锯缘青蟹N-乙酰-β-D-氨基葡萄糖苷酶的抑制动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以锯缘青蟹(Scytta Serrata)内脏为材料,通过含0.2 mol/LNaCl的0.01 mol/LTris-HCl(pH 7.5)缓冲液抽提、硫酸铵分级沉淀、Sephadex G-100凝胶柱过滤层析、DE-32离子交换柱层析,分离提纯NAGase(NAGase),获得比活力为7,990U/mg的电泳单一纯NAGase制剂(NAGase,EC 3.2.1.52)。本文以此酶制剂为对象展开以下几方面的研究。
     研究过氧化氢对锯缘青蟹NAGase活力的影响及抑制动力学。其结果表明,过氧化氢对该酶有显著的抑制作用,随着过氧化氢浓度的增高,酶活力呈指数下降,测出可使酶活力下降50%的过氧化氢浓度(抑制半衰期,IC_(50))为0.115 mol/L。低浓度过氧化氢对该酶的抑制过程显示为可逆效应。采用底物反应动力学方法研究过氧化氢对该酶的抑制作用动力学、建立动力学模型,测定游离酶(E)和酶-底物络合物(ES)的微观抑制速度常数k_(+0)和K′_(+0)并加以比较。实验结果(k_(+0)>k′_(+0))表明底物对酶被过氧化氢的抑制作用有一定的保护作用。过氧化氢可能是通过氧化酶活性中心功能基团而导致酶活性的丧失。该研究对了解NAGase的功能基团性质及酶的催化作用机理提供重要的实验基础。
     研究脲对酶的效应,结果表明,脲对锯缘青蟹N-乙酰-β-D-氨基葡萄糖苷酶(NAGase)有失活作用,随着脲浓度的增大,酶活力呈指数下降,测定导致酶活力下降50%的脲浓度(失活半衰期,IC_(50))为0.63 mol/L。酶在脲溶液中的失活过程显示为可逆失活。用底物反应动力学方法考察酶在脲溶液中的失活动力学,测定游离酶(E)和酶-底物络合物(ES)在脲溶液中失活的微观速度常数,并比较游离酶(E)和酶-底物络合物(ES)的正向反应的微观失活速度常数,表明底物存在对酶被脲的失活作用有一定的保护作用。正向的失活速度常数k_(+0)和k′_(+0)随着脲浓度的增大而增大,而逆向的速度常数k_(-0)随着脲浓度的增大而减小。表明随着脲浓度的增大,酶变性越来越快,而活力恢复越来越难。
     研究十六种氨基酸对酶的效应,结果表明:非极性氨基酸中Gly、Ala、leu、Phe对酶活力几乎没有作用,Val、Ile对酶略有激活,Val浓度为20 mmol/L使酶活力提高7.5%,Ile浓度为40 mmol/L,使酶活力提高10.5%。Pro,Met对酶活力略有抑制作用,当Pro浓度为40 mmol/L时分别使酶活力下降15.2%,当Met浓度为40 mmol/L时分别使酶活力下降9.8%.极性氨基酸Asn、Cys、Ser、Thr对酶的活力没有影响。带负电荷的酸性氨基酸Asp和Glu对酶有抑制作用,当Asp浓度为40 mmol/L时,使酶活力下降38%;当Glu浓度为40 mmol/L时,可使酶活力下降25%。带正电荷的碱性氨基酸His略有抑制,Lys和Arg抑制作用较强,研究Lys和Arg对酶催化pNP-NAG水解反应的抑制机理,并测定其抑制常数,结果表明Lys和Arg的对酶的抑制均表现为可逆效应,抑制类型均为反竞争性抑制,其Kis分别为5.29 mmol/L和3.76 mmol/L。
     研究对-氯汞苯甲酸(pCMB)对NAGase的化学修饰作用,巯基是酶活性的必须基团。氯化汞对锯缘青蟹NAGase抑制动力学研究,结果证明:当汞离子浓度小于1.0 lamol/L时,汞离子对剩余酶活力的作用表现为可逆反应,汞离子对酶的抑制机理属于竟争性抑制类型。通过汞离子对酶抑制作用的动力学模型的建立,测定游离酶(E)和酶.底物络合物(ES)在氯化汞溶液中失活的微观速度常数,研究汞离子浓度与表观速度常数之间的关系,结果证明:仅一分子氯化汞结合到酶分子活性中心就可导致酶活性的丧失。实验结果提示半胱氨酸残基位于酶活性中心,是酶分子的必须基团。
N-Acetyl-β-D-glucosaminidase(NAGase,EC 3.2.1.52) was purified from viscera of green crab(Scylla serrata),by extraction with 0.01 mol/L Tris-HCl buffer(pH 7.5) containing 0.2 mol/L NaCl and ammonium sulfate fractionation,then chromatography on Sephadex G-100 and DEAE-cellulose(DE-32).The purified enzyme was a single band on polyacrylamide gel electrophoresis(PAGE) and SDS-PAGE with specific activity to be 7,990 U/mg.This purfied enzyme will be used in the following studies.
     The effect of hydrogen peroxide on N-acetyl-β-D-glucosarninidase(NAGase) from green crab was investigated.The results showed that hydrogen peroxide(H_2O_2) can inhibit the enzyme activity obviously.The value of IC_(50),the inhibitor's concentration leading to 50%activity lost,was estimated to be 0.115 mol/L.The inhibition of the enzyme by hydrogen peroxide is a reversible reaction with remaining enzyme activity.The inhibitory kinetics of the enzyme by hydrogen peroxide was studied using the Tsou's method of the substrate reaction,and the microscopic rate constants of inhibition for the free enzyme and the enzyme-substrate complex were determined.Comparison of these rate constants was made,the result showed that k_(+0) is larger than k'_(+0),indicating a marked protective effect of the substrate on the inhibition reaction of this enzyme with hydrogen peroxide.
     The effect of urea on the enzyme was investigated.The results showed that urea can inactivate the enzyme activity,and the IC_(50)(inactivator's concentration leading to 50%activity lost) was estimated to be 0.63 mol/L.The inactivation belongs to be reversible reaction with remaining enzyme activity.The kinetics of inactivation of the enzyme in urea solutions has been studied using the Tsou's method of the substrate reaction,and the microscopic rate constants of inactivation for the free enzyme and the enzyme-substrate complex were determined.Comparison of these rate constants showed that k_(+0) is larger than k'_(+0),indicating a marked protective effect of the substrate on the inactivation reaction.Moreover,the value of forward inactivation rate constant of the enzyme(k_(+0) and k'_(+0)) increased with increasing urea concentration while the value of reverse reaction(k_(-0)) decreased.The results suggested the inactivation of enzyme in higher concentration of urea would be more difficultly reversible.
     NAGase,catalyzes the cleavage of N-acetylglucosamine polymers,is widely distributed in animal tissues and in microorganisms.The effects of some amino acids on the enzyme activity were studied.The results showed that Gly,Ala,Asn,Cys,Ser, Thr,Leu and Phe had no effects;Val and Ile activated lightly;Pro,Met had inhibitory effects lightly,while Asp,Glu,Lys,Arg and His had inhibitory effects on the enzyme activity.The inhibitory effects of Lys and Arg were reversible with remaining enzyme activity and the inhibitory mechanisms were tested to be un-competitive types and their K_(IS) were determined to be 5.29 and 3.76 mmol/L,respectively.
     Chemistry modification of p-chloromercuribenzoate(PCMB) on the enzyme has been studied.The results show that sulfhydryl group is essential for the activity of the enzyme.Inhibitory kinetics of the enzyme by mercuric chloride(HgCl_2) has been studied using the kinetic method of the substrate reaction during inhibitor of enzyme. The kinetic results show that the inhibition of the enzyme by mercuric ion(Hg~(2+)) at lower than 1.0μmol/L is a reversible reaction with residual activity and the inhibition belongs to be competitive.The inhibition kinetics model of Hg~(2+) on the enzyme was set up and the microscopic rate constants were determined and the data obtained were well fitted with the model.The relationship between the apparent rate constants and Hg~(2+) concentration has been studied and the result shows that only one molecule of HgCl_2 binds to the enzyme molecule to lead the enzyme lose its activity.The above results suggest that the cysteine residue is essential for activity and is situated at the active site of the enzyme.
引文
[1]李少菁,王桂忠.锯缘青蟹繁殖生物学及人工育苗和养成技术的研究[J].厦门大学学报(自然科学版)[J].2001,40(2):552-565.
    [2]韩保平.菲律宾的锯缘青蟹养殖[J].水产科技情报,1999,26(2):78-80.
    [3]Trino A T,Millamena C.Keenan Commercial evaluation of monosex pond culture of the mud crab Scylla species at three stocking densities in the Philippines[J].Aquaculture,1999,174(15):109-118.
    [4]王美珍,孙建苗.青蟹产业化经营的对策与思考[J].中国渔业经济,2001,(2):33-34.
    [5]吴东儒.糖类的生物化学[M].北京:高等教育出版社,1987.
    [6]蓝海燕,陈振华.几丁质酶及其研究进展[J].生命科学研究,1998,2(3):163-176.
    [7]Austin P R.Chitin,Chitoson and Related Enzymes[M].New York:Academic Press,1984.
    [8]Keyhani N O,Roseman S.The Chitin Catabolic Cascade in the Marine Bacterium Vibrio furnissii[J].J.Biol.Chem.,1996,271(52):33425 - 33432.
    [9]Davis B.Chitin,chitosan an relaed enzymes.Orlando:Academic Press,1984:161-179.
    [10]杨承勇,周世宁.几丁质酶的研究及应用前景[J].仲恺农业技术学院学报,1999,12(1):64-69.
    [11]Lcakc J R,Read D J.Chitin as a nitrogen source for mycorrhizal fungi[J]Mycological.Res.1990,94:993-995.
    [12]蒋红彬,张瀛.几丁质酶的研究概况[J].山东科学,2000,13(4):41-45.
    [13]Lee J E,Falk R E,Ng W G,et al.β-glucuronidase deficiency:A heterogeneous mucopolysaccharidosis.Am J Dis Child,1985,139(1):57.
    [14]Nakao H,Takamori K,Ogawa H.Interaction of tumor and surrounding tissue of mice inoculated B16 melanoma variants in terms of enzyme activity.Int J Biochem,1999,21(7):739.
    [15]Sulowicz W,Lisiewicez J,Kuzniewski M,et al.Activity of sone lysosomal enzymes in peripheral blood lymphocytes of patients with lung cancer:An cyt ochemical study.Folia Haematol,1985,112(r):63.
    [16]Rogers K,Robers GM,Williams CT.Gastric juice inzymes:An aid diagnosis of gastric cancer? Lancet,1981,1:1124.
    [17]卿笃信,凌奇荷,林礼茂.β-葡萄糖醛酸苷酶测定对胃癌诊断价值的研究.湖南医科大学学报,1993,18(1):91.
    [18]于爱平,谢萍,王文章,等.胃癌诊断一项新方法-吐液β-葡萄糖醛酸苷酶活性测定.实用肿瘤杂志,1992,7(4):208.
    [19]戴冬秋,陈峻青,任常山,等β-葡萄糖醛酸苷酶对胃癌诊断及分型意义的研究.中 华肿瘤杂志,1992,7(4):316.
    [20]Lerouge P,Roche P,Faucher C,et al.Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated giucosamine oligosaccharide signal[J].Nature (London),1990,344:781-784.
    [21]Schlumbaum A,Manch F,Vogeli V,et al.Plant chitinases are potent inhibitors of fungal growth[J].Nature(London),1986,324:365-367.
    [22]Lorito M,Hayes C K,Di Pietro A,et al.Purification,characterization and synergistic activity of a glucan 1,3-βglucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum[J].Phytopathology,1994,84:398-405.
    [23]Scigelova M,Crout D H G.Microbial β-N-acetylhexosaminidases and their biotechnological applications[J].Enzyme and Microbial Teclmology,1999,25:3-14.
    [24]Yem D W,Wu H C.Purification and properties of β-N-acetyl- giucosaminidase from Escherichia coli[J].J.Bacteriol.,1976,125:324-331.
    [25]Funke B,Spindler K D.Characterization of chitinase from the Brine Shrimp Artemia[J].Comp.Biochem.Physiol.,1989,94B(4):691 -695.
    [26]Kono M,Matsui T,Shimizu C,et al.Purifications and some properties of chitinase from the liver of a Prawn,Penaeus japonicus[J].Agric.Biol.Chem.,1990,54(8):2145-2147.
    [27]Koga D,Shimazaki C,Yamamoto K,et al.β-N-Acetyl-D-giucosaminidases from integument of the silkworm,Bombyx mori:comparative biochemistry with the pupal alimentary canal enzyme[J].Agdc.Biol.Chem.,1987,51(6):1679-1681.
    [28]冯健超,袁华均,潘厚炎,胡腊英,肖应艺.水牛唾液NAGase的变化规律与排卵[J].华中农业大学学报,1997,16(4):357-360.
    [29]Well L,Vosseller K,Hart G W.Glycosylation of nucleo-cytoplasmic protein:Signal transduction and O-GlcNAc[J].Science,2001,291:2376-2378.
    [30]李家立,马兰.N-乙酰氨基葡萄糖化在信号转导中的作用[J].生理科学进展,2002,33(4):373-375.
    [31]Aronson N N,Kuranda M J.Lysosomal degradation of asparagines linked glycoproteins [J].FASEB J.1989,3:2615-2622.
    [32]Conzelmann E,Sandhoff K.Glycolipid and glycoprotein degradation[J].Adv.Enzymol.,1987,60:189- 216.
    [33]Dennis L,Y Dong,Gerald W H.Purification and Characterization of an O-GlcNAc Selective N-Acetyl-β-D-glucosaminidase from Rat Spleen Cytosol[J].J.Biological Chemistry,1994,269(30):19321-19330.
    [34]侯琳,O hno Kousaku.GM2神经节苷脂沉积症发病的分子机理研究[J].中华医学遗传杂志,2003,20,(2):103-106
    [35]Keyhani N O,Wang L X,Lee Y C.The chitin catabolic cascade in the marine bacterium Vibrio furnissii - Characterization of an N,N'-diacotyl-chitobiose transport system[J]. Journal of Biological Chemistry,1996,271(52):33409-33413.
    [36]Boiler J,Gehri A,Mauch F.Chitinase in bean leaves:induction by ethylene,purification,properties,and possible function[J].Planta,1983,157:22-31.
    [37]Werries E,Nene I,Buddecke E.Evidence for different glycohydrolase and glycosyltransferase activities of beta-N-acetylglucosaminidases A and B[J].Hoppe Seylers Z Physiol Chem,1975,356(6):953-960.
    [38]Kondo K,Matsumoto M,Kojo A,Mauda R.Purification and characterization of chitinase from pupae Pieris rapae crucivora(Boiduval)[J].Journal of Chemical and Engineering of Japan,2002,35:241-246.
    [39]Usui T,Hayashi Y,Nanjo F,Sakai K,Ishido Y.Transglycosylation reaction of a chitinase purified from Nocardia orientalis[J].Biochim Biophys Acta,1987,923(8):302-309.
    [40]Takegawa K,Fujita K,Fan J Q,Tabuchi M,Tanaka N,Kondo A,Iwamoto H,Kate I,Lee Y C,Iwahara S.Enzymatic synthesis of a neoglycoconjugate by transglycosylation with Arthrobacter endo-β-N-acetylglucosaminidase:A substrate for colorimetric detection of endo-β-N-acetylglucosaminidase activity[J].Analytical Biochemistry,1998,257(2):218-223.
    [41]Iqbal M P,Kazmi K A,Jafri H R,et al.N-Acetyl- beta-D-glucosaminidase in acute myocardial infarction[J].Experimental & Molecular Medicine,2003,35(4):275 - 278.
    [42]Slawson Chad,Pidala Joseph,Potter Robert.Increased N-acetyl- beta-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins[J].Biochimica et Biophysica Acta,2001,1537(2):147 - 157.
    [43]黄幼蓉,苗德林.β-N-乙酰葡萄糖胺酶组织化学改良法在胃癌诊断中的应用[J].重庆医科大学学报,1994,19(2):146-147.
    [44]徐九虹,俞纯山.尿液中NAGase的检测及临床应用[J].国外医学临床生物化学与检验学分册,1995,16(3):115-116
    [45]夏中兴等.射出的人精子的糖苷水解酶活性[J].生物化学与生物物理学报,1988,21:227
    [46]Lahoz R,Reyes F,Perez-Leblic M I.Lytic enzymes in the autolysis in of filamentous fungi[J].Mycopatologia,1976,60:45-49.
    [47]Gooday G W,Zhu W,Y,O Donnell R W.What are the roles of chitinases in the growing fungus.FEMS Microbiol Lett,1992,100:387-392.
    [48]Molloy C,Shepherd M G,Sullivan P.Differential extraction of N-acetyl-β-D-glucosaminidase and trehalasc from the cell envelope of Candida albicans [J].1995,19:178-185.
    [49]Pera L M,Baigorl M D,Callieri D.Influence of environmental conditions on hyphal morphology in pellets of Asapergillus niger:Role of N-acetyl-β-D-glucosaminidase[J].Current Microbiology,1999,39:65-67.
    [50]Scigelova M,Crout D H G.Microbial N-acetyl-β-D-glucosaminidase and their biotechnological application[J].Enzyme and Microbial Technology 1999,25:3-14.
    [51]Yem D W,Wu H C.Purification and properties of N-acetyl-β-D- glucosaminidase from Escherichia coli[J].J.Bacteriol.1976,125:324-331..
    [52]Dimond R L,Loomis W F.Vegetative isozyme of N-acetyl-β-D- glucosaminidase in Dictyostelium discoideum[J].J.Biol.Chem.1974,249:5628-5632.
    [53]Moudni B E,Rodier M H,Jacquemin J L.Purification and characterization of N-acetyl-β-D-glucosaminidase from Trypanosoma cruzi[J].Experimental Parasitology,1996,83:167-173.
    [54]Cifali A P,Dias Filho B P.Purification and partial characterization of N-acetyl-β-D-glucosaminidase from Tritrichomonas foetus[J].Parasitol.Res.1999,85:256-262.
    [55]Ramot O,Viterbo A,Friesem D,et al.Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine[J].Curr.Genet,2004,45:205-213.
    [56]Amutha B,Khirc J M,Islam Khan M.Characterization of a novel exo-N-acetyl-L-D-glucosaminidase from the thermotolerant Bacillus sp.NCIM 5120[J].Biochimica et Biophysica Acta.,1998,1425:300-310.
    [57]Scigelova M,Crout D H G.Microbial β-N-acetylhexosaminidases and their biotechnological applications[J].Enzyme and Microbial Technology,1999,25:3-14.
    [58]Ulhoa C J,Sankieevicz D,Limeira P S,Peberdy J F.Effect of tunicamycin on N-acetyl-β-D-glucosaminidase produced by Trichoderma harzianum[J].Biochimica et Biophysica Acta.2001,1528:39-42.
    [59]Yem D W,WU H C.Purification and properties of β-N-acetylhexosaminidases from Escherichia coli[J].L Bacteriol.1976,125:324-331.
    [60]Dimond R L,Loomis W F.Vegetative isozyme of N-acetyl-β-D-glucosaminidase in Dictyostelium discoideum.[J]J.Biol.Chem.1974,249:5628-5632.
    [61]Powning R F,Van K A.The chitinase produced by several diffent plant seeds[J].Comp.Biochem.Physiol.1965,14:127-133.
    [62]Moulin A,Giordani R.Stimulation of lipase and N-acetyl-β-D-glucosaminidase activities Escherichia characias latex by contact of free fatty acids with roots[J].Phytochemistry,1995,39(5):985-987.
    [63]Brunner K,Peterbauer C K,Mach R L,et al.The Nagl N-acetyl-β-D- glucosaminidase of Trichoderma atrovirideis essential for chitinase induction by chitin and of major relevance to biocontrol[J].Curr.Genet,2003,43:289-295.
    [64]Danulat E,Kausch H.Chitinase in fish[J].Fish Biol,1984(24):125-133.
    [65]Zen K C,Choi H K,Krishnamachary N,Muthkrishnan S,Kramer K J.Cloning,expression,and hormonal regulation of an insect N-acetyl -β-glucosaminidase gene [J].Insect Biochem.Molec.Biol.1996,26(5):435-444.
    [66]Peters G,Saborowski R,Mentlein R,Buchholz F.Isoforms of an N-acetyl-β-glucosaminidase from the Antarctic krill,Euphausia superba:purification and antibody production[J].Polar.Biol.1989,9:311-317.
    [67]Spindler-Barth M,Van Wormhoudt A,Spindler K D.Chitinolytic enzyme activities in the integument and midgut-gland of the shrimp Palaemon serratus during the moulting cycle[J].Mar.Biol.1990,106:49-52.
    [68]Kono M,Wilder M N,Matsui T,Furukawa K,Koga D,Aida K.Chitinolytic enzyme activities in the hepatopancreas,tail fan and hemolymph of Kuruma pramn Penaeus japonicus during molt cycle[J].Fisheries Sci.1995,61:727-728.
    [69]Peters G,Saborowski R,Buchholz F,Mentlein R.Two distinct from of the chitin-degrading enzyme N-acetyl-β-glucosaminidase in the Antarctic krill:specialists in digestion and moult[J].Marine Biology,1999,134:697-703.
    [70]Zou E,Fingerman M.Chitobiase activity in the epidermis and hepatopancreas of the fiddler crab Uca pugilator during the molting cycle[J].Marine Biology,1999,133(1):97-101.
    [71]Zou E,Fingerman M.Effects of exposure to diethyl phthalate,4-(tert)- octylphenol,and 2,4,5-trichlorobipenyl on activity of chitobiase in the epidermis and hepatopancreas of the fiddler crab,Uca pugilator[J].Comp.Biochem.Physiol.1999,122(C):115-120.
    [72]Zou E,Fingerman M.Effects of estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab,Uca pugilator[J].Ecotoxicol.Environ.Safety,1999,42:185-190.
    [73]Zou E,Fingerman M.Patterns of N-acetyl-β-glucosaminidase isoenzymes in the epidermis and hepatopancreas and induction of N-acetyl-β-glucosaminidase activity by 20-hydroxyecdysone in the fiddler crab,Uca pugilator[J].Comp.Biochem.Physiol.1999,124(C):345-349.
    [74]Robbins P W,Trimble R B,Wirth D F,et al.Primary structure of the Streptomyces enzyme Endo-β-N-acetylglucosaminidase H[J].1984,259(12):7577-7583.
    [75]Joshi S,Kozlowski M,Richens S,et al.Chitinase and chitobiase production during fermentation of genetically improved Serratia liquefaciens[J].Enzyme Mierob.Technol.,1989,11:289-296.
    [76]Henrissat B,Bairoch A.New families in the classification of glycosylhydrolases based on amino acid sequence similarities[J].Biochern,1993;293:781- 788.
    [77]Tews I,Vincentelli R,Vorgias C E.N-acetylglueosaminidase(ehitobiase) from Serratia marcescens:gene sequence,and protein production and purification in Escherichia coli[J].Gene,1996,170:63-67.
    [78]Prag G,Papanikolau Y,Tavlas G,et al.Structures of ehitobiase mutants complexed with the substrate Di-N-acetyl-D-glucosaminie:the catalytic role of the conserved acidic pair,Aspartate 539 and Glutamate 540[J].Mol.Biol.,2000,300:611-617.
    [79]Lonhienne T,Zoidakis J,Vorgias C E,et al.Modular structure,local flexibility and cold-activity of a novel chitobiase from a Psychrophilic Antarctic Bacterium[J].Mol.Biol.,2001,310:291-297.
    [80]Fujita K,Takegawa K,Tryptophan-216 is essential for the transglycosylation activity of Endo-β-N-acetylglucosaminidase A[J].Biochemical and Biophysical Research Communications,2001,283:680-686.
    [81]Peterbauer C K,Brunner K,Mach R L,et al.Identification of the N-acetyl-D-glucosamine-inducible element in the promoter of the Trichoderma atroviride naglgene encoding N-acetyl-glucosaminidase[J].Mol.Genet Genomics,2002,267:162-170.
    [82]Zen K C,Choi H K,Krishnamachary N,Muthukrishnan S,Kramer K J.Cloning,expression,and hormonal regulation of an insect β-N-acetylglucosaminidase gene[J].Insect Biochem.Molec.Biol.,1996,26(5):435-444.
    [83]Zou E,Fingerrnan M.Chitobiase activity in the epidermis and hepatopancreas of the fiddler crab Uca pugilator during the molting cycle[J].Marine Biology,1999,133(1):97 - 101.
    [84]Zou E,Fingerman M.Effects of exposure to diethyl phthalate,4-(tert)-octylphenol,and 2,4,5-trichlorobipenyl on activity of chitobiase in the epidermis and hepatopancreas of the fiddler crab,Uca pugilator[J].Comp.Biochem.Physiol.,1999,122(C):115-120.
    [85]Zou E,Fingennan M.Effects of estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab,Uca pugilator[J].Ecotoxicol.Environ.Safety,1999,42:185-190.
    [86]徐海圣,舒妙安,邵庆均,等.锯缘青蟹常见病害及其防治技术[J],水产科学.2000.19(5):24-26.
    [87]Zou E,Fingerman M.Patterns of N-acetyl-β-glucosaminidase isoenzymes in the epidermis and hepatopancreas and induction of N-acetyl-β-glucosaminidase activity by 20-hydroxyecdysone in the fiddler crab,Uca pugilator[J].Comp.Biochem.Physiol.,1999,124(C):345-349.
    [88]王艺磊,长子平,李少菁.锯青蟹精子发育的超微结构[J].动物学报,43(3):249-254.
    [89][89]李富花,李少菁。锯青蟹肝胰腺的观察研究。海洋与湖沼,1998,29(1):29-34.
    [90]成永旭,李少菁,王桂忠等。锯缘青蟹胚胎发育脂类变化的研究。海洋学报,2000,22(增):433-442.
    [91]Li Shao jing,Wang Gui zhong,Zeng Chao chu.Investigations into breeding biology of mud crab,Scylla serrata.Proc.PACON,1993.93
    [92]Li shao jing,Zeng Chao chu,Huang Jiannan,et al.Bacterial production in the water and sediments of mud crab,Scylla serrata,farming ponds:Its ecological implication.PACON,1997.141.
    [93]陈清西,庄总来,陈祥仁.锯缘青蟹碱性磷酸酶分离纯化及部分性质的研究[J].海洋与 湖沼,1998,29(4):362-367.
    [94]陈清西,郑文竹,赵红.锯缘青蟹碱性磷酸酶活性功能基团研究[J].厦门大学学报(自然科学版),1997,36(1):126-130.
    [95]郑文竹,黄璜,刘晓丹,等.乙醇对锯缘青蟹碱性磷酸酶活力与构象的影响[J].台湾海峡.2000,19(4):489-493.
    [96]周兴旺,史渊源,刘晓丹,等.钒酸盐和脲对锯缘青蟹碱性磷酸酶的抑制作用[J].厦门大学学报(自然科学版),2000,39(3):375-380.
    [97]Chen Q X,Zheng W Z,Lin J Y,Cai Z T,Zhou H M.Kinetics of inhibition of green crab (Scylla serrata) alkaline phosphatase by vanadate[J].Biochemistry(Moscow),2000,65(9):1105-1110,1305-1310.
    [98]Chen Q X,Zheng W Z,Lin J Y,Shi Y,Xie W Z,Zhou H M.Effect of metal ions on the activity of green crab(Scylla serrata) alkaline phosphatase[J].International Journal of Biochemistry & Cell Biology,2000,32(8):879-885.
    [99]Chen Q X,Zhou H M.Inhibitors of green crab(Scylla serrata) alkaline phosphatase[J].Journal of Enzyme Inhibition,1999,14(3):251-257.
    [100]Chen Q X,Zhou H M.An essential Lysine residue of green crab(Scylla serrata) alkaline phosphatase[J].Biochemistry and Molecular Biology International,1998,46(2):225-231.
    [101]Chen Q X,Zhao H,Zhang W,Yang H H,Zhuang Z L,Zhang T,Zhou H M.Unfolding and Inactivation of green crab(Scylla serrata) alkaline phosphatase during thermal denaturation[J].Tsinghua Science and Technology,1998,3(3):1059-1062.
    [102]Chen Q X,Lu H Y,Zhu C M,Lin H N,Zhou H M.The effect of N-thiophosphoryl amino acids on the activity of green crab(Scylla serrata) alkaline phosphatase[J].Biochemestry and Molecular Biology International,1998,45(3):465-473.
    [103]Chen Q X,Wei Z,Yan S X,Zhang T,Zhou H M.Kinetics of the Thermal Inactivation of Alkaline Phosphatase from Green Crab(Scylla serrata)[J].Journal of Enzyme Inhibition,1997,12(2):123-131.
    [104]Chen Q X,Zhang W,Wang H R,Zhou H M.Kinetics of Inactivation of Green Crab(Scylla serrata) Alkaline Phosphatase During Removal of Zinc Ions by Ethylenediaminetetraacetic Acid Disodium[J].International Journal of Biological Macromolecules,1996,19(4):257-261.
    [105]Chen Q X,Zhang W,Zheng W Z,Zhang Z,Yan S X,Zhang T,Zhou H M.Comparison of Inactivation and Unfolding of Green Crab ALPase During Denaturation by Gu.HCl[J]Journal of Protein Chemistry,1996,15(4):359-365.
    [106]Chen Q X,Zhang W,Zheng W Z,Zhao H,Yan S X,Wang H R,Zhou H M.Kinetics of Inhibition of Alkaline Phosphatase from Green Crab(Scylla serrata) by N-Bromosuccinimide[J].Journal of Protein Chemistry,1996,15(4):345-350.
    [107]Park Y D,Yang Y,Chen Q X,Lin H N,Liu Q,Zhou H M.Kinetics of complexing activation by the magnesium ion on green crab(Scylla serrata) alkaline phosphatase[J].Biochemistry and Cell Biology,2001,79(6):765-772.
    [108]Xie W Z,Wang H R,Chen Q.X,Zhou H M.Kinetics of Inhibition of Green Crab Alkaline Phopsphatase by Phenylglyoxal[J].Biochemistry and Molecular Biology International,1996,40(5):981-991.
    [109]Zhang R Q,Chen Q X,Xiao R,Xie L P,Zang G X,Zhou H M.Inhibition kinetics of green crab(Scylla serrata) alkaline phosphatase by zinc ions:A new type of complexing inhibition[J].Biochimica et Biophysica Acta-Ptotein structure and molecular Enzymology.2001,1545(1-2):6-12.
    [110]Zhang R Q,Chert Q X,Zheng,W Z,Lin J Y,Zhuang Z L,Zhou H M.Inhibition kinetics of green crab(Scylla serrata) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol[J].International Journal of Biochemistry & Cell Biology,2000,32(8):865-872.
    [111]Zheng W Z,Chen Q X,Zhao H,Zhang Z,Zhang W,Zhou H M.An Essential Tryptophan Residue of Green Crab ALPase[J].Biochemistry and Molecular Biology International,1997,41(5):951-959.
    [112]Zhou X W,Zhuang Z L,Chen Q X.Kinetics of inhibition of green crab(Scylla serrata)alkaline phosphatase by sodium(2,2'-bipyridine) oxodiperoxovanadate[J].Journal of Protein Chemistry,1999,18(7):735-740.
    [113]Zhou X W,Chen Q X,Chen Z,He Z Q,Zhou H M.Effects of oxodiperoxvanadate(Ⅴ)complexes on the activity of green crab(Scylla serrata) alkaline phosphatase[J].Biochemistry(Moscow),2000,65(12):1424-1428.
    [114]Zhu C M,Chen Q X,Lin H N,Yang Y,Park Y D,Zhang R Q,Zhou H M.Kinetics of inhibition of green crab(Scylla serrata) alkaline phosphatase by L-cysteine[J].Journal of Protein Chemistry,1999,18(5):603-607.
    [115]李少菁,汤鸿,王桂忠.锯缘青蟹幼体消化酶活力昼夜节律的实验研究[J].厦门大学学报(自然科学版),2000,39(6):832-836.
    [116]汤鸿,李少菁,王桂忠,等.锯缘青蟹幼体消化酶活力[J].厦门大学学报(自然科学版),1995,34(1):88-92.
    [117]王桂忠,李少菁.锯缘青蟹个体发育过程中同工酶谱的比较研究[J].海洋学报(中文版),1991,13(3):412-416.
    [118]孔祥会,王桂忠,艾春香,等.锯缘青蟹不同器官组织中4种类型ATPase活性比较研究[J].厦门大学学报,2004,43(1):98-101.
    [119]Sheen S S,Wu S W.The effects of dietary lipid levels on the growth response of juvenile mud crab Scylla serrata[J].Aquaculture,1999,175(30):143-153.
    [120][120]Sheen S S.Dietary cholesterol requirement of juvenile mud crab Scylla serrata[J].Aquaculture,2000,189(2):277-285.
    [121]Mae R,Catacutan.Growth and body composition of juvenile mud crab,Scylla serrata,fed different dietary protein and lipid levels and protein to energy ratios[J].Aquaculture,2002,208(31):113-123.
    [122]Mae R,Cataeutan,Perla S,Eusebio,Teshima S.Apparent digestibility of selected feedstuffs by mud crab,Scylla serrata[J].Aquaculture,2003,216(10):253-261.
    [123]Suprayudi M A,Takeuchi T,Hamasaki K.Essential fatty acids for larval mud crab Scylla serrata:implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids[J].Aquaculture,2004,231(5):403-416.
    [124]Genodepa J,Paul C,Southgate,Zeng C.Diet particle size preference and optimal ration for mud crab,Scylla serrata,larvae fed microbound diets[J].Aquaculture,2004,230(16):493-505.
    [125]Pavasovic M,Richardson N A,Anderson A J,Mann D,Mather P B.Effect of pH,temperature and diet on digestive enzyme profiles in the mud crab,Scylla serrata[J].Aquaculture,2004,242(20):641-654.
    [126]Lowry O H,Rosebrough N J,Farr A L,et al.Protein measurement with the Folin phenol reagent[J].J.Biol.Chem.,1951,193(1):265 -275.
    [127]Zhang J P,Chen Q X,Wang Q,Xie J J.Purification and some Properties of β-N-Acetyl-D-glucosaminidase from viscera of green crab(Scylla serrata)[J].Biochemistry(Moscow),2006,71(suppl 1):55-59.
    [128]谢进金,张继平,王勤,等.锯缘青蟹N-乙酰氨基葡萄苷酶在甲醛溶液中的失活动力学研究[J].厦门大学学报(自然科学版),2006,45(1):98-101.
    [129]Chen Q X,Zhang W,Zheng W Z,et al.Kinetics of inhibition of alkaline phosphatase from green crab(Scylla serrata) by N-Bromosuccinimide[J].J Protein Chem,1996,15(4):345-350.
    [130]Chen Q X,Song K K,Wang Q,et al.Inhibitory effects of Mushroom Tyrosinase by Some Alkylbenzaldehydes[J].J Enzy Inhib Med Chem,2003,18(6):491-496.
    [131]Zhang J P,Chen Q X,Wang Q,Xie J J.Purification and some Properties of β-N-Acetyl-D-glucosaminidase from viscera of green crab(Scylla serrata)[J].Biochemistry(Moscow),2006,71(suppl 1):55-59.
    [132]Chen Q X,Song K K,Wang Q,et al.Inhibitory effects of Mushroom Tyrosinase by Some Alkylbenzaldehydes[J].J Enzy Inhib Med Chem,2003,18(6):491-496.
    [133]Chen Q X,Zhang W,Zheng W Z,et al.Kinetic of inhibition of alkaline phosphatase from green crab(Scylla serrata) by N-bromosuccinimide[J].J Protein Chem.1996,15(4):345-350.
    [134]Chen Q X,Song K K,Wang Q,et al.Inhibitory effects of mushroom tyrosinase by some alkylbenzaldehydes[J].J Enzy Irthib Med Chem,2003,18(6):491-496.
    [135]谢进金,张继平,王勤,等.锯缘青蟹N-乙酰氨基葡萄苷酶在甲醛溶液中的失活动力学研究[J].厦门大学学报(自然科学版).2006,45(1):98-101.
    [136]Xie X L,Chen Q X.Inactivation Kinetics of β-N-Acetyl-D-glucosaminidase from Prawn (Penaeus Vannamei) in the Dioxane Solution[J].Biochemistry(Moscow) 2004,69(12):1365-1371.
    [137][137]Chen Q X,Zhang W,Zheng W Z,et al.Comparison of Inactivation and Unfolding of Green Crab Alkaline Phosphatase During Denaturation by Guanidinium Chloride[J].J Protein Chem,1996,15(4):359-365.
    [138]Fishman W H.On the importance of being stereo specific[J].Clinica Chimica Acta,1989,186(2):129-135.
    [139]Hoylaerts M F,Manes T,Millan J L.Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alka-line phosphatase[J].Biochem.1992,286:23-28.
    [140]张龙翔 编.生物化学实验方法和技术[M].人民教育出版社,1983.
    [141]Xie X L,Chen Q X,Lin J C.Purification and some properties of β-N-acetyl-D -glucosaminidase from prawn(Penaeus vannamei)[J].Marine Biology,2004,146(1):143-148.
    [142]Koga D,Hoshika H,Matsushita M,Tanaka A,Ide A,Kono M.Purification and characterization of beta-N-acetylhexosaminidase from the liver of a prawn,Penaeus japonicus[J].Bioscience Biotechnology and Biochemistry,1996,60(2):194-199.
    [143]Espie P J,Ro J C.Characterization of chitobiase from Daphnia magna and its relation to chitin flux[J].Physiology Zool,1995,68:727-748.
    [144]Peters G,Saborowski R,Mentlein R,Buchholz F.Isoforms of an N-acetyl-β-D-glucosaminidase from the Antarctic krill,Euphausia superba:purification and antibody production[J].Comparative Biochemistry and Physiology,1998,120(4):743-751.
    [145]Zou E,Fingerman M.Chitobiase activity in the epidermis and hepatopancreas of the fiddler crab Uca pugilator during the molting cycle[J].Marine Biology,1999,133(1):97-101.
    [146]Xie X L,Chen Q X,Lin J C.Purification and some properties of β-N-acetyl-D -glucosaminidase from prawn(Penaeus vannamei)[J].Marine Biology,2004,146(1):143-148.
    [147]Lynn.Chitinase and Chitobiases from the American Lobster(Homarus Americanus)[J].Comparative Biochemistry and Physiology,1990,96B(4):761-766.
    [148]Keyhani N O,Roseman S.The Chitin Catabolic Cascade in the Marine Bacterium Vibrio furnissii[J].Journal of Biological Chemistry,1996,271(52):33425-33432.
    [149]Xie X L,Chen Q X,Lin J C.Purification and some properties of β-N-acetyl-D -glucosaminidase from prawn(Penaeus vannamei)[J].Marine Biology,2004,146(1):143-148.
    [150]Buchholz F,Saborowski R.Metabolic and enzymatic adaptations in northern krill,Meganyctiphanes norvegica,and Antarctic krill,Euphausia superba[J].Canadian Journal of Fisheries and Aquatic Science,2000,57(Suppl)3:115-129.
    [151]Xie X L,Gong M,Chen Q X.Inhibition Kinetics of β-N-Acetyl-D- glucosaminidase from Prawn(Penaeus vannamei) by Hydrogen Peroxide[J].J Enzy.Inhib.Med.Chem.,2006,21(1):55-60.
    [152]Mondal MS,Mitra S.J.Inorg.Biochem.1996,62:271-276.
    [153]Zaborska W,Krajewska B,Leszko M,Oleeh Z.J.Mol.Catalysis B:Enzymatic.2001,13:103-108.
    [154]Zhang R Q,Chen Q X,Xiao R,Xie L P,Zeng XG,Zhou HM.Biochimica.et Biophysica.Acta.2001,1545:6-12.
    [155]Lynn KR.Comp.Biochem.Physiol.1990,96:761-766.