脂质诱导的胰岛素抵抗对大鼠糖脂代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 建立清醒状态大鼠扩展高胰岛素—正常血糖钳夹技术,并准确评价机体在体组织对胰岛素(Ins)的敏感性和胰岛素介导的糖代谢变化。
    方法 采用3-3H标记葡萄糖作为示踪剂建立自由状态下大鼠扩展高胰岛素—正常血糖钳夹技术,并动态观察其体内糖代谢的改变及血浆游离脂肪酸(FFA)和胰岛素(Ins)浓度随时间变化的过程。
    结果 (1)大鼠在4.8mU/kg.min的Ins速率输注下,血糖稳定在正常水平而肝糖输出被抑制,胰岛素介导的机体葡萄糖利用率较基础状态显著增加,血浆游离脂肪酸(FFA)浓度显著下降。(2)该钳夹术平均血糖、葡萄糖输注率(GIR)和葡萄糖利用率(GRd)变异系数分别为2.01%,4.5%和8.56%;重复试验GIR和GRd误差范围为1.4%和1.9%。
    结论 以3-3H标记葡萄糖作为示踪剂建立的自由状态下大鼠扩展高胰岛素—正常血糖钳夹技术具有准确、可靠的优点。在外源性胰岛素—葡萄糖代谢的稳定状态下,机体对葡萄糖利用显著增加,肝糖输出被完全抑制,脂肪分解显著减少。
Objective To establish an extended hyperinsulinemic euglycemic clamp technique in conscious rats, and to evaluate the insulin sensitivity and insulin-mediated glucose metabolism in vivo.
    Methords An extended hyperinsulinemic euglycemic clamp technique with 3-3H labelled glucose as a tracer was applied in conscious rats to investigate the time course of plasma free fatty acids(FFA), insulin levels and glucose turnover during the insulin clamp.
    Results When insulin was infused at a rate of 4.8mU/kg.min,hepatic glucose production(HGP) was completely inhibited, and the concentration of FFA was remarkably decreased while insulin-mediated glucose disappearance rates (GRd) was significantly increased compared with basal values. The average coefficients of variation in blood glucose levels, glucose infusion rates(GIR)and glucose disappearance rate(GRd) were 2.01%.4.5% and 8.56% respectively. The errors of replication in GIR and GRd were 1.4% and 1.9% respectively.
    Conclusion Extended hyperinsulinemic euglycemic clamp technique with 3-3H labelled glucose as a tracer in the conscious rats were performed with good precision and credibility. During the steady-state of exogenous insulin and glucose metabolism, the insulin-mediated glucose
    
    
    disappearance rate(GRd) was significantly increased while the hepatic glucose production(HGP) was completely inhibited,and the lipolysis was remakablely decreased.
引文
1. Scheen AJ,Paquot N, letiexhe MR, et al. How to explore insulin sensitivity in man. Ann Endocrinol (paris),1995,56(5):523-530
    2. Kolterman OG, Gray RS, Griffin J, et al. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J clin Invest,1981,68:957-969
    3. 贾伟平,陈蕾,项坤三,等。扩展高胰岛素—正葡萄糖钳夹技术的建立。中华内分泌代谢杂志,2001,17(5):268-271
    4. Simth D, Rossotti L, Ferrannin E, et al. In vivo glucose metabolism in the awake rat: tracer and insulin clamp studies. Metabol, 1987,36(12):1167-1174
    5. 朱寿彭,张澜生,等。医用同位素示踪技术。原子能出版社,1989,108-109
    6. DeFronzo RA, Gunnarsson R, Bfokman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent(type II)diabetes mellitus. J Clin Invest, 1985,76(1):149-155
    7. Rizza RA, Mandrino LJ, Gerich JE. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J physiol, 1981,240:E630-E639
    8. DeFronzo RA, Hendler R, Simonson D. Insulin resistance in a promintent feature of insulin-dependent diabetes. Diabetes, 1982,31:795-801
    9. Hevener AL, Reichart D, Olefsky J, et al. Thiazolidinedione treatment prevents free fatty acid-induced insulin resistance in male wister rats . Diabetes, 2001,50:2316-2322
    10. Barzilai N, Rossetti L. Age-related change in body composition are associated with hepatic insulin resistance in conscions rats. Am J physiol,1996,272:E930-E935
    11. Clark PW, Jenkins AB, kragen EW, et al. Pentobarbital reduced basal liver glucose output and its insulin suppression in rats. Am J
    
    
    physiol,1990,261:E701~E707
    12. Douglas S, Luciano R, Elenterio F, et al. In vivo glucose metabolism in the wake rat: tracer and insulin clamp studies[J]. Metabolism, 1987,36(12):1167-1174