益母草碱(SCM-198)对2型糖尿病治疗作用的初步研究及其可能的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]研究显示,在2型糖尿病的发病过程中,伴随着低度、慢性、全身性的炎症反应,上述炎症反应在2型糖尿病的发病过程中起着重要的作用。因此,具有抗炎作用的物质将有可能成为治疗2型糖尿病的潜在药物。益母草碱(SCM-198)是中药益母草中的一种生物碱。益母草在中国民间有百年以上的使用历史,其具有多种生物学效用。最近有报道指出益母草具有抗炎性质。于是,我们提出一个假设,即SCM-198可能对2型糖尿病有改善作用。基于这个假设,我们设计了本实验,旨在观察SCM-198对自发性2型糖尿病小鼠C57BLKS/J db/db小鼠糖尿病症状的改善效果,并探讨其可能的机制。
     [方法]本实验将糖尿病小鼠db/db小鼠分为5组,分别为:阳性药组(盐酸吡格列酮,50 mg/kg, n=8); SCM-198低、中、高剂量组(50 mg/kg, 100 mg/kg,200 mg/kg, n=8-9), Vehicle组(n=9)。db/m小鼠作为正常对照(n=5)。吡格列酮和SCM-198溶解在新鲜配制的1%CMC-Na溶液中,制备成混悬液,每天灌胃给药一次。db/db Vehicle组和db/m组小鼠按同等体积灌胃1%CMC-Na溶液。实验周期为3周。实验期间,每周测定体重两次,监测12h空腹血糖一次。实验结束后,检测相关血浆指标,采用PCR的方法检测肝脏葡萄糖代谢酶:GK、G6paese、PEPCK,胰岛素信号通路分子:IR以及肝脏炎症介质:TNF-α、IL-6、IL-1β、COX-2、iNOS的表达,同时采用Western Blot的方法检测胰岛素信号通路关键分子p-IR、Akt、p-Akt和p-Foxol,以及炎症介质TNF-α蛋白的表达,NF-κB炎症通路中IκB-α的降解以及NF-κB p65 |的磷酸化。
     [结果]经过3周的治疗后,SCM-198 (200 mg/kg)显著降低了糖尿病小鼠db/db小鼠的空腹血糖水平,并升高了空腹血浆胰岛素浓度,同时,SCM-198(200 mg/kg)还明显降低了血浆甘油三脂的浓度(TG),升高了血浆高密度脂蛋白(HDL-C)|的浓度。RT-PCR结果显示,SCM-198能上调肝脏葡萄糖代谢酶GK mRNA的表达,同时下调糖异生过程关键限速酶G6Paese和PEPCK mRNA的表达,Western Blot进一步的检测表明SCM-198能恢复肝脏IR和Akt磷酸化水平,同时促进Foxol的磷酸化。并且,本研究进一步发现SCM-198能够降低肝脏炎症介质TNF-α、IL-6、IL-1β、COX-2以及iNOS的基因表达,蛋白检测的结果显示,SCM-198能够降低TNF-α产生,抑制IκB-α的降解以及NF-κB p65的磷酸化。
     [结论]本研究发现,SCM-198具有抗炎作用,它至少部分通过抑制NF-κB炎症通路,进而改善炎症状态,从而改善2型糖尿病小鼠db/db小鼠的糖尿病症状。因此,我们认为SCM-198可能成为防治2型糖尿病的潜在药物。
Background and purpose:There are reports of early evidence that suggested the involvement of chronic low-grade inflammation in the pathogenesis of type 2 diabetes, which plays a key role in type 2 diabetes. Thus, substances that have effects in reducing inflammation could be potential drugs for type 2 diabetes. Leonurine (SCM-198) is an alkaloid in Herba leonuri, which was reported to possess anti-inflammatory property. We hypothesize that SCM-198 may have beneficial effect on type 2 diabetes. In this study we attempted to test this hypothesis by evaluating the anti-diabetic effect of SCM-198 and the possible underlying mechanisms of its effects in db/db mice.
     Experimental approach:SCM-198 (50,100,200 mg/kg body weight), pioglitazone (as positive control) (50 mg/kg body weight) and 1% sodium carboxymethyl cellulose (CMC-Na) were administered to the db/db or db/m mice once daily for 3 weeks.
     Key results:After 3 weeks, SCM-198 (200 mg/kg) treatment significantly reduced the fasting blood glucose level and increased the plasma insulin concentration in the db/db mice, meanwhile it significantly lowered and increased the plasma triglyceride and HDL-cholesterol concentration respectively. Moreover, the disregulated transcription of the hepatic glucose metabolic enzymes was corrected, and the phosphoration of Akt and insulin receptor (IR) were recovered, with an increase of Foxol phosphorylations. The proinflammatory mediators (like TNF-α, IL-6, IL-1β, degradation of IκB-αand thereafter activation of NF-κB) were reversed by SCM-198 treatment in the db/db mice.
     Conclusions and implications:The present study found that SCM-198 exhibited anti-inflammatory activity and has an ameliorating effect on diabetic symptoms involving inhibition of NF-κB/IKK pathway. Consequently, we suggested that SCM-198 may be a prospective agent for prevention and/or moderation of the progress of type 2 diabetes.
引文
[1]Shaw KM. Overcoming the hurdles to achieving glycemic control. Metabolism-Clinical and Experimental.2006; 55:S6-S9
    [2]Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. TUMOR-NECROSIS-FACTOR-ALPHA SUPPRESSES INSULIN-INDUCED TYROSINE PHOSPHORYLATION OF INSULIN-RECEPTOR AND ITS SUBSTRATES. Journal of Biological Chemistry.1993; 268:
    [3]Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nature Medicine.2005; 11:191-198
    [4]Yuan MS, Konstantopoulos N, Lee JS, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKK beta. Science.2001; 293:1673-1677
    [5]Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. Journal of Clinical Investigation.2002; 109:1321-1326
    [6]Gao ZG, Zuberi A, Quon MJ, Dong ZG, Ye JP. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. Journal of Biological Chemistry. 2003; 278:24944-24950
    [7]Islam MA, Ahmed F, Das AK, Bachar SC. Analgesic and anti-inflammatory activity of Leonurus sibiricus. Fitoterapia.2005; 76:359-362
    [8]Shin IIY, Kim SH, Kang SM, et al. Anti-inflammatory activity of Motherwort (Leonurus sibiricus L.). Immunopharmacology and Immunotoxicology.2009; 31: 209-213
    [9]Lee MJ, Lee HS, Park SD, Moon HI, Park WH. Leonurus sibiricus Herb Extract Suppresses Oxidative Stress and Ameliorates Hypercholesterolemia in C57BL/6 Mice and TNF-alpha Induced Expression of Adhesion Molecules and Lectin-Like Oxidized LDL Receptor-1 in Human Umbilical Vein Endothelial Cells. Bioscience Biotechnology and Biochemistry.2010; 74:279-284
    [10]Liu XH, Xin H, Hou AJ, Zhu YZ. PROTECTIVE EFFECTS OF LEONURINE IN NEONATAL RAT HYPOXIC CARDIOMYOCYTES AND RAT INFARCTED HEART. Clinical and Experimental Pharmacology and Physiology.2009; 36:696-703
    [11]Liu X, Pan L, Gong Q, Zhu Y. Leonurine (SCM-198) improves cardiac recovery in rat during chronic infarction. European Journal of Pharmacology. 2010; 649:236-241
    [12]Liu XH, Pan LL, Chen PF, Zhu YZ. Leonurine improves ischemia-induced myocardial injury through antioxidative activity. Phytomedicine.2010; 17: 753-759
    [13]Loh KP, Qi J, Tan BK, Liu XH, Wei BG, Zhu YZ. Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function. Stroke.2010; 41:2661-2668
    [14]迟家敏.实用糖尿病学:人民卫生出版社,2009.
    [15]Nakajima K, Yamauchi K, Shigematsu S, et al. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells. Journal of Biological Chemistry.2000; 275: 20880-20886
    [16]陈秋夏,邱宗荫.吡格列酮对胰岛素抵抗HepG2细胞模型的药理学评价.中国药理学通报.2006;22:248-251
    [17]Collins QF, Xiong Y, Lupo EG, Liu HY, Cao WH. p38 mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. Journal of Biological Chemistry.2006; 281:24336-24344
    [18]Liu HY, Collins QF, Xiong Y, et al. Prolonged treatment of primary Hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. Journal of Biological Chemistry.2007; 282:14205-14212
    [19]van de Venter M, Roux S, Bungu LC, el al. Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. Journal of Ethnopharmacology.2008; 119:81-86
    [20]迟毓婧,李晶,管又飞,杨吉春PI3K-Akt信号传导通路对糖代谢的调控作用.中国生物化学与分子生物学报.2010;26:879-885
    [21]Shah P, Mudaliar S. Pioglitazone:side effect and safety profile.9:347-354
    [22]Defronzo RA, Bonadonna RC, Ferrannini E. PATHOGENESIS OF NIDDM-A BALANCED OVERVIEW. Diabetes Care.1992; 15:318-368
    [23]Ramnanan CJ, Edgerton DS, Rivera N, el al. Molecular Characterization of Insulin-Mediated Suppression of Hepatic Glucose Production In Vivo. Diabetes. 2010; 59:1302-1311
    [24]Burchell A, Cain DI. RAT HEPATIC-MICROSOMAL GLUCOSE-6-PHOSPHATASE PROTEIN-LEVELS ARE INCREASED IN STREPTOZOTOCIN-INDUCED DIABETES. Diabetologia.1985; 28:852-856
    [25]Barzilai N, Rossetti L. ROLE OF GLUCOKINASE AND GLUCOSE-6-PHOSPHATASE IN THE ACUTE AND CHRONIC REGULATION OF HEPATIC GLUCOSE FLUXES BY INSULIN. Journal of Biological Chemistry. 1993; 268:25019-25025
    [26]Massillon D, Barzilai N, Chen W, Hu MZ, Rossetti L. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. Journal of Biological Chemistry.1996; 271:9871-9874
    [27]Ribaux PG, Iynedjian PB. Analysis of the role of protein kinase B (cAKT) in insulin-dependent induction of glucokinase and sterol regulatory element-binding protein 1 (SREBP1) mRNAs in hepatocytes. Biochemical Journal.2003; 376: 697-705
    [28]Iynedjian PB. Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signalling in primary hepatocytes. Biochemical Journal. 2005; 386:113-118
    [29]Iynedjian P. Molecular Physiology of Mammalian Glucokinase. Cellular and Molecular Life Sciences.2009; 66:27-42
    [30]Manning BD, Cantley LC. AKT/PKB signaling:Navigating downstream. Cell.2007; 129:1261-1274
    [31]Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends in Endocrinology and Metabolism.2002; 13:444-451
    [32]Krook A, Kawano Y, Song XM, et al. Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucose transport in skeletal muscle from diabetic Goto-Kakizaki rats. Diabetes.1997; 46:2110-2114
    [33]Krook A, Roth RA, Jiang XJ, Zierath JR, Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes.1998; 47:1281-1286
    [34]沈卫峰,宁光.糖尿病与心血管疾病:上海科技教育出版社,2006.
    [35]Hotamisligil GS, Shargill NS, Spiegelman BM. ADIPOSE EXPRESSION OF TUMOR-NECROSIS-FACTOR-ALPHA-DIRECT ROLE IN OBESITY-LINKED INSULIN RESISTANCE. Science.1993; 259:87-91
    [36]Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. TUMOR-NECROSIS-FACTOR-ALPHA INHIBITS SIGNALING FROM THE INSULIN-RECEPTOR. Proceedings of the National Academy of Sciences of the United States of America.1994; 91:4854-4858
    [37]Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. REDUCED TYROSINE KINASE-ACTIVITY OF THE INSULIN-RECEPTOR IN OBESITY-DIABETES-CENTRAL ROLE OF TUMOR-NECROSIS-FACTOR-ALPHA. Journal of Clinical Investigation.1994; 94:1543-1549
    [38]Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes.2002; 51:3391-3399
    [39]Klover PJ, Zimmers TA, Koniaris LG, Mooney RA. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes.2003; 52: 2784-2789
    [40]Klover P.I, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology.2005; 146:3417-3427
    [41]Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacological Reports.2009; 61:595-603
    [42]Wullaert A, van Loo G, Heyninck K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-kappa B:Effects on liver homeostasis and beyond. Endocrine Reviews.2007; 28:365-386
    [43]Yuan M. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk beta. Science.2002; 295:277-277
    [1]Koji Nakajima, Keishi Yamauchi etc. Selective Attenuation of Metabolic Branch of Insulin Receptor Down-signaling by High Glucose in a Hepatoma Cell Line, HepG2 Cells THE JOURNAL OF BIOLOGICAL CHEMISTRY 2000,275, 20880-20886
    [2]陈秋,夏永鹏,邱宗荫吡格列酮对胰岛素抵抗HepG2细胞模型的药理学评价中国药理学通2006;22(2):248-51
    [3]C. J. Bailey and S. L. Turner Glucosamine-induced insulin resistance in L6 muscle cells Diabetes, Obesity and Metabolism,2004;6,293-298
    [4]Liu HY, Collins QF, Xiong Y, Moukdar F, Lupo EG, Liu ZQ, Cao WH: Prolonged treatment of primary Hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. Journal of Biological Chemistry 282:14205-14212,2007
    [5]1K.L. Anil Kumar & *,1A.R. Marita Troglitazone prevents and reverses dexamethasone induced insulin resistance on glycogen synthesis in 3T3 adipocytes British Journal of Pharmacology 2000,130,351-358
    [6]Dhananjay Gupta, Shailly Varma, and Ramji L. Khandelwal* Long-Term Effects of Tumor Necrosis Factor-a Treatment on Insulin Signaling Pathway in HepG2 Cells and HepG2 Cells Overexpressing Constitutively Active Akt/PKB Journal of Cellular Biochemistry 2007,100,593-607
    [7]Victoria Rotter, Ivan Nagaev, and Ulf Smith(?) Interleukin-6 (IL-6) Induces Insulin Resistance in 3T3-L1 Adipocytes and Is, Like IL-8 and Tumor Necrosis Factor-, Overexpressed in Human Fat Cells from Insulin-resistant Subjects* THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol.2003,278(46): 45777-45784
    [8]Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997,46,3-10
    [9]张汝学,贾正平,李茂星,郭丽民,张小华体外胰岛素抵抗细胞模型的建立及在药物筛选中的应用中国药理学通报2008;24(7):971-976
    [10]许曼音糖尿病学上海科学技术出版社142-142
    [11]沈卫峰 光糖尿病与心血管疾病基础和临床上海科技教育出版社21-22
    [12]Senn JJ, Klover PJ, Nowak IA, Mooney RA Interleukin-6 Induces Cellular Insulin Resistance in Hepatocytes. Diabetes 2002,51(12):3391-3399
    [13]Victoria Rotter, Ivan Nagaev and Ulf Smith Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. THE JOURNAL OF BIOLOGICAL CHEMISTRY 2003,278(46):45777-45784
    [14]Jean-Philippe Bastard1, Mustapha Maachi1, Claire Lagathu1, Min Ji Kim1, Martine Caron1,Hubert Vidal2, Jacqueline Capeau1, Bruno Feve3 Recent advances in the relationship between obesity, inflammation, and insulin resistance Eur. Cytokine Netw 2006,(7):4-12
    [15]Kriegler M, Perez C, DeFay K, Albert I, Lu S:A novel form of TNF/ cachectin is a cell surface cytotoxic transmembrane protein:Ramifications for the complex physiology of TNF. Cell 1988 53(1):45-53
    [16]Pascal Peraldi and Bruce Spiegelman TNF-α and insulin resistance: Summary and future prospects Molecular and Cellular Biochemistry 1998,182:169-175
    [17]M. T. Audrey Nguyen(?), Hiroaki Satoh(?), Svetlana Favelyukis(?), Jennie L. Babendure(?), Takeshi Imamura(?),Juan I. Sbodio(?), Jonathan Zalevsky§, Bassil I. Dahiyat§, Nai-Wen Chi(?), and Jerrold M. Olefsky(?)1 JNK and Tumor Necrosis Factor-aMediate Free Fatty Acid-induced Insulin Resistance in 3T3-L1 Adipocytes THE JOURNAL OF BIOLOGICAL CHEMISTRY 2005,280(42): 35361-35371
    [18]Jacqueline M. Stephens(?), Jongsoon Lee,Paul F. Pilch§ Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem.1997,272(2):971-976
    [19]Susan-Beatrice Csehi, Sabine Mathieu, Ulrike Seifert, Arne Lange, Margit Zweyer, Anton Wernig and Dieter Adam Tumor necrosis factor (TNF) interferes with insulin signaling through the p55 TNF receptor death domain. Biochem Biophys Res Commun.2005,329(1):397-405.
    [20]M. T. Audrey Nguyen etc. JNK and Tumor Necrosis Factor-a Mediate Free Fatty Acid-induced Insulin Resistance in 3T3-L1 Adipocytes THE JOURNAL OF BIOLOGICAL CHEMISTRY 2005,280(42),35361-35371
    [21]Seiji Nakamura, Toshinari Takamura, Naoto Matsuzawa-Nagata, Hiroaki Takayama, Hirofumi Misu,Hiroyo Noda, Satoko Nabemoto, Seiichiro Kurita, Tsuguhito Ota, Hitoshi Ando, Ken-ichi Miyamoto,and Shuichi Kaneko Palmitate Induces Insulin Resistance in H4IIEC3 Hepatocytes through Reactive Oxygen Species Produced by Mitochondria J Biol Chem.2009,284(22):14809-14818.
    [22]Mark W. Ruddock*, Andrew Stein, Edwin Landaker, Jun Park, Robert C. Cooksey, Donald McClain and Mary-Elizabeth Patti Mark W. Ruddock*, Andrew Stein, Edwin Landaker,Jun Park, Robert C. Cooksey, Donald McClain and Mary-Elizabeth Patti Saturated Fatty Acids Inhibit Hepatic Insulin Action by Modulating Insulin Receptor Expression and Post-receptor Signalling J Biochem.2008,144(5):599-607
    [23]孙超,侯增淼,姜东凤 胰岛素和瘦素抵抗的重要调控因子:细胞因子信号转导抑制因子-3 生命的化学2008,8(1):63-65
    [24]Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, Shang Y, Furlanetto RW:Suppressors of cytokine signaling-1 and-6 associate with and inhibit the insulin receptor-A potential mechanism for cytokine-mediated insulin resistance. Journal of Biological Chemistry 2001,276:25889-25893
    [25]Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, Hotamisligil GS, Van Obberghen E:SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. Journal of Biological Chemistry 2001,276:47944-47949
    [26]Rui LY, Yuan MS, Frantz D, Shoelson S, White MF:SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and 1RS2. Journal of Biological Chemistry 2002,277:42394-42398
    [27]Nguyen MTA, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM:JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. Journal of Biological Chemistry 2005,280:35361-35371
    [28]Hacker H, Karin M:Regulation and function of IKK and IKK-related kinases. Sci STKE 2006:re13
    [29]Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S., Inzucchi, S.,Shoelson, S. E., and Shulman, G. I. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Investig.2002,109:1321-1326
    [30]Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z. W., Karin, M., and Shoelson, S. E. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001,293:1673-1677
    [31]Sandeep Sinha, German Perdomo, Nicholas F. Brown, and Robert M. O'Doherty Fatty Acid-induced Insulin Resistance in L6 Myotubes Is Prevented by Inhibition of Activation and Nuclear Localization of Nuclear Factor κB THE JOURNAL OF BIOLOGICAL CHEMISTRY 2004,279:41294-41301
    [32]Collins QF, Xiong Y, Lupo EG, Liu HY, Cao WH:p38 mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. Journal of Biological Chemistry 2006,281:24336-24344
    [33]Sampson SR, Cooper DR:Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Molecular Genetics and Metabolism 2006,89:32-47
    [34]Dey D, Basu D, Roy SS, Bandyopadhyay A, Bhattacharya S:Involvement of novel PKC isoforms in FFA induced defects in insulin signaling. Molecular and Cellular Endocrinology 2006,246:60-64,
    [35]Sarah M. Turpin,Graeme. Lancaster, Ian Darby, Mark A. Febbraio, and Matthew J. Watt Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance Am J Physiol Endocrinol Metab 2006,291:1341-1350
    [36]Akira, S., and Sato, S. Toll-like receptors and their signaling mechanisms. Scand. J. Infect. Dis.2003,35:555-562
    [37]Fan, H., and Cook, J. A. Molecular mechanisms of endotoxin tolerance. J. Endotoxin Res.2004,10:71-84
    [38]Netea, M. G., van der Graaf, C., Van der Meer, J. W., and Kullberg, B. JJ. Toll-like receptors and the host defense against microbial pathogens:bringing specificity to the innate-immune system. Leukocyte Biol..2004,75:749-755
    [39]Lin, Y, Lee, H., Berg, A. H., Lisanti, M. P., Shapiro, L., and Scherer, P. E. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J. Biol. Chem.2000,275, 24255-24263
    [40]Joseph J. Senn Toll-like Receptor-2 Is Essential for the Development of Palmitate-induced Insulin Resistance in Myotubes THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL.2006,281,(37):26865-26875