beneficial to the improvement of soil quality in the upper reach of Minjiang River since soil organic matter,microbe number and enzyme increased with the increase of plantation time.
引文
[1]李国强,马克明,傅伯杰.区域植被恢复对生态安全的影响预测[J].生态学报,2006,(12):4127-4134
    [2]张久荣、吕建雄,孙振鸢,吴玉章.新西兰林业发展之路[J],世界林业研究,2003,16(6):41-44
    [3]吴宗兴,刘千里,黄泉等.干旱地带辐射松整地造林研究.四川林业科技,2006,27(2):14-19
    [4]吴宗兴,余良海,刘千里等.岷江上游干旱河谷辐射松种子育苗试验研究[J].四川林业科技,2003,24(1):47-55
    [5]张玉良.新西兰的辐射松[J].安徽林业科技,2001,1:4-6
    [6]陈旭东,朱永平.用途广泛的新西兰辐射松[J].中国木材,2004,2:18
    [7]刘国忠,李思存.新西兰的辐射松[J].世界农业,2002,3:41-42
    [8]张建平,叶延琼,樊宏.岷江上游草地资源及合理利用[J].山地学报,2002,20(3):343-348
    [9]唐万鹏,史玉虎等.辐射松栽培现状及湖北省引种发展策略[J].湖北林业科技,20044:43-45
    [10]杨云海,周云乾,马文革.辐射松引种试验初报[J].四川林业科技.2000,21(4):31-33
    [11]王大政,张军.提倡绿化节水[J].中国林业,2005,14:44
    [12]BI Hui-quan,Jack S impson,LI Rong-wei et.al.Introduction of Pinus radiata for afforestation:a review with reference to Aba,China[J].dournal of Forestry Research.2003,14(4):311-322
    [13]杨朝飞.澳大利亚、新西兰有关遗传资源管理的启示.世界环境,2000,1:38-41
    [14]顾万春,刘红,陈英歌,等.澳大利亚与新西兰林木种质资源保存研究.世界林业研究,2005,18(6):63-68
    [15]陈少瑜.分子标记及其在林木种质资源和遗传育种研究中的应用.云南林业科技,2002,4:63-70
    [16]黄发新,张新叶,河村嘉一郎(日).运用RAPD技术进行杉木无性系识别研究[J].湖北林业科技,2000(增):14-19
    [17]翁尧富,陈源,赵勇春,等.板栗优良品种(无性系)苗木分子标记鉴别研究[J].林业科学,2001,37(2):51-55
    [18]Castiglione S,Wang G.RAPD finger prints for identification and for taxonomic studies of elite poplar(Popus spp.) clones[J].Theor Appl Genet,1993,87:54-59
    [19]Lange Wing field BD,Viiljoen C D,et al.RAPD finger printing to identify Eucalyptus grand is clones[J].South African Forestry Journal,1993,167:47-50
    [20]兰彦平,顾万春.生物分子标记在林木种质资源研究中的应用.世界林业研究,2003,16(2):12-15
    [21]王艇,苏应娟,黄超,等.红豆杉科植物RAPD分析及其系统学意义[J].西北植物学报,2000,20(2):243-249
    [22]吴燕民,裴东,奚声珂,等.用RAPD分析麻核桃起源与分类地位[J].林业科学,1999,35(4):27-30
    [23]李宽钰,黄敏仁,王明庥.用RAPD探讨毛白杨起源[J].植物分类学报,1997,35(1):24-31
    [24]黄秦军,苏晓华,张香华.SSR分子标记与林木遗传育种[J].世界林业研究,2002,15(3):14-21
    [25]邹喻苹,葛颂,王晓东.系统与进化植物学的分子标记[M].北京:科学出版社,2001
    [26]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    [27]Echt C S,DeVemo L L,AnzideiM,et al.Chloroplast microsatel lite reveal population genetic diversity in redpine,Pinus resinosa A it[J].Molecular Ecology,1998,7:307-316
    [28]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [29]黎燕琼,郑绍伟,陈泓,等.林木抗旱性研究及其进展.世界林业研究.2007,20(1):10-15
    [30]Kramer P J,Kozlowski T T.Physiology of woody plants[M].New York:Academic Press,1979
    [31]Turner N C.Adaptation to water deficits:A Changing perspective Aust[J].Aust J Plant Physiol,1986,13:175-190
    [32]李吉跃.太行山区主要造林树种耐旱特性的研究[博士学位论文].北京:北京林业大学,1990
    [33]张建国.中国北方主要造林树种耐早特性及其机理的研究[博士学位论文].北京:北京林业大学,1993
    [34]黎祜琛,印治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究,2003,16(4):17-22
    [35]Hsiao T C.Plant responses to water stress[J].Ann Rev Plant Physiol,1973,24:519-570
    [36]黄子琛.干旱对固沙植物的水分平衡和氮素代谢的影响[J].植物学报,1979,21(7):314-319
    [37]尹春英,李春阳.杨树抗旱性研究进展[J].应用与环境生物学报,2003,9(6):662-668
    [38]党宏忠,赵雨森.甘肃省高原山地树种的抗旱性研究[J].中国水土保持科学,2003,1(3):21-25
    [39]涂瑾,王克勤.干早地区造林树种的水分生理生态的研究进展[J].西北林学院学报,2003,18(3):26-30
    [40]李晓燕,李连国,刘志华,等.葡萄叶组织结构与抗旱性关系的研究[J].内蒙古农牧学院学报,1994,15(3):30-32
    [4l]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究[J].林业科学,2003,39(4):162-167
    [42]张立新,李生秀.甜菜碱与植物抗旱盐性研究进展.西北植物学报,2004,24(9):1765-1771
    [43]Levitt J.Response of plants to environmental stresses[M].New York:Academic Press,1980
    [44]Kramer P J.Water Relations of Plants[M].New York:Academic Press,1993
    [45]孙宪芝,郑成淑,王秀峰,等.木本植物抗旱机理研究进展.西北植物学报,2007,27(3):629-634
    [46]邓艳,蒋忠诚,曹建华,等.弄拉典型峰丛岩溶区青冈栎叶片形态特征及对环境的适应[J].广西植物,2004,24(4):317-322
    [47]侯艳伟,王迎春,杨持.绵刺(Potaninia mongolica)对干旱生境的适应特征[J].内蒙古大学学报(自然科学版),2005,36(3):355-360
    [48]吴丽芝.我国珍稀濒危植物绵刺叶表面结构的扫描电镜观察[J].内蒙古林学院学报,1999,21(3):11-15
    [49]贺晓,刘果厚,吴丽芝.绵刺的营养组织解剖特征[J].干旱区资源与环境,1997(S):80-83
    [50]马红梅,陈明昌,张强.柠条生物形态对逆境的适应性机理[J].山西农业科学,2005,33(3):47-49
    [51]周宜君.沙冬青抗旱、抗寒机理的研究进展[J].中国沙漠,2001,3:312-316
    [52]王理德,刘生龙,高志海.沙区五种珍稀濒危植物水分生理指标测定及分析[J].甘肃林业科技,1995,3:6-9
    [53]蒋志荣.沙冬青抗旱机理的探讨[J].中国沙漠,2000,20(1):72-74
    [54]王有信,王迷珍.第三代果树欧李抗旱机理与开发利用[J].中国果菜,2004,3:12-13
    [55]马双艳,姜远茂,彭福田,等.干旱胁迫对几种果树甜菜碱含量的影响[J].山西果树,2003,8:3-4
    [56]苏梦云.杉木幼苗在渗透胁迫下脯氨酸积累及Ca的调节作用研究[J].林业科学研究,2003,16(3):335-338
    [57]张成军,解恒才,郭佳秋,等.干旱对4种木本植物幼苗脯氨酸含量的影响[J].南京林业大学学报(自然科学版),2005,29(5):33-36
    [58]蒋志荣,杨占彪,汪君,等.兰州九州台四种绿化树种抗旱性机理比较研究[J].中国沙漠,2006,26(4):553-558
    [59]乌丽雅斯,刘勇.造林树种苗木定向培育理论探讨.北京林业大学学报,2004,26(4):85-90
    [60]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量影响的研究.水土保持研究,1996,3(1):185-191
    [61]安永芳,关军锋,及华,等.作物抗旱性的化学调控及其生理机制.河北农业科学,2004,8(3):94-98
    [62]洪世奇,庞宁菊.富钾区旱作农田施钾对玉米抗旱性的影响.干旱地区农业研究,1997,15(4):37-41
    [63]檀建新,董永华,张伟,等.钙对渗透胁迫下玉米幼苗内源激素和多胺含量的影响.植物生理学通讯,1998,34(2):94-96
    [64]曹帮华,张明如,翟明普.土壤干旱胁迫下刺槐无性系生长和渗透调节能力[J].浙江林学院学报,2005,22(2):161-165
    [65]陈鹏,潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报)[J].植物生理学通讯,2001,37(6):520-522
    [66]刘瑞香,杨吉力,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报,2005,19(3):148-151
    [67]宋玉霞,于卫平,王立英.贺兰山不同生境旱生灌木的解剖学研究[J].西北植物学报,1996,16(5):69-76
    [68]周瑞莲.应用生物化学技术进行牧草抗逆性鉴定的原理和方法[J].中国草地,1991,3:56-59.
    [69]王海珍,梁宗锁,郝文芳.白刺花(Sophoraviciifolia)适应土壤干旱的生理学机制[J].干旱地区农业研究,2005,23(1):106-110
    [70]李洪山,张晓岚,侯新霞.梭梭适应干旱环境的多样性研究[J].干旱区研究,1995,12(2):15-18
    [71]蒋明义,郭绍川.水分亏缺透导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32(2):144-150
    [72]蒋明义,荆家海.植物体内羟自由基的产生及其与脂质过氧化启动的关系.植物生理学通讯,1993,29(4):300-305
    [73]蒋明义,杨文英,徐江等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用.植物学报,1994,36(4):289-295
    [74]胥耀平,刘西平,付留记.不同PH、温度和水分胁迫对栾树SOD影响.西北林学院学报,1996,11(4):91-93
    [75]谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗旱性与硝酸还原酶和趋氧化物歧化酶活性的关系.浙江林学院学报,2000,17(1):24-27
    [76]苏梦云,范铭庆.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响.林业科学研究,2000,13(4):391-396
    [77]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响.生态学报,1999,19(6):850-854
    [78]姚允聪,曲泽洲,李树仁.土壤干旱与柿叶片膜脂及脂质过氧化的关系.林业科学,1993,29(6):485-491
    [79]龚吉蕊,张立新,赵爱芬,等.油蒿(Artemisia ordosica)抗旱生理生化特性研究初报.中国沙漠,2002,22(4):387-392
    [80]曾庆平,郭勇.植物的逆境应答与系统抗性诱导[J].生命的化学,1997,17(3):31-33
    [81]朱万泽,王金锡,薛建辉.台湾桤木和四川桤木种源苗木对水分胁迫的生理响应[J].西北植物学报,2005,25(10):44-50
    [82]曹慧,王孝威,韩振海,等.水分胁迫诱导平邑甜茶叶片衰老期间内肽酶与活性氧累积的关系[J].中国农业科学,2004,37(2):274-279
    [83]时连辉,牟志美,姚健.不同桑树品种在土壤水分胁迫下膜伤害和保护酶活性变化[J].蚕业科学,2005,31(1):13-17
    [84]Mittler R,Vanderauwera S,Gollery M,et al.Reactive oxygengene network of plants[J].Trends Plant Sci,2004,9:490-496
    [85]张晓岚,李洪山.梭梭幼苗抗旱性与生物自由基、膜伤害关系初探[J].新疆大学学报(自然科学版),1994,11(3):87-90
    [86]龚吉蕊,赵爱芬,张立新.干旱胁迫下几种荒漠植物抗氧化能力的比较研究[J].西北植物学报,2004,24(9):1570-1577
    [87]姚允聪,曲泽洲,李树仁.不同浇水处理过程中柿幼树SOD、CAT和脂质过氧化作用的变化[J].北京农学院学报,1994,9(1):22-27
    [88]胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响.西北林学院学报,1999,14(2):7-11
    [89]陈亚鹏,陈亚宁,李卫红.塔里木河下游干旱胁迫下的胡杨生理特点分析[J].西北植物学报,2004,24(10):173-178
    [90]刘萍,康峰峰,王旭航.林木抗旱鉴定指标及数量分析方法研究进展[J].河南林业科技.2006,26(2):21-23
    [91]Viayalakshmi C,Nagarajan M.Effect of rooting pattern on rice productivity under different water renimes[J].J.of Agronomy and Crop Science,1994,173(2):113-117
    [92]胡新生,王世绩.树木水分胁迫生理与抗旱性研究进展及展望.林业科学,1998,34(2):77-89
    [93]Li W L,Berlyn G P,Ashton P M S.Polyploids and their structure and physiological characteristics relative to water deficit in Betula paayrifera[J].American J.of Botany,1996,83(1):15-20
    [94]刘建伟,刘雅荣.水分胁迫下不同杨树无性系苗期的光合作用[J].林业科学研究,1993,6(1):65-69
    [95]刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,30(1):83-87
    [96]高洁,叶洪刚,杨荣喜.攀枝花干热河谷14个树种的耐旱性研究[J].西南林学院学报,1996,16(3):135-139
    [97]高洁,刘成康,张尚云.元谋干热河谷主要造植物耐旱性评估[J].西南林学院学报,1997,17(2):19-24
    [98]何梅.27种乔灌木水分生态生理及耐临时性干旱的多种途径初探[J].贵州林业科技,1998,26(1):17-24
    [99]孙彩霞,沈秀英.作物抗旱性鉴定指标及数量分析方法的研究进展[J].中国农学通报,2002,18(1):49-51
    [100]高洁,张尚云,傅美芬,等.干热河谷主要造林树种旱性结构的初步研究[J].西南林学院学报,1997,17(2):59-63
    [101]宋娟丽,姚军,吴发启.黄土高原21种造林树种的苗木根系活力与土壤含水量关系的研究[J].西北植物学报,2003,23(10):1688-1694
    [102]郭连生,对几种阔叶树种耐旱性生理指标的研究[J].林业科学,1989,25(5):389-394
    [103]王性炎.中国元宝枫[M].四川:四川农业出版社,2003
    [104]Qurishi Paul M,A A J Krammer.Water stress in three species of Eucalyptus[J].Forest Science,1981,16:74-78
    [105]刘广全,赖亚飞,李文华.4种针叶树抗旱性研究[J].西北林学院学报,2004,19(1):22-26
    [106]王孟本,李洪建,柴宝峰,等.黄土区树种抗旱性指数的研究[J].植物学研究,1999,19(3):341-346
    [107]韩刚,韩恩贤.树木抗旱生理与生化研究常用指标.陕西林业科技.2006,3:27-32
    [108]魏磊,崔世茂.干旱胁迫对山杏光合特性的影响[J].华北农学报,2008,23(5):198-201
    [109]潘洪杰,王晓燕,许革华,等.水分胁迫对树木生长和生理代谢的影响[J].内蒙古农业科技,2008,4:72-73
    [110]栾金花.干旱胁迫下三江平原湿地毛苔草光合作用日变化特性研究[J].湿地科学,2008,6(2):131-136
    [111]王爱英,姜艳娟,郝广友,等.季节性干旱胁迫对石灰山三种常绿优势树种的水分和光合生理的影响[J].云南植物研究,2008,30(3):81-88
    [112]李茂广,薛建鹏,王鑫.干旱胁迫对白桦光合特性的影响[J].林业科技,2008,36(3):23-25
    [113]韩建秋,王秀峰,张志国.土壤水分梯度对白三叶(Trifolium repens)光合作用和根系分布的影响[J].生态学报,2008,28(2):43-49
    [114]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,11:20-23
    [115]王晶英,赵雨森,杨海如,等.银中杨光合作用和蒸腾作用对土壤干旱的响应[J].中国水土保持科学,2006,4(4):56-64
    [116]朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报,2006,28(2):61-67
    [117]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报,2005,29(3):49-57
    [118]段宝利,尹春英,李春阳.松科植物对干旱胁迫的反应(英文)[J].应用与环境生物学报,2005,11(1):116-123
    [119]郭程瑾,肖凯,李雁鸣,等.不同生态型小麦品种旗叶光合性能的研究[J].麦类作物学报2002,22(3):42-46
    [120]景芸.三种青冈属苗木的生理特性研究[J].江西农业大学学报,2004,26(2):187-190
    [121]曹兵,苏润海,王标,等.水分胁迫下臭椿幼苗几个生理指标的变化[J].林业科技,2003,28(3):1-3
    [122]崔安安,刘莉丽,陈铁山,等.葛滕不同类型叶耐旱结构的比较解剖学研究[J].西北植物学报,2003,23(12):2211-2215
    [123]高洁,曹坤芳,王焕校.干热河谷9种造林树种在旱季的水分关系和气孔导度[J].植物生态学报,2004,28(2):186-190
    [124]Lngram J,Bartels D.The molecular basis of dehydration tolerance in plants[J].Annual Review on Plant Physiology & Plant Molecular Biology,1996,47:377-403
    [125]王霞.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16(2):7-11
    [126]李昆,曾觉民,赵虹.金沙江干热河谷造林树种游离脯氨酸含量与抗旱性关系[J].林业科学研究,1999,12(1):103-107
    [127]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450
    [128]张卫华,张方秋,张守攻,等.3种相思幼苗抗旱性研究[J].林业科学研究,2005,18(6):695-700
    [129]胡标林,余守武,万勇,等.东乡普通野生稻全生育期抗旱性鉴定[J].作物学报,2007,33(3):425-432
    [130]李禄军,蒋志荣,李正平,等.3树种抗旱性的综合评价及其抗旱指标的选取[J].水土保持研究,2006,13(6):257-258,263
    [131]倪柏春,张朋秋,林国英.油松引种试验初报.林业科技,2001,26(6):8-9
    [132]中国林科院.三北防护林主要树种造林技术[M].北京:中国林业出版社,1981
    [133]杨建伟,梁宗锁,韩蕊莲,等.土壤干旱对油松生长及水分利用的影响.西北农林科技大学学报(自然科学版),2004,32(4):88-93
    [134]黄华,梁宗锁,韩蕊莲,等.干旱胁迫条件下油松幼苗生长及抗旱性的研究.西北林学院学报,2004,19(2):1-4
    [135]杨文斌,蒋士梅.半干旱区四种针叶林蒸腾作用的研究.生态学杂志,1991,3:18-21
    [136]刘广全等.八种针叶树抗旱生理指标的研究.陕西林业科技,1995,2:1-5
    [137]王继和,施茜,张盹明.几种针叶树种水分生理特点的研究.甘肃林业科技,1996,3:8-12
    [138]田有亮.几种针阔叶树种水势和膨压的关系及其在抗旱性研究中的应用.内蒙古林学院学报,1992,2:49-52
    [139]郭连生,田有亮.9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究.生态学报,1992,1:47-51
    [140]田有亮,郭连生.应用PV技术对7种针阔叶幼树抗旱性的研究.应用生态学报,1990,2:114-119
    [141]郭连生,田有亮.4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性的研究.应用生态学报,1994,5(1):32-36
    [142]郭连生,田有亮.八种针阔幼树清晨叶水势与土壤含水量的关系及其抗旱性研究.生态学杂志,1992,2:4-7
    [143]康林功.油松、华北落叶松抗旱特性的研究.山西林业科技.2002,3:33-35
    [144]白洁冰,王志刚,陈飞,等.食松、油松和樟子松抗旱水分生理比较研究.西北林学院学报,2008,23(1):10-13
    [145]吴春芳,贾小明,许晓英.磷营养对侧柏、樟子松、油松抗旱性的影响.西北林学院学报,2005,20(1):53-56
    [146]刘琪璟.辽西阜新地区主要树种抗旱性的研究.东北林业大学学报,1989,1:93-98
    [147]翟洪波,李吉跃,姜金璞.干旱胁迫对油松侧柏苗木水力结构特征的影响[J].北京林业大学学报,2002,24(5):45-49
    [148]杨万勤.森林土壤生态学[M].成都:四川科学技术出版社.2006
    [149]孙波,赵其国,张桃林,等.土壤质量与持续环境Ⅲ——土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234
    [150]俞慎,李勇,王俊华等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422
    [151]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展[J].南华大学学报(自然科学版).2005,19(4):12-18
    [152]Murata T,Tanaka H,Hamada R,et al.Seasonal variations in soil microbial biomass content and soil neutral sugar composition in grassland in the Japanese Temperate Zone[J].Applied Soil Ecology,1999,11(2-3):253-259
    [153]Bijayalaxmi Devi N and Yadava P S.Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Ma-nipur,North-east India[J].Applied Soil Ecology,2006,31(3):220-227
    [154]俞慎,何振立,陈国潮.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J].土壤学报,2003,40(3):433-439
    [155]张崇邦,金则新,李均敏.浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性[J].生物多样性,2001,9(4):382-388
    [156]卢俊培,刘其汉.海南岛尖峰岭热带林凋落物分解过程的研究[J].林业科学研究.1991,4(1):129
    [157]刘强,彭少麟,毕华.热带亚热带森林叶凋落物交互分解的研究[J].中山大学学报:自然科学版,2004,43(4):86-89
    [158]胡承彪,韦源连,梁宏温,等.两种森林凋落物分解及其土壤效应的研究.广西农业大学学报,1992,11(4):47-52
    [159]梁宏温.田林老山中山两类森林凋落物研究[J].生态学杂志.1994,1:21-26
    [160]刘长怀,罗汝英.宁镇丘陵区森林土壤腐殖质的化学特征.南京林业大学学报.1990,14(1):1-6
    [161]肖波,刘增文,孙强.不同林地凋落叶混合分解对土壤微生物量C、N的影响.西北林学院学报,2008,23(4):23-26
    [162]张丽萍,张兴昌,刘增文,等.人工林凋落叶分解对土壤性质的影响.西北农林科技大学学报(自然科学版).2008,36(9):78-83
    [163]陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(Pinus caribaea)林土地壤特性的影响.生态学报,2008,28(7):263-269
    [164]刘久俊,方升佐,谢宝东,等.生物覆盖对杨树人工林根际土壤微生物、酶活性及林木生长的影响.应用生态学报.2008,19(6):1204-1210
    [165]龚伟,胡庭兴,王景燕,宫渊波,冉华.川南天然常绿阔叶林人工更新后枯落物对土壤的影响.林业科学,2007,43(7):118-125
    [166]刘强,彭少麟,毕华.热带亚热带森林凋落物交互分解的养分动态[J].北京林业大学学报,2005,21(1):24-31
    [167]Matsumoto,Martines,Avanzi.Interactions among functional groups in the cycling of carbon nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees[J].Applied Soil Ecology.2005,28(1):57-65
    [168]Nicolai S P,Maria V S.A kinetic method for estimating the biomass of microbial functional groups in soil[J].Journal of Microbiological Methods,1996,24(3):219-230
    [169]郑洪元,张德生.土壤动态生物化学研究[M].北京:科学出版社.1982
    [170]李阜棣.土壤微生物学[M].北京:中国农业出版社.1996
    [171]Fiere N,Schimel J P,Holden P A.Variations in microbial community composition through two soil depth profile[J].Soil Biology & Biochemiestry,2003,35:167-176
    [172]王开运.川西亚高山森林群落生态系统过程研究[M].成都:四川科学技术出版社,2004
    [173]Shang-Shyng Yang,Hsiao-Yun Fan,et.aL Microbial population of spruce soil in Tatachia mountain of Taiwan[J].Chemosphere,2003,52:1489-1498
    [174]Berg M P,Kniese J P,Verhoef H A.Dynamic and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil[J].Biology &fertility of Soils,1998,26(8):555-562
    [175]Lavelle P,Spain A V.Soil Ecology[M].Dordrecht/Boston/London:Kluwer Academic Publishers,2001
    [176]Ronald M.Atlas,Richard Bartha.Microbial Ecology(4th ed.)[M].California:Benjamin/Cummings Science Publishing,1998
    [177]崔芳芳,刘增文,付刚,等.秦岭山区几种典型森林的土壤微生物特征及其对人为干扰的响应[J].西北林学院学报,2008,20(4):134-139
    [178]王国兵,阮宏华,唐燕飞,等.北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报,2008,2:39-44
    [179]殷国兰,李梅,吴宗兴,等.岷江干旱河谷辐射松人工林土壤微生物数量的季节动态[J].四川农业大学学报,2007,25(4):410-414
    [180]唐艳,杨林林,叶家颖.银杏园土壤酶活性与土壤肥力的关系研究[J].广西植物,1999,19(3):277-281
    [181]郑文教,王良睦,林鹏.福建和溪亚热带雨林土壤酶活性的研究[J].生态学杂志,1995,14(6):16-20
    [182]胡海波,康立新,梁珍海,等.泥质海岸防护林土壤酶活性与理化性质关系的研究[J].东北林业大学学报,1995,23(5):37-44
    [183]罗明,庞俊峰,李叙勇,等.新疆天山云杉林区森林土壤微生物学特性及酶活性[J].生态学杂志,1997,16(1):26-30
    [184]张成娥,陈小利.森林砍伐开垦对土壤酶活性及养分的影响[J].生态学杂志,1998,17(6):18-21
    [185]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178
    [186]杨鹏,薛立,陈红跃,等.不同混交林地土壤养分、微生物和酶活性的研究[J].湖南林业科技,2004,31(4):43-45
    [187]薜立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性研究[J].土壤学报.2003,40(2):208-285
    [188]杨芳,王开运,杨万勤.川西亚高山不同林地土壤微生物和酶活性研究[J].内蒙古林业科技,2008,34(1):7-9,18
    [189]罗虹,刘鹏,谢陈笑.金华北山七子花林土壤的微生物和酶特征研究[J].浙江林业科技,2004,24(4):1-4
    [190]杨涛,徐慧,李慧,等.樟子松人工林土壤养分、微生物及酶活性的研究[J].水土保持学报,2005,19(3):51-54
    [19l]徐恒,廖超英,李晓明,等.榆林沙区人工固沙林土壤养分微生物数量和酶活性研究[J].西北林学院学报,2008,23(3):12-15
    [192]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指标研究进展[J].应用与环境生物学报,2003,19(1):105-109
    [193]Decker K L M,Boemer R E J,Morris S J.Scale-dependent patterns of soil enzyme activity in a forest landscape[J].Canadian Journal of Forest Research,1999,29(2):232-241
    [194]Pagliai M,De Nobili M,Nobili M de.Relationships between soil porosity,root development and soil enzyme activity in cultivated soils[J].Geoderma,1993,(56):1-47
    [195]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].北京林业大学学报,2000,22(1):51-55
    [196]孙翠玲,郭玉文,佟超然,等.杨树混交林地土壤微生物与酶活性的变异研究[J].林业科学,1997,33(6):488-496
    [197]孙翠玲,佟超然,徐兰成,等.杨树不同栽培模式生长量、土壤微生物及酶活性的研究[J].林业科学,2001,14(3):336-339
    [198]胡延杰,翟明普,武觐文,贾黎明.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):32-35
    [199]王健,刘作新,蔡崇光.施肥对油松刺槐混交林土壤微生物种群和酶活性的影响[J].生态学杂志,2004,23(5):89-92
    [200]胡海波,张金池,高智慧,等.岩质海岸防护林土壤微生物数量及其酶活性和理化性质的关系[J].林业科学研究,2001,15(1):88-95
    [201]张崇邦,金则新,柯世省.天台山不同林型土壤酶活性与土壤微生物、呼吸速率以及土壤理化特性关系研究[J].植物营养与肥料学报,2004,10(1):51-56
    [202]樊军,郝明德.黄土高原早地轮作与施肥长期定位试验研究Ⅱ土壤酶活性与土壤肥力[J].植物营养与肥料学报,2003,9(2):146-150
    [203]陈宏峻,李传涵.杉木幼林地土壤酶活性与土壤肥力[J].林业科学研究,1993,6(3):321-326
    [204]方乐金,张运斌.杉木幼林地土壤肥力变化研究[J].土壤学报,2003,40(2):316-319
    [205]焦如珍,杨承栋,屠星南,等.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化[J].林业科学研究,1997,10(4):373-379
    [206]焦如珍,杨承栋,孙启武,等.杉木人工林不同发育阶段土壤微生物数量及其生物量的变化[J].林业科学,2005,41(6):163-165
    [207]薛立,吴敏,徐燕,等.几个典型华南人工林土壤的养分状况和微生物特性研究[J].土壤学报,2005,42(6):1017-1024
    [208]高祥斌,刘增文,潘开文,等.岷江上游典型森林生态系统土壤酶活性初步研究[J].西北林学院学报,2005,20(3):1-5
    [209]郑诗樟,吴蔚东,何圆球,等.丘陵红壤不同人工林型下土壤微生物类群和酶活性特性[J].江西林业科技,2004,(4):1-4
    [210]黄承才,田润刚,金叶飞,等.浙江会稽山主要人工林土壤酶活性及与土壤肥力的相关性研究[J].浙江林业科技,2004,24(1):1-4
    [211]齐高强,耿增超,周锋利.秦岭南坡火地塘林区华北落叶松人工林土壤酶活性研究[J].西北农林科技大学学报(自然科学版),2005,33(3):81-85
    [212]闫德仁,刘永军,安晓亮,等.落叶松人工林枯落物特征研究[J].内蒙古林业科技,2003,(3):23-27
    [213]杨涛,徐慧,方德华,等.樟子松林下土壤养分、微生物及酶活性的研究.土壤通报.2006,37(4):253-257
    [214]Ringrose C,Neilsen W A.Growth responses of Pinus radiata and soil changes following periodic fertilization[J].Soil Science Society of America Journal,2005,69(6):1799-1805
    [215]Merino A,Edeso J M.Soil fertility rehabilitation in young Pinus radiata D.Don.plantations from northern Spain after intensive site preparation[J].Forest Ecology and Management,1999,116:83-91
    [216]Solla Gullon F,Taboada M P.Initial response on nutritional status of a young Pinus radiata D.Don plantation to wood-ash application.Investigacion Agraria[J].Sistemasy Recursos Forestales,2004,13(2):281-293
    [217]Merino A,Fernandez-Lopez A,Solla-Guilon,et al.Soil changes and tree growth in intensively managed Pinus radiata in northern Spain[J].Forest Ecology and Management,2004,196(2):393-404
    [218]Ross D J,Tate K R,et al.Afforestation of pastures with Pinus radiata influences soil carbon and nitrogen pools and mineralisation and microbial properties[J].Australian Journal of Soil Research,2002,40(8):1303-1318
    [219]Chen C R,Condron L M,et al.Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine(Pinus radiata D.Don.)[J].Soil Biology and Biochemistry,2002,34(4):487-499
    [220]Ross D J,Scott N A,et al.Root effects on soil carbon and nitrogen cycling in a Pinus radiata D.Don plantation on a coastal sand[J].Australian Journal of Soil Research,2001,139(5):1027-1039
    [221]Liu Q,Loganathan P,Hedley M J,et al.The mobilisation and fate of soil and rock phosphate in the rhizosphere of ectomycorrhizal Pinus radiata seedlings in an Allophanic soil[J].Plant & Sol,2004,264(1):219-229,11
    [222]O'Brien N D,Attiwill P M,Weston C J.Stability of soil organic matter in Eucalyptus regnans forests and Pinus radiata plantations in south eastern Australia[J].Forest Ecology and Management,2003,185(2-3):249-261
    [223]Romanya J,Cortina J,Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils[J].European journal of science,2000,51(4):627-641
    [224]Saggar S,Hedley C B,Salt G J.Soil microbial biomass,metabolic quotient and carbon and nitrogen mineralisation in 25-year-old Pinus radiata agroforestry regimes[J].Australian Journal of Soil Research,2001,39(3):491-504
    [225]杨兆平,常禹,杨孟,等.岷江上游干旱河谷景观边界动态及其影响域.应用生态学报,2007,(18)9:1972-1976
    [226]Doran J W,Coleman D C,Bezdicek D F,Stewart B A.Defining Soil Quality for Sustainable Environment[M].Madison,Wixconsin,USA:Soil Science Society of America,1994
    [227]Powell W,Machray G,Provan J.Polymorphism revealed by simple sequence repeats[J].Trends in Plant Science,1996,1(7):215-222
    [228]Hokanson S.C,Lamboy W.F,Szewc-mcfadden A.K,et al.Microsatellite(SSR) variation in collection of Malus(apple)species and hybrids[J].Euphytica,2001,18:281-294
    [229]Luis G,Cristina M,Oliveir A.Molecular characterization of cultivars of apple(Mulus domestica Borkh.) using microsatellite(SSR and ISSR)markers[J].Euphytica,2001,122:81-89
    [230]Liebhard R,Kollerb B,Gianfranceschi L.Creating a saturated reference map for the apple(Mulus domestica Borkh.)genome[J].Theor Appl Genet,2003,106(8):1497-1508
    [231]Paul R C,Andrew B,Kyie O,et al.Using microsatellite analysis to vertify breeding records:A study of Honeycrisp and other cold-hardy apple cultivars[J].HortScience,2005,40(1):15-17
    [232]Gygax M,Gianfranceschi L,Liebhard R,et al.Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii[J].Theor Appl Genet,2004,109:1702-1709
    [233]吕秀兰,廖明安,王永清等.几种果树基因组DNA大量快速提取方法研究.中国园艺学会第九届论文集[G].重庆,2001.北京:中国科学技术出版社,2001:38-42
    [234]Bassam B J,Caetano-Anolles G,Gresshoff P M.Fast and sensitive silver staining of DNA in polyacrylamide gels[J].Analytical Biochemistry,1991,195:80-83
    [235]Nei M.Genietic distance between populations[J].Am Natu-ralist,1972,106(3):283-292
    [236]根井正利.分子群体遗传学与进化论[M].王家玉译.北京:农业出版社,1983
    [237]Zhebentyayeva T N,Reighard GL,Gorina V M,AbbottA G.Simple sequence repeat(SSR)analysis for assessment of genetic variability in apricot germplasm[J].Theoretical and Applied Genetics,2003,106:435-444
    [238]张东,舒群,滕元文,等.中国红皮砂梨品种的SSR标记分析[J].园艺学报,2007,34(1):47-52
    [239]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003
    [240]周仪.植物形态解剖实验(修订版)[M].北京:北京师范大学出版社,1993
    [241]张宪政.作物生理研究法[M].北京:农业出版社,1992
    [242]白宝璋,汤学军.植物生理学测试技术[MJ.北京:中国科学技术出版社,1993
    [243]李迎春.梨属四个重要种的抗旱性研究[D].贵州:贵州大学,2005
    [244]谷艳容,张国芳,孟林.4种牧草幼苗对水分胁迫的响应及其抗旱性[J].四川草原,2005,4:4-7
    [245]数理统计编写组.数理统计[M].北京:中国林业出版社,1993
    [246]景茂.银杏对土壤水分胁迫的响应[博士学位论文].南京:南京林业大学,2005
    [247]王珲,夏玉芳,陆飞,等.马尾松针叶解剖构造及其抗旱适应性初步研究[J].贵州林业科技,2005,33(4):17-20
    [248]祁云枝,杜勇军.干旱胁迫下黄瓜及蚕豆叶片膜透性改变及其机理的初步研究[J].陕西农业科学,1997,4:6-7
    [249]任安芝,高玉葆,梁宇,等.白草和赖草无性系生长对干旱胁迫的反应[J].中国沙漠,1999,19:31-34
    [250]曾华罗,罗利军.植物抗旱、耐盐基因概述[J].植物遗传资源学报.2003,4(3)::270-273
    [251]刘国华,韩素英,齐力旺.植物抗旱耐盐工程研究及应用前景[J].世界农业,2003,7:44-46
    [252]唐承财,钟全林,王健.林木抗旱生理研究进展[J].世界林业研究,2008,21(1):22-28
    [253]文建成,陈学宽,符菊芬等.质膜透性与丙二醛(MDA)含量的变化评价甘蔗品种抗旱性初探[J].甘蔗,1998,5(3):1-5
    [254]Scandalios J G.Oxygen stress and superoxide dismutases[J].Plant physiol,1993,107:7
    [255]代莉.喀斯特山地适生树种香叶树群落学及苗期水分光合特性研究[D].贵州:贵州大学,2005
    [256]徐利霞,杨水平,姚小华,等.石漠化地区3个树种幼苗在水分胁迫下的光合特性与抗旱性关系[J].林业科学研究,2006,19(6):785-790
    [257]黄振英,董学军,蒋高明,等.沙柳光合作用和蒸腾作用日动态变化的初步研究[J].西北植物学报,2002,22(4):817-823
    [258]张道远,尹林克,潘伯荣,等.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256
    [259]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1):49-56
    [260]黎燕琼,陈泓,郑绍伟,等.岷江干旱河谷几种乔木抗旱性研究.四川林业科技,2006,27(6):24-28
    [261]罗音,孙明高.干旱胁迫对5树种叶片中脯氨酸含量的影响.山东林业,1999,4:1-4
    [262]张福计,4个造林树种抗旱特性的初步研究[J].山西林业科技,1990,3:42-46
    [263]邓东周,范志平,李平,等.干旱胁迫下树木的抗旱机理与抗旱造林技术[J].安徽农业科学,2008,36(3):1005-1009
    [264]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [265]刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价.生态学报,2006,26(3):901-913
    [266]中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1978
    [267]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:北京科学出版社,1985
    [268]李志辉,李跃林,杨民胜,等.桉树人工林地土壤微生物类群的生态分布规律[J].中南林学院学报,2000,20(3):24-28
    [269]薛立,陈红跃,毕鸿雁,等.马占相思纯林及柚木纯林土壤养分、微生物和酶活性的研究[J].华南农业大学学报(自然科学版),2002,23(2):96
    [270]龚伟.川南天然常绿阔叶林人工更新后土壤生态特性研究[博士学位论文].雅安:四川农业大学,2006
    [271]李国雷,刘勇,李俊清,等.油松飞播林土壤质量评判及其调控[J].南京林业大学学报(自然科学版),2008,32(3):19-24
    [272]薛立,傅静丹,郑卫国,等.3种人工幼林的土壤微生物和酶活性研究[J].中南林业科技大学学报,2008,28(4):98-100
    [273]杜伟文,欧阳中万.土壤酶研究进展[J].湖南林业科技,2005,32(5):76-79,82
    [274]Bandick A K,Dick R P.Field management effects on soil enzyme activities[J].Soil Biol.Biochem,1999,31:1471-1479
    [275]张焱华,吴敏,何鹏,等.土壤酶活性与土壤肥力关系的研究进展[J].安徽农业科学,2007,35(34):209-212
    [276]倪彬,张健,冯茂松,等.巨桉人工林生态系统根系土壤酶活性研究[J].四川农业大学学报,2007,25(3):311-315
    [277]张银龙,林鹏.秋茄红树林土壤酶活性时空动态[J].厦门大学学报(自然科学版),1999,38(1):129-136
    [278]胡斌,段昌群,王震洪,等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响.土壤学报,2002,39(4):604-608
    [279]陈明,朱建雯,盛建东,等.塔河中游柽柳灌丛土壤酶活性及微生物数量变化的研究[J].西南农业学报,2008,23(1):103-109
    [280]王成秋,王树良,杨剑虹,等.紫色土柑橘园土壤酶活性及其影响因素研究[J].中国南方果树,1999,28(5):7-10
    [281]刘苑秋,杨家林,杜天真.重建森林对退化红壤土壤酶特性影响.江西农业大学学报(自然科学版),2002,24(6):791-795
    [282]熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用与环境生物学报,2004,10(4):416-420
    [283]张其水,俞新妥.杉木连栽林地营造混交林后土壤微生物的季节动态研究[J].生态学报,1990,10(2):121-125
    [284]Perucci P,Scarponi L,Businelli M.Enzyme activities in clay loam soil amended with various crop residue[J].Plant & Soil,1984,81:345-351
    [285]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [286]Ringrose C,Neilsen W A.Growth responses of Pinus radiata and soil changes following periodic fertilization[J].Soil Science Society of America Journal,2005,69(6):1799-1805
    [287]Merino-Trigo A,Sampedro L,Rodrguez-Berrocal F J,et al.Activity and partial characterization of xylanolytic enzymes in the earthworm Eisenia and reifed on organic wastes[J].Soil Biol.&Biochem.,1999,31:1735-1740
    [288]Diamantidis G,Effosse A,Potier P,et al.Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum[J].Soil Biol.& Biochem.,2000,32:919-927
    [289]Groffman P M,Mc-Dowellb W H,Myersc J C,et al.Soil microbial biomass and activity in tropical riparian forests[J].Siol Biol.& Bicochem.,2001,33:1339-1348
    [290]Taylor J P,Wilson B,Mills M S,et al.Comparison of microbial numbers and enzymatic activities in surface and subsiols using various techniques[J].Siol Biol.& Bicochem.,2002,34:387-401
    [291]Abdul K S,Katayama A,Kimura.Activities of some soil enzymes in different land use system after deforestation in hilly areas of west Lampung,South Sumatra,Indonesia[J].Soil Sci.,2000,80:91-97
    [292]Badiane N N Y,Chotte J L,Pate E,et al.Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semiarid tropical regions[J].Applied Soil Ecology,2001,18(3):229-238
    [293]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570
    [294]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159
    [295]李阜棣.土壤微生物学[M].北京:中国农业出版社,1996
    [296]张成娥.植被破坏前后土壤微生物分布与肥力的关系[J].土壤侵蚀与水土保持学报,1996,2(4):77-83
    [297]张成娥,刘国彬,陈小利.坡地不同利用方式下土壤微生物和酶活性以及生物量特征[J].土壤通报,1999,30(3):101-103
    [298]安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J].水土保持研究,2005,12(3):31-35
    [299]络伯胜,钟继洪,陈俊坚.土壤肥力数量化综合评价研究[J].土壤,2004,36(1):104-106
    [300]庞学勇.川西亚高山针叶林不同演替阶段土壤特性比较研究[D].雅安:四川农业大学,2002
    [301]Lynch J M..Interactions between biological processes,cultivation and soil structure[J].Plant &Soil,1984,76:307-318
    [302]Lynch J M..Bragg E.Microbials and soil aggregate stability[J].Advances in Soil Science,1985,2:133-171
    [303]Gupta V V S R,Germidea J J.Distribution of microbial biomass and its activety in soil aggregate size classes as affected by cultivation[J].Soil Biol.Biochem,1989,20:777-786
    [304]陈文新,李阜棣,闫章才.我国土壤微生物学和生物固氮研究的回顾与展望[J].世界科技研究与发展,2008,24(2):6-12
    [305]陈珊,张常钟,刘东波,等.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系[J].生态学报,1995,19(1):91-94
    [306]毕江涛,贺达汉,黄泽勇,等.退化生态系统植被恢复过程中土壤微生物群落活性响应.水土保持学报,2008,22(4):195-200
    [307]邵玉琴,赵吉,包青海.库布齐固定沙丘土壤微生物生物量的垂直分布研究[J].中国沙漠,2001,21(1):88-92
    [308]李文革,刘志坚,谭周进,谢桂先.土壤酶功能的研究进展[J].湖南农业科学,2006,6:34-36
    [309]唐玉姝,魏朝富,颜廷梅,杨林章,慈恩.土壤质量生物学指标研究进展[J].土壤,2007,39(2):7-13
    [310]赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,17(4):1-7
    [311]李双霖,李友钦.果园土壤酶活性与土壤肥力关系的研究[J].福建农业科技,1990,1:9-10
    [312]张丽娟,周静文,李素华,森林土壤酶活性与土壤肥力[J].河北林果研究,1998(S):174-176
    [313]林静.不同红壤生态区土壤酶活性与土壤肥力相关性的研究[J].福建农业科技,1999(S):23-24
    [314]张猛,张健.林地土壤微生物、酶活性研究进展[J].四川农业大学学报,2003,21(4):347-351
    [315]Torsvik,V I et al.High diversity in DNA of soil bacteria[J].Appl.Environ.Microb iol.,1990,56:782-787
    [316]姚晓华.土壤微生物群落多样性研究方法及进展[J].广西农业生物科学,2008,26(增):89-93