青稞全谷物及其防治代谢综合征的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青稞(Hordeum vulgare L. var. nudum hook. f.)是我国青藏高原地区对多棱裸粒大麦的统称,是我国特有的一种高蛋白、高纤维、高维生素、低脂肪、低糖的谷物资源,由于生长在高海拔地区,高寒、缺氧、强光照的极端环境导致其相比其他谷物具有明显的特殊性。蒸汽爆破技术是近年来发展迅速的一种生物质资源转换的预处理方法,以高温蒸汽渗入植物组织内部,充注可爆发的压缩汽体能,并使其在短时间爆炸释放,从而达到从分子水平上打破大分子晶格的效果,对原料的物理结构和化学组成有极大的重构作用,已被逐渐应用于天然产物研究领域。
     在全谷物食品越来越受到全球消费者关注的今天,本学位论文结合我国藏区特有的谷物资源,对青稞全谷物的加工技术、有效成分、消化特点、防治代谢综合征的作用及其机制进行系统研究,以深入挖掘青稞特殊的健康意义和保健功效,为青稞资源的高效利用提供依据、夯实基础。现将主要研究结果归纳如下:
     1.用分层碾磨制粉的方法,收集不同品种的西藏裸麦(青稞)和种植于天津的普通裸麦不同区段的试样,测定其总酚含量和总抗氧化性能。结果显示,所有的裸麦品种都呈现出总可溶性酚类物质含量从外到内依次递减的变化趋势,且不同区段试样的抗氧化能力与总酚含量呈显著的正相关(r=0.9583-0.9710);与普通裸麦相比,青稞中50%以上的酚类物质集中在外层(占颖果质量比的20%),其中最外层部位(占颖果质量比的10%)的平均总酚含量为5867μg/g flour(以没食子酸计),是普通裸麦的2倍以上。由此推测,表明高原极端环境导致了青稞麸皮中酚类物质的高度富集,青稞麸皮作为青稞加工中的副产物,在次生代谢产物开发方面更具潜力。
     2.将蒸汽爆破技术引入青稞麸皮综合利用的预处理,对影响汽爆效果的爆破压力(由蒸汽温度决定)和维压时间等工艺参数进行优化。结果表明,该技术能有效水解糖苷键,使总可溶性糖的得率提高了5倍;能有效水解酯键和醚键,使麸皮中结合态的酚类物质游离出来,总可溶性酚酸含量提高到1686.4mg/100g(以没食子酸计),是未处理对照样的9.83倍。其中,游离型阿魏酸和结合型阿魏酸的得率分别增加了59.0倍和8.45倍,游离型对香豆酸和结合型对香豆酸的得率分别增加47.6倍和7.25倍;麸皮经汽爆处理后抗氧化能力的增强与总可溶性酚酸含量的增加密切相关。本研究将蒸汽爆破技术成功引入到青稞麸皮的预处理单元中,结果出乎意料,工业化应用前景广阔。
     3.将蒸汽爆破技术进一步应用于青稞全谷物的加工,同时与传统炒制加工和挤压膨化处理的结果相比,经体外模拟消化后,测定消化液中总酚、总黄酮、总糖含量及其抗氧化能力的差异。结果表明,汽爆技术能促进酚类物质(得率提高6.4%)和黄酮(得率提高30.5%)的释放,特别是能有效促进阿魏酸的释放,其含量是是挤压膨化处理试样的2.3倍,是未处理试样的3倍以上;蒸汽爆破还可降低青稞全谷物消化液中总可溶性糖的含量,增加游离氨基酸的含量,并增强消化液的抗氧化能力。
     4.分别将汽爆处理前后的青稞全谷物和精制小麦粉加入SD大鼠的饲料配方中,同时上调饲料中脂肪和蔗糖的比例,以高脂高糖膳食诱导实验大鼠产生代谢综合征(metabolic syndrome, MS),建立MS模型大鼠,以考察青稞全谷物对大鼠代谢综合征的防护作用。结果显示,与精制小麦粉相比,青稞全粉和汽爆处理的青稞全粉均能明显改善实验大鼠的脂代谢紊乱,增强胰岛素敏感性,并减轻肝脏脂肪变性症状;此外,未经处理的青稞全粉还能有效控制SD大鼠的体重增长。
     5.为探明青稞全谷物改善大鼠代谢综合征的作用机制,本文从氧化应激(抗氧化酶和脂质代谢产物)、脂肪因子变化(TNF-α、IL-6、resistin、leptin、adiponectin)、胰岛素信号转导(GLUT4、PPAR-y)和脂肪细胞凋亡等多方面入手进行研究。证明青稞全谷物能诱导脂肪细胞凋亡,从而减少体内脂肪的堆积,以达到控制大鼠体重的效果;通过下调脂肪组织中resistin基因的表达,上调PPAR-y基因表达,同时激活PPAR-y蛋白,并促进GLUT4基因表达,从而起到对膳食诱导的大鼠代谢综合征的防护效果。
     综上所述,汽爆处理技术在青稞麸皮有效成分的释放中起到了特殊作用,青稞全谷物能有效预防膳食诱导的代谢综合征的发生,具有作为特色功能性食品开发的重要价值。
Tibetan hull-less barley(Hordeum vulgare L, var. nudum hook. f.)(THB) has been grown in the Qinghai-Tibet Plateau for thousands of years. It contains high levels of proteins, dietary fibers and vitamins, and low levels of fats and carbohydrates. Because of the extreme growing conditions-cool temperature, hypoxia and intense UV radiation Tibetan hull-less barley is unique for research. Steam explosion is a processing method extensively used for pre-treatment of structural components in plant biomass. The principle of steam explosion treatment is the use of steam hydrolysis at high temperature and pressure followed by sudden reduction of the pressure to break down the molecular structures to produce low molecular weight substance. This technology has a large potential to be applied in natural products research.
     Nowadays, whole grains are drawing a great amount of attention around the world for their many potential benefits. Thus, it is instructive to explore the local whole grains in China. The primary objective of this study was to investigate the health benefits and mechanisms of whole THB. The secondary objective was to investigate the possibilities of infusing cereal products with high contents of nutrients using steam explosion. Main conclusions are as follows,
     I) Three varieties grown in Tibet and one variety grown in plain were collected from Lhasa and Tianjin. The barleys were polished into five fractions. Total soluble phenolic content (TSPC), total antioxidant capacity (TAC) and their correlation were investigated. Results showed that TSPC decreased from the outer to the inner fractions. TSPC and TAC were highly and positively correlated (r=0.9583-0.9710).Compared to plain variety, the outer layer of THB, which accounts for20%of the whole mass ratio, has more than50%of total phenols. In the outermost layer, the THB's average TSPC is5867μg gallic acid equivalent·g flour-1, which is twice the amount in common varieties. The extreme growing conditions have influenced the distribution of phenols in the barleys. Therefore, THB bran extracts are valuable sources of bioactive components.
     2) A steam explosion pre-treatment process followed by methanol extraction has been applied for releasing and extracting phenols, as well as other effective components, from barley bran. The steam explosion treatment was performed at different temperatures and residence times. The results indicated that under optimum conditions the water soluble carbohydrates were5times that in the untreated samples. Also, compared with untreated samples, the TSPC reached1686.4gallic acid equivalents mg/100g dry weight, which was8.83fold higher. The yields of ferulic acid in its free and conjugate forms were increased by about59.0and8.45times, respectively. Meanwhile, the corresponding increases of p-coumaric acid were47.6and7.25times. Moreover, the TSPC and TAC obtained were highly positively correlated (r=0.918~0.993), which meant that the increase of TAC for the steam explosion pre-treated barley bran extracts was due, at least in part, to the increase of TSPC in the methanol soluble fraction. It can be concluded that a proper and reasonable steam explosion pre-treatment could be applied to release the bound phenolic compounds and enhance the antioxidant capacity of barley bran extracts.
     3) The effects of steam explosion on whole THB components were studied and compared with those of roasted or extrusion cooked barleys. TSPC, total flavonoids content (TFC), water soluble carbohydrates and TAC of whole THB digesta were evaluated. Significant increases in TSPC (6.4%) and in TFC (30.5%) were observed after steam explosion. The content of ferulic acid in steam exploded samples was3times and2.3times as much as that in untreated and extrusion cooked samples, respectively. Additionally, steam explosion led to the decrease of water soluble carbohydrates and increase of free amino acids.
     4) The THB pre-and post-treated with steam explosion was prepared as high fat and high sucrose experimental diets. The long-term metabolic effects of diets supplemented with whole untreated or treated THB and refined wheat flour on high-fat high-sucrose diet induced metabolic syndrome (MS) in the SD rats were studied. After15weeks, rats fed with refined wheat flour showed obvious symptoms of MS. Compared with those rats fed with refined wheat flour, rats fed with THB untreated or treated with steam explosion had ameliorated MS symptoms including reduced plasma lipid disorder, higher insulin sensitivity and less fatty liver. Moreover, untreated THB reduced body weight and adiposity in rats fed with high-fat high-sucrose diet.
     5) The underlying mechanisms of THB on MS were investigated in different aspects such as oxidative stress, adipokines secretion, signal transduction in insulin action and adipose cell apoptosis. It was revealed that THB induces adipose cell apoptosis. Treated and untreated THB both led to decreased mRNA levels of resistin in adipose cells. Furthermore, they both enhanced PPAR-y mRNA expression and activated the activity of PPAR-y to promote expression of GLUT4mRNA in adipose cells.
     In summary, steam explosion had an obvious effect on releasing active compounds from THB. In addition, THB has an advantage in product development for that intake of THB whole grains could prevent the occurrence of high-fat high-sugar diet induced MS. Due to the large amount of consumption of THB, it is of great significance to research its effects and mechanisms on health promotion.
引文
1.卢良恕,中国大麦学[M].北京:中国农业出版社.1996.
    2.臧靖巍;阚建全;陈宗道;赵国华,青稞的成分研究及其应用现状[J].中国食品添加剂2004,4,43-46.
    3.强小林;迟德钊;冯继林,青藏高原区域青稞生产与发展现状[J].西藏科技2008,3,11-17.
    4.强小林,西藏青稞研究的现状与发展[J].西南农业学报1991,4,109-114.
    5.江春艳;严冬;谭进;冯舟;于娜,青稞的研究进展及应用现状[J].西藏科技2010,2,14-16.
    6.冯继林;甲干;向明华;毛玉林,藏区青稞考察与思考[J].大麦与谷类科学2007,92,6-8.
    7.刘清斌;刘达玉,青稞酒及其生产技术[J].食品研究与开发2002,23,45-47.
    8.王鹏珍;牛忠海;张世满;许锦文,青稞原料营养成分浅析[J].酿酒科技1997,81,30-31.
    9.扎桑拉姆,浅析青棵原料主要营养成分与青稞产业的发展[J].西藏科技2006,10,6-7.
    10. Edney, M.; Tkachuk, R.; MacGregor, A., Nutrient composition of the hull-less barley cultivar, condor[J]. Journal of the Science of Food and Agriculture 1992,60,451-456.
    11. Boue, S. M.; Cleveland, T. E.; Carter-Wientjes, C.; Shih, B. Y.; Bhatnagar, D.; McLachlan, J. M.; Burow, M. E., Phytoalexin-enriched functional foods[J]. Journal of Agricultural and Food Chemistry 2009,57,2614-2622.
    12.杨志坚;章卫国,大麦葡聚糖在保健食品中的应用[J].大麦科学2000,3,8-10.
    13. Kahlon, T.; Chow, F.; Knuckles, B.; Chiu, M., Cholesterol lowering effects in hamsters of β-glucan enriched barley fraction, dehulled whole barley, rice bran, and oat bran and their combinations[J]. Cereal Chemistry 1993,70,435-440.
    14.陈建澍;潘伟槐;童微量;潘建伟;朱睦元,大麦β-葡聚糖对小鼠血脂水平的影响[J].大麦科学2002,3,23-25.
    15.Jenkins, D. J. A.; Kendall, C. W. C.; Marchie, A.; Faulkner, D. A.; Wong, J. M. W.; de Souza, R.; Emam, A.; Parker, T. L.; Vidgen, E.; Lapsley, K. G., Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein[J], JAMA:the Journal of the American Medical Association 2003,290,502-510.
    16. Naumann, E.; VaN Rees, A. B.; Onning, G.; Oste, R.; Wydra, M.; Mensink, R. P., β-Glucan i ncorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations[J]. The American Journal of Clinical Nutrition 2006,83,601-605.
    17. Braaten, J.; Scott, F.; Wood, P.; Riedel, K.; Wolynetz, M.; Brule, D.; Collins, M., High β-Glucan Oat Bran and Oat Gum Reduce Postprandial Blood Glucose and Insulin in Subjects With and Without Type 2 Diabetes[J]. Diabetic Medicine 2009,11,312-318.
    18. Yokoyama, W. H.; Hudson, C. A.; Knuckles, B. E.; Chiu, M. C. M.; Sayre, R. N.; Turnlund, J. R.; Schneeman, B. O., Effect of barley β-glucan in durum wheat pasta on human glycemic response[J]. Cereal Chemistry 1997,74,293-296.
    19. Bourdon, I.; Yokoyama, W.; Davis, P.; Hudson, C.; Backus, R.; Richter, D.; Knuckles, B.; Schneeman, B. O., Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with β-glucan[J]. The American Journal of Clinical Nutrition 1999,69,55-63.
    20. Bays, H.; Frestedt, J.; Bell, M.; Williams, C.; Kolberg, L.; Schmelzer, W.; Anderson, J. W., Reduced viscosity Barley b-Glucan versus placebo: a randomized controlled trial of the effects on insulin sensitivity for individuals at risk for diabetes mellitus[J]. Nutrition Metabolism 2011,8,58-67.
    21. Choi, J. S.; Kim, H.; Jung, M. H.; Hong, S.; Song, J., Consumption of barley β-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet[J]. Molecular Nutrition & Food Research 2010,54,1004-1013.
    22. Bohn, J. A.; BeMiller, J. N., (1→ 3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships[J]. Carbohydrate Polymers 1995,28,3-14.
    23. Brown, G. D.; Gordon, S., Immune recognition of fungal β-glucans[J]. Cellular microbiology 2005,7, 471-479.
    24. Kubala, L.; Ruzickova, J.; Nickova, K.; Sandula, J.; Ciz, M.; Lojek, A., The effect of (1→ 3)-β-D-glucans, carboxymethylglucan and schizophyllan on human leukocytes in vitro[J]. Carbohydrate Research 2003,338,2835-2840.
    25. Kuo, Y. C.; Huang, Y. L.; Chen, C. C.; Lin, Y. S.; Chuang, K. A.; Tsai, W. J., Cell cycle progression and cytokine gene expression of human peripheral blood mononuclear cells modulated by Agaricus blazei [J]. Journal of Laboratory and Clinical Medicine 2002,140,176-187.
    26. Shin, M. S.; Lee, S.; Lee, K. Y.; Lee, H. G., Structural and biological characterization of aminated-derivatized oat β-glucan[J]. Journal of Agricultural and Food Chemistry 2005,53, 5554-5558.
    27.尹源明;何国庆;郑晓冬;王友永;杜雄江,大麦中活性多糖提取的研究[J].中国粮油学报2002,17,43-45.
    28. Carpita, N. C., Structure and biogenesis of the cell walls of grasses[J]. Annual Review of Plant Biology 1996,47,445-476.
    29. Zhang, G.; Junmei, W.; Jinxin, C., Analysis of β-glucan content in barley cultivars from different locations of China[J]. Food Chemistry 2002,79,251-254.
    30.洛桑旦达;强小林,青稞特有营养成份分析与开发利用现状调查研究报告[J].西藏科技2001,8,55-64.
    31.汪军妹;张国平;陈锦新;丁守仁,大麦β-葡聚糖含量的品种和环境效应[J].作物学报2000,26,969-971.
    32.李胤;陆健,阿拉伯木聚糖研究进展[J].酿酒2002,29,59-61.
    33. Izydorczyk, M.; Dexter, J., Barley β-glucans and arabinoxylans:Molecular structure, physicochemical properties, and uses in food products-a Review[J]. Food Research International 2008,41,850-868.
    34. Philippe, S.; Barron, C.; Robert, P.; Devaux, M. F.; Saulnier, L.; Guillon, F., Characterization using Raman microspectroscopy of arabinoxylans in the walls of different cell types during the development of wheat endosperm[J]. Journal of Agricultural and Food Chemistry 2006,54,5113-5119.
    35. Canh, T.; Verstegen, M.; Aarnink, A.; Schrama, J., Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs[J]. Journal of Animal Science 1997,75,700-706.
    36. Lee, H.; Yun, J.; Wang, K. In Physicochemical and biological characterization of arabinoxylan isolated from rice bran by extrusion and enzyme treatment in combination,2002 Annual Meeting and Food Expo-Anaheim,2002; Loma Liada Bublisners:California: 2002.
    37.刘秀珍;曹丽;彭代银;董炤,小麦阿拉伯木聚糖结构性质与生理功能研究进展[J].安徽医药2010,14,629-631.
    38. Lu, Z.; Walker, K.; Muir, J. G.; O'Dea, K., Arabinoxylan fibre improves metabolic control in people with Type Ⅱ diabetes[J]. European journal of clinical nutrition 2004,58,621-628.
    39. Sosulski, F.; Krygier, K.; Hogge, L., Free, esterified, and insoluble-bound phenolic acids.3. Composition of phenolic acids in cereal and potato flours[J]. Journal of Agricultural and Food Chemistry 1982,30,337-340.
    40. Adorn, K. K.; Liu, R. H., Antioxidant activity of grains[J]. Journal of Agricultural and Food Chemistry 2002,50,6182-6187.
    41. Korycinska, M.; Czelna, K.; Jaromin, A.; Kozubek, A., Antioxidant activity of rye bran alkylresorcinols and extracts from whole-grain cereal products[J]. Food Chemistry 2009,116,1013-1018.
    42. Ross, A. B.; Shepherd, M. J.; Schupphaus, M.; Sinclair, V.; Alfaro, B.; Kamal-Eldin, A.; Aman, P., Alkylresorcinols in cereals and cereal products[J], Journal of Agricultural and Food Chemistry 2003, 51,4111-4118.
    43.Landberg, R.; Kamal-Eldin, A.; Andersson, R.; Aman, P., Alkylresorcinol content and homologue composition in durum wheat (Triticum durum) kernels and pasta products[J]. Journal of Agricultural and Food Chemistry 2006,54,3012-3014.
    44.钱俊伟;蒋思萍;苏文涛;苏东海;皮宁宁;谢玥;高平,青稞麸皮油脂肪酸成分分析及其对高血脂症大鼠脂质代谢的影响[J].四川动物2009,28,739-742.
    45. Qian, J.; Jiang, S.; Su, W.; Gao, P., Characteristics of Oil from Hulless Barley (Hordeum vulgare L.) Bran from Tibet[J]. Journal of the American Oil Chemists'Society 2009,86,1175-1179.
    46. Chang, N. W.; Huang, P. C., Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations[J]. Lipids 1998,33,481-487.
    47.盛漪;华伟;谷文英,植物甾醇生理功能及其研究进展[J].西部粮油科技2003,28,32-35.
    48. Chandra Dutta, P.; Appelqvist, L. A., Saturated Sterols (Stanols) in Unhydrogenated and Hydrogenated Edible Vegetable Oils and in Cereal Lipids [J]. Journal of the Science of Food and Agriculture 1999,71, 383-391.
    49.韩军花;冯妹元;王国栋;杨月欣,常见谷类,豆类食物中植物甾醇含量分析[J].营养学报2006,28,375-378.
    50.韩军花;杨月欣;冯妹元;王国栋,中国常见植物食物中植物甾醇的含量和居民摄入量初估[J].卫生研究2007,36,301-305.
    51. Lee, Y. M.; Haastert, B.; Scherbaum, W.; Hauner, H., A phytosterol-enriched spread improves the lipid profile of subjects with type 2 diabetes mellitus[J]. European journal of nutrition 2003,42,111-117.
    52. Demonty, I.; Ras, R. T.; van der Knaap, H. C. M.; Duchateau, G. S.; Meijer, L.; Zock, P. L.; Geleijnse, J. M.; Trautwein, E. A., Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake[J]. The Journal of Nutrition 2009,139,271-284.
    53.Assmann, G.; Cullen, P.; Kannenberg, F.; Schulte, H., Relationship between phytosterol levels and components of the metabolic syndrome in the PROCAM study [J]. European Journal of Cardiovascular Prevention & Rehabilitation 2007,14,208-214.
    54. Marquart, L.; Wiemer, K. L.; Jones, J. M.; Jacob, B., Whole grain health claims in the USA and other efforts to increase whole-grain consumption[J]. Proceedings of the Nutrition Society 2003,62,151-160.
    55.谭斌;谭洪卓;刘明;田晓红;李爱科;林家永,全谷物食品的国内外发展现状与趋势[J].中国食物与营养2009,9,4-7.
    56. Hu, F. B., Plant-based foods and prevention of cardiovascular disease:an overview[J]. The American Journal of Clinical Nutrition 2003,78,544S-551S.
    57. Liu, S.; Stampfer, M. J.; Hu, F. B.; Giovannucci, E.; Rimm, E.; Manson, J. A. E.; Hennekens, C. H.; Willett, W. C., Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study [J]. The American Journal of Clinical Nutrition 1999,70,412-419.
    58. Behall, K. M.; Scholfield, D. J.; Hallfrisch, J., Whole-grain diets reduce blood pressure in mildly hypercholesterolemic men and women [J]. Journal of the American Dietetic Association 2006,106, 1445-1449.
    59. Hallfrisch, J.; Scholfield, D. J.; Behall, K. M., Blood pressure reduced by whole grain diet containing barley or whole wheat and brown rice in moderately hypercholesterolemic men[J]. Nutrition Research 2003,23,1631-1642.
    60. O'CONNOR, P. J.; CHERNEY, L. M., Do whole-grain oat cereals reduce the need for antihypertensive medications and improve blood pressure control?[J]. The Journal of Family Practice 2002,51,353.
    61. Mclntosh, G. H.; Whyte, J.; McArthur, R.; Nestel, P. J., Barley and wheat foods: influence on plasma cholesterol concentrations in hypercholesterolemic men[J]. The American Journal of Clinical Nutrition 1991,53,1205-1209.
    62. Li, J.; Kaneko, T.; Qin, L. Q.; Wang, J.; Wang, Y., Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women[J]. Nutrition 2003,19,926-929.
    63. Meyer, K. A.; Kushi, L. H.; Jacobs Jr, D. R.; Slavin, J.; Sellers, T. A.; Folsom, A. R., Carbohydrates, dietary fiber, and incident type 2 diabetes in older women[J]. The American Journal of Clinical Nutrition 2000,71,921-930.
    64. Fung, T. T.; Hu, F. B.; Pereira, M. A.; Liu, S.; Stampfer, M. J.; Colditz, G. A.; Willett, W. C., Whole-grain intake and the risk of type 2 diabetes: a prospective study in men[J]. The American Journal of Clinical Nutrition 2002,76,535-540.
    65. Pereira, M. A.; Jacobs Jr, D. R.; Pins, J. J.; Raatz, S. K.; Gross, M. D.; Slavin, J. L.; Seaquist, E. R., Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults[J]. The American Journal of Clinical Nutrition 2002,75,848-855.
    66. Liese, A. D.; Roach, A. K.; Sparks, K. C.; Marquart, L.; D'Agostino Jr, R. B.; Mayer-Davis, E. J., Whole-grain intake and insulin sensitivity:the Insulin Resistance Atherosclerosis Study[J]. The American Journal of Clinical Nutrition 2003,78,965-971.
    67. Rosen, L. A.; Ostman, E. M.; Bjorck, I. M., Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties.2[J]. Journal of Agricultural and Food Chemistry 2011,59,12149-54.
    68. Rosen, L. A.; Ostman, E. M.; Shewry, P. R.; Ward, J. L.; Andersson, A. A.; Piironen, V.; Lampi, A. M.; Rakszegi, M.; Bedo, Z.; Bjorck, I. M., Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties.1[J]. Journal of Agricultural and Food Chemistry 2011,59,12139-48.
    69. Levi, F.; Pasche, C.; Lucchini, F.; Chatenoud, L.; Jacobs, D. R., Jr.; La Vecchia, C, Refined and whole grain cereals and the risk of oral, oesophageal and laryngeal cancer[J]. European Journal of Clinical Nutrition 2000,54,487-9.
    70. La Vecchia, C.; Chatenoud, L.; Negri, E.; Franceschi, S., Session:whole cereal grains, fibre and human cancer wholegrain cereals and cancer in Italy [J]. The Proceedings of the Nutrition Society 2003,62, 45-9.
    71.Larsson, S. C.; Giovannucci, E.; Bergkvist, L.; Wolk, A., Whole grain consumption and risk of colorectal cancer: a population-based cohort of 60,000 women[J]. British Journal of Cancer 2005,92, 1803-7.
    72. Saltiel, A. R.; Kahn, C. R., Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature 2001,414,799-806.
    73. Chakraborty, C., Biochemical and molecular basis of insulin resistance[J]. Current Protein and Peptide Science 2006,7,113-121.
    74.祝之明,代谢综合征病因探索与临床实践[M].北京:人民军医出版社:2005,p 177-187.
    75.董立厚;宋海峰,高胰岛素-正葡萄糖钳夹技术的研究进展[J].中国新药杂志2007,19,1561-1564.
    76. Oka, R.; Yagi, K.; Sakurai, M.; Nakamura, K.; Moriuchi, T.; Miyamoto, S.; Nohara, A.; Kawashiri, M.; Takeda, Y.; Yamagishi, M., Insulin secretion and insulin sensitivity on the oral glucose tolerance test (OGTT) in middle-aged Japanese[J]. Endocrine Journal 2011,59,55-64.
    77. Matsuda, M.; DeFronzo, R. A., Insulin sensitivity indices obtained from oral glucose tolerance esting: comparison with the euglycemic insulin clamp[J]. Diabetes Care 1999,22,1462-1470.
    78.郭玲玲.胰岛素敏感性评价方法的建立及其在药物研究中的应用.硕士学位论文,第二军医大学,2011.
    79. Haffner, S. M.; D'Agostino, R.; Mykkanen, L.; Tracy, R.; Howard, B.; Rewers, M.; Selby, J.; Savage, P. J.; Saad, M. F., Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors:the Insulin Resistance Atherosclerosis Study[J]. Diabetes Care 1999,22,562-568.
    80. Garg, M.; Dutta, M.; Mahalle, N., Study of beta-cell function (by HOMA model) in metabolic syndrome[J]. Indian Journal of Endocrinology and Metabolism 2011,15, S44-S49.
    81. Malaquias, A. C.; Bezzan, P. C.; Montenegro Jr, R.; Daneluzzi, J. C.; Ricco, R. G.; Del Ciampo, L. A.; Ferraz, I. S.; Elias Jr, J.; Martinelli, A. L. C.; Martinelli Jr, C. E., Can the insulin sensitivity index (ISI) in association with insulin-like growth factor binding protein-1 identify insulin resistance early in overweight children?[J]. Journal of Pediatric Endocrinology and Metabolism 2011,22,353-362.
    82. Wallace, T.; Matthews, D., The assessment of insulin resistance in man[J]. Diabetic Medicine 2002,19, 527-534.
    83. Katz, A.; Nambi, S. S.; Mather, K.; Baron, A. D.; Follmann, D. A.; Sullivan, G.; Quon, M. J., Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans[J]. Journal of Clinical Endocrinology & Metabolism 2000,85,2402-2410.
    84. Bhattacharya, S.; Dey, D.; Roy, S. S., Molecular mechanism of insulin resistance[J]. Journal of biosciences 2007,32,405-413.
    85. Haas, J. T.; Biddinger, S. B., Dissecting the role of insulin resistance in the metabolic syndrome[J]. Current opinion in lipidology 2009,20,206-210.
    86. Sumara, G.; Formentini, I.; Collins, S.; Sumara, I.; Windak, R.; Bodenmiller, B.; Ramracheya, R.; Caille, D.; Jiang, H.; Platt, K. A., Regulation of PKD by the MAPK p385 in insulin secretion and glucose homeostasis[J]. Cell 2009,136,235-248.
    87. Cnop, M.; Landchild, M. J.; Vidal, J.; Havel, P. J.; Knowles, N. G.; Carr, D. R.; Wang, F.; Hull, R. L. Boyko, E. J.; Retzlaff, B. M., The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations distinct metabolic effects of two fat compartments[J]. Diabetes 2002,51,1005-1015.
    88. Mattison, R.; Jensen, M., The adipocyte as an endocrine cell[J]. Current Opinion in Endocrinology, Diabetes and Obesity 2003,10,317-321.
    89. Kolaczynski, J. W.; Nyce, M. R.; Considine, R. V.; Boden, G.; Nolan, J. J.; Henry, R.; Mudaliar, S. R.; Olefsky, J.; Caro, J. F., Acute and chronic effect of insulin on leptin production in humans:studies in vivo and in vitro[J]. Diabetes 1996,45,699-701.
    90. Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R. E.; Tataranni, P. A., Hypoadiponectinemia in obesity and type 2 diabetes:close association with insulin resistance and hyperinsulinemia[J]. Journal of Clinical Endocrinology & Metabolism 2001,86,1930-1935.
    91. Okamoto, Y.; Kihara, S.; Funahashi, T.; Matsuzawa, Y.; Libby, P., Adiponectin: a key adipocytokine in metabolic syndrome[J]. Clinical Science 2006,110,267-278.
    92. Tsao, T. S.; Lodish, H. F.; Fruebis, J., ACRP30, a new hormone controlling fat and glucose metabolism[J]. European Journal of Pharmacology 2002,440,213-221.
    93. Fruebis, J.; Tsao, T. S.; Javorschi, S.; Ebbets-Reed, D.; Erickson, M. R. S.; Yen, F. T.; Bihain, B. E.; Lodish, H. F., Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J]. Proceedings of the National Academy of Sciences 2001,98,2005-2010.
    94. Hotta, K.; Funahashi, T.; Bodkin, N. L.; Ortmeyer, H. K.; Arita, Y.; Hansen, B. C.; Matsuzawa, Y., Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys[J]. Diabetes 2001,50, 1126-1133.
    95. Kubota, N.; Terauchi, Y.; Yamauchi, T.; Kubota, T.; Moroi, M.; Matsui, J.; Eto, K.; Yamashita, T.; Kamon, J.; Satoh, H., Disruption of adiponectin causes insulin resistance and neointimal formation[J]. Journal of Biological Chemistry 2002,277,25863-25866.
    96. Peraldi, P.; Spiegelman, B., TNF-a and insulin resistance: summary and future prospects[J]. Mol Cell Biochemistry 1998,182,169-175.
    97. Kern, P. A.; Ranganathan, S.; Li, C.; Wood, L.; Ranganathan, G., Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance[J]. American Journal of Physiology-Endocrinology And Metabolism 2001,280, E745-E751.
    98. Moschen, A. R.; Molnar, C.; Geiger, S.; Graziadei, I.; Ebenbichler, C. F.; Weiss, H.; Kaser, S.; Kaser, A.; Tilg, H., Anti-inflammatory effects of excessive weight loss:potent suppression of adipose interleukin 6 and tumour necrosis factor a expression[J]. Gut 2010,59,1259-1264.
    99. Hotamisligil, G., The role of TNFa and TNF receptors in obesity and insulin resistance[J]. Journal of Internal Medicine 2001,245,621-625.
    100.Uysal, K. T.; Wiesbrock, S. M.; Marino, M. W.; Hotamisligil, G. S., Protection from obesity-induced insulin resistance in mice lacking TNF-a function[J]. Nature 1997,389,610-614.
    101.Peraldi, P.; Xu, M.; Spiegelman, B. M., Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling[J]. Journal of Clinical Investigation 1997,100,1863.
    102.Bullo, M.; Garcia-Lorda, P.; Salas-Salvado, J., Plasma soluble tumor necrosis factor alpha receptors and leptin levels in normal-weight and obese women:effect of adiposity and diabetes[J]. European Journal of Endocrinology 2002,146,325-331.
    103.Rui, L.; Aguirre, V.; Kim, J. K.; Shulman, G. I.; Lee, A.; Corbould, A.; Dunaif, A.; White, M. F., Insulin/1GF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser^ 3^ 0^ 7 via distinct pathways[J]. Journal of Clinical Investigation 2001,107,181-189.
    104.Ryden, M.; Dicker, A.; van Harmelen, V.; Hauner, H.; Brunnberg, M.; Perbeck, L.; Lonnqvist, F.; Arner, P., Mapping of early signaling events in tumor necrosis factor-a-mediated lipolysis in human fat cells[J]. Journal of Biological Chemistry 2002,277,1085-1091.
    105.Ryden, M.; Arvidsson, E.; Blomqvist, L.; Perbeck, L.; Dicker, A.; Arner, P., Targets for TNF-a-induced lipolysis in human adipocytes[J]. Biochemical and Biophysical Research Communications 2004,318, 168-175.
    106.Hotamisligil, G. S.; Spiegelman, B. M., Tumor necrosis factor α:a key component of the obesity-diabetes link[J]. Diabetes 1994,43,1271-1278.
    107.Bastard, J. P.; Maachi, M.; van Nhieu, J. T.; Jardel, C.; Bruckert, E.; Grimaldi, A.; Robert, J. J.; Capeau, J.; Hainque, B., Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro[J]. Journal of Clinical Endocrinology & Metabolism 2002,87, 2084-2089.
    108.Petersen, E.; Carey, A.; Sacchetti, M.; Steinberg, G.; Macaulay, S.; Febbraio, M.; Pedersen, B., Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro[J]. American Journal of Physiology-Endocrinology And Metabolism 2005,288, E155-E162.
    109.Roytblat, L.; Rachinsky, M.; Fisher, A.; Greemberg, L.; Shapira, Y.; Douvdevani, A.; Gelman, S., Raised Interleukin-6 Levels in Obese Patients[J]. Obesity Research 2012,8,673-675.
    110.Klover, P. J.; Clementi, A. H.; Mooney, R. A., Interleukin-6 depletion selectively improves hepatic insulin action in obesity[J]. Endocrinology 2005,146,3417-3427.
    111.曾勉;贺云鹏;黄晓梅;卢桂芳;关开泮,脓毒症大鼠有核细胞过氧化物酶体增殖物激活受体γ活性与白细胞介素-6的关系[J].中国危重病急救医学2011,23,302-304.
    112.Weigert, C.; Hennige, A. M.; Lehmann, R.; Brodbeck, K.; Baumgartner, F.; Schauble, M.; Haring, H. U.; Schleicher, E. D., Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells[J]. Journal of Biological Chemistry 2006,281,7060-7067.
    113.LaPensee, C. R.; Hugo, E. R.; Ben-Jonathan, N., Insulin stimulates interleukin-6 expression and release in LS14 human adipocytes through multiple signaling pathways[J]. Endocrinology 2008,149, 5415-5422.
    114.Fasshauer, M.; Kralisch, S.; Klier, M.; Lossner, U.; Bluher, M.; Klein, J.; Paschke, R., Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes[J]. Biochemical and Biophysical Research Communications 2003,301,1045-1050.
    115.Rotter, V.; Nagaev, I.; Smith, U., Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-a, overexpressed in human fat cells from insulin-resistant subjects[J]. Journal of Biological Chemistry 2003,278,45777-45784.
    116.Vozarova, B.; Weyer, C.; Hanson, K.; Tataranni, P. A.; Bogardus, C.; Pratley, R. E., Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion[J]. Obesity Research 2012, 9,414-417.
    117.da Silva Krause, M.; Bittencourt, A.; de Bittencourt, P. I. H.; McClenaghan, N. H.; Flatt, P. R.; Murphy, C.; Newsholme, P., Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets[J]. Journal of Endocrinology 2012,214,301-311.
    118.Steppan, C. M.; Bailey, S. T.; Bhat, S.; Brown, E. J.; Banerjee, R.; Wright, C. M.; Patel, H. R.; Ahima, R. S.; Lazar, M. A., The hormone resistin links obesity to diabetes[J]. Nature 2001,409,307-312.
    119.Vernon, R.; Denis, R.; S(?)rensen, A., Signals of adiposity [J]. Domestic Animal Endocrinology 2001,21, 197-214.
    120.Zhou, L. L. Y.; Xia, T. F. S.; Chen, X. Y. Z., Resistin overexpression impaired glucose tolerance in hepatocytes[J]. European Cytokine Network 2006,17,189-195.
    121.Banerjee, R. R.; Rangwala, S. M.; Shapiro, J. S.; Rich, A. S.; Rhoades, B.; Qi, Y.; Wang, J.; Rajala, M. W.; Pocai, A.; Scherer, P. E., Regulation of fasted blood glucose by resistin[J]. Science Signalling 2004, 303,1195.
    122.Tokuyama, Y.; Osawa, H.; Ishizuka, T.; Onuma, H.; Matsui, K.; Egashira, T.; Makino, H.; Kanatsuka, A., Serum resistin level is associated with insulin sensitivity in Japanese patients with type 2 diabetes mellitus[J]. Metabolism 2007,56,693-698.
    123. Way, J. M.; Gorgun, C. Z.; Tong, Q.; Uysal, K. T.; Brown, K. K.; Harrington, W. W.; Oliver Jr, W. R.; Willson, T. M.; Kliewer, S. A.; Hotamisligil, G. S., Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor y agonists[J]. Journal of Biological Chemistry 2001,276,25651-25653.
    124.Nagaev,1.; Smith, U., Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle[J]. Biochemical and Biophysical Research Communications 2001, 285,561-564.
    125.姚晔,血清高敏C反应蛋白水平对2型糖尿病影响研究[J].中国医药指南2012,5,174-175.
    126.Stienstra, R.; van Diepen, J. A.; Tack, C. J.; Zaki, M. H.; van de Veerdonk, F. L.; Perera, D.; Neale, G. A.; Hooiveld, G. J.; Hijmans, A.; Vroegrijk, I., Inflammasome is a central player in the induction of obesity and insulin resistance[J]. Proceedings of the National Academy of Sciences 2011,108, 15324-15329.
    127.Boden, G.; She, P.; Mozzoli, M.; Cheung, P.; Gumireddy, K.; Reddy, P.; Xiang, X.; Luo, Z.; Ruderman, N., Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-KB pathway in rat liver[J]. Diabetes 2005,54,3458-3465.
    128. Lee, J. H.; Song, M. Y.; Song, E. K.; Kim, E. K.; Moon, W. S.; Han, M. K.; Park, J. W.; Kwon, K. B.; Park, B. H., Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-kB signaling pathway[J]. Diabetes 2009,58,344-351.
    129.Zhou, M. S.; Schulman, I. H.; Raij, L., Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension:role of nuclear factor kappa B activation [J]. Journal of hypertension 2010,28,527-535.
    130.Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I., Increased oxidative stress in obesity and its impact on metabolic syndrome[J]. Journal of Clinical Investigation 2004,114,1752-1761.
    131.Lu, J.; Mitra, S.; Wang, X.; Khaidakov, M.; Mehta, J. L., Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis[J]. Antioxidants & Redox Signaling 2011, 15,2301-2333.
    132. Evans, J. L.; Maddux, B. A.; Goldfine, I. D., The molecular basis for oxidative stress-induced insulin resistance[J]. Antioxidants & Redox Signaling 2005,7,1040-1052.
    133.Keyse, S. M., Protein phosphatases and the regulation of mitogen-activated protein kinase signalling[J]. Current Opinion in Cell Biology 2000,12,186-192.
    134.De Souza, C. T.; Araujo, E. P.; Stoppiglia, L. F.; Pauli, J. R.; Ropelle, E.; Rocco, S. A.; Marin, R. M.; Franchini, K. G.; Carvalheira, J. B.; Saad, M. J., Inhibition of UCP2 expression reverses diet-induced diabetes mellitus by effects on both insulin secretion and action[J]. The FASEB Journal 2007,21, 1153-1163.
    135. Yu, Z.; Zhang, B.; Yu, F.; Xu, G.; Song, A., A real explosion: The requirement of steam explosion pretreatment[J]. Bioresource Technology 2012,121,335-341.
    136.王许涛,生物纤维原料汽爆预处理技术与应用研究[J].博士学位论文,河南农业无学2008.
    137. Viola, E.; Zimbardi, F.; Cardinale, M.; Cardinale, G.; Braccio, G.; Gambacorta, E., Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants[J]. Bioresource Technology 2008,99,681-689.
    138. Li, J.; Gellerstedt, G.; Toven, K., Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals[J]. Bioresource Technology 2009,100,2556-2561.
    139. Han, G.; Deng, J.; Zhang, S.; Bicho, P.; Wu, Q., Effect of steam explosion treatment on characteristics of wheat straw[J]. Industrial Crops and Products 2010,31,28-33.
    140.刘东波;王秀然;陈珊;史晓昆,蒸汽爆破处理的玉米秸秆饲料饲用安全性的研究[J].吉林农业大学学报2003,25,657-660.
    141.王鑫,蒸汽爆破预处理技术及其对纤维乙醇生物转化的研究进展[J].林产化学与工业2010,30,119-125.
    142.原义涛;陈洪章,蒸汽爆破技术在麻黄碱提取中的应用[J].中国药科大学学报2006,36,414-416.
    143. Chen, G.; Chen, H., Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion[J]. Food Chemistry 2011,126,1934-1938.
    144. Persson, T.; Dinh, E.; Jonsson, A. S., Improvement of arabinoxylan isolation from barley husks[J]. Food and Biproducts Processing 2009,87,228-233.
    145.倪辉;蔡慧农;吴黎明;杨远帆,利用蒸汽爆破法破壁花粉的技术[J].农业工程学报2010,5,367-372.
    146. Hung, P. V.; Maeda, T.; Miyatake, K.; Morita, N., Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method[J]. Food Research International 2009,42,185-190.
    147. Butsat, S.; Siriamornpun, S., Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice[J]. Food Chemistry 2010,119,606-613.
    148. Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M., [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent[J]. Methods in Enzymology 1999,299,152-178.
    149. Brand-Williams, W.; Cuvelier, M.; Berset, C., Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology 1995,28,25-30.
    150. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine 1999,26,1231-1237.
    151. Benzie, I. F. F.; Strain, J., The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay[J]. Analytical biochemistry 1996,239,70-76.
    152. Politeo, O.; Jukic, M.; Milos, M., Chemical composition and antioxidant capacity of free volatile aglycones from basil(Ocimum basilicum L.) compared with its essential oil[J]. Food Chemistry 2007, 101,379-385.
    153. Kim, K. H.; Tsao, R.; Yang, R.; Cui, S. W., Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions[J]. Food Chemistry 2006,95,466-473.
    154. Whittle, N.; Eldridge, H.; Bartley, J.; Organ, G., Identification of the polyphenols in barley and beer by HPLC/MS and HPLC/electrochemical detection[J]. Journal of the Institute of Brewing 1999,105, 89-99.
    155. Kim, M. J.; Hyun, J. N.; Kim, J. A.; Park, J. C.; Kim, M. Y.; Kim, J. G.; Lee, S. J.; Chun, S. C.; Chung, I. M., Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm[J]. Journal of Agricultural and Food Chemistry 2007,55,4802-4809.
    156. Zupfer, J.; Churchill, K.; Rasmusson, D.; Fulcher, R., Variation in ferulic acid concentration among diverse barley cultivars measured by HPLC and microspectrophotometry[J]. Journal of Agricultural and Food Chemistry 1998,46,1350-1354.
    157. Zhao, J.; Davis, L. C.; Verpoorte, R., Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnology Advances 2005,23,283-333.
    158. Madhujith, T.; Izydorczyk, M.; Shahidi, F., Antioxidant properties of pearled barley fractions[J]. Journal of Agricultural and Food Chemistry 2006,54,3283-3289.
    159. Zancan, S.; Suglia, I.; La Rocca, N.; Ghisi, R., Effects of UV-B radiation on antioxidant parameters of iron-deficient barley plants[J]. Environmental and Experimental Botany 2008,63,71-79.
    160. Stratil, P.; Klejdus, B.; Kuban, V., Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods[J]. Journal of Agricultural and Food Chemistry 2006,54,607-616.
    161. Soong, Y. Y.; Barlow, P. J., Antioxidant activity and phenolic content of selected fruit seeds[J]. Food Chemistry 2004,88,411-417.
    162. Mongkolsilp, S.; Pongbupakit, I.; Sae-Lee, N.; Sitthithaworn, W., Radical scavenging activity and total phenolic content of medicinal plants used in primary health care[J]. SWU Journal of Pharmaceuticals Sciences 2004,9,32-35.
    163. Shahidi, F.; ChiTang, H.; Ho, C., Phenolic compounds in foods and natural health products[M]. American Chemical Society:2005.
    164. Robbins, R. J., Phenolic acids in foods: an overview of analytical methodology[J]. Journal of Agricultural and Food Chemistry 2003,51,2866-2887.
    165. Liu, R. H., Whole grain phytochemicals and health[J]. Journal of Cereal Science 2007,46,207-219.
    166. Sancho, A.; Bartolome, B.; Gomez-Cordoves, C.; Williamson, G.; Faulds, C., Release of ferulic acid from cereal residues by barley enzymatic extracts[J]. Journal of Cereal Science 2001,34,173-179.
    167. Parker, M. L.; Waldron, K. W., Texture of Chinese water chestnut: involvement of cell wall phenolics[J]. Journal of the Science of Food and Agriculture 2006,68,337-346.
    168. Shevchenko, S.; Chang, K.; Robinson, J.; Saddler, J., Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips[J]. Bioresource Technology 2000,72,207-211.
    169. Persson, T.; Ren, J. L.; Joelsson, E.; Jonsson, A. S., Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production[J]. Bioresource Technology 2009,100, 3906-3913.
    170. Ramos, L. P., The chemistry involved in the steam treatment of lignocellulosic materials[J]. Quimica Nova 2003,26,863-871.
    171. Sun, X.; Xu, F.; Sun, R.; Geng, Z.; Fowler, P.; Baird, M., Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw[J]. Carbohydrate Polymers 2005,60,15-26.
    172. Amen-Chen, C.; Pakdel, H.; Roy, C., Production of monomeric phenols by thermochemical conversion of biomass: areview[J]. Bioresource Technology 2001,79,277-299.
    173.闫军;冯连勋,蒸汽爆破技术的研究[J].现代农业科技2009,11,278-280.
    174. Lee, N. Y.; Kim, Y. K.; Choi, I.; Cho, S. K.; Hyun, J. N.; Choi, J. S.; Park, K. H.; Kim, K. J.; Lee, M. J., Biological activity of barley (Hordeum vulgare L.) and barley by-product extracts[J]. Food Science and Biotechnology 2010,19,785-791.
    175. Conde, E.; Cara, C.; Moure, A.; Ruiz, E.; Castro, E.; Dominguez, H., Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning[J]. Food Chemistry 2009,114,806-812.
    176. Kurosumi, A.; Sasaki, C.; Kumada, K.; Kobayashi, F.; Mtui, G.; Nakamura, Y., Novel extraction method of antioxidant compounds from Sasa palmata (Bean) Nakai using steam explosion[J]. Process Biochemistry 2007,42,1449-1453.
    177. Saura-Calixto, F., Dietary fiber as a carrier of dietary antioxidants: an essential physiological function[J]. Journal of Agricultural and Food Chemistry 2010,59,43-49.
    178. Renger, A.; Steinhart, H., Ferulic acid dehydrodimers as structural elements in cereal dietary fibre[J]. European Food Research and Technology 2000,211,422-428.
    179. Sun, R. C.; Sun, X.; Wang, S.; Zhu, W.; Wang, X., Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops and Products 2002,15,179-188.
    180. Rizzi, G. P.; Boekley, L. J., Observation of ether-linked phenolic products during thermal degradation of ferulic acid in the presence of alcohols[J]. Journal of Agricultural and Food Chemistry 1992,40, 1666-1670.
    181. Stadler, R. H.; Welti, D. H.; Stampfli, A. A.; Fay, L. B., Thermal decomposition of caffeic acid in model systems:identification of novel tetraoxygenated phenylindan isomers and their stability in aqueous solution[J]. Journal of Agricultural and Food Chemistry 1996,44,898-905.
    182. Robert, D.; Bardet, M.; Lapierre, C.; Gellerstedt, G., Structural changes in aspen lignin during steam explosion treatment[J]. Cellulose Chemistry and Technology 1988,22,221-230.
    183. Li, J.; Henriksson, G.; Gellerstedt, G., Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion[J]. Bioresource Technology 2007,98, 3061-3068.
    184. Saulnier, L.; Marot, C.; Elgorriaga, M.; Bonnin, E.; Thibault, J. F., Thermal and enzymatic treatments for the release of free ferulic acid from maize bran[J]. Carbohydrate Polymers 2001,45,269-275.
    185. Fiddler, W.; Parker, W. E.; Wasserman, A. E.; Doerr, R. C., Thermal decomposition of ferulic acid[J]. Journal of Agricultural and Food Chemistry 1967,15,757-761.
    186. Arrieta-Baez, D.; Dorantes-Alvarez, L.; Martinez-Torres, R.; Zepeda-Vallejo, G.; Jaramillo-Flores, M. E.; Ortiz-Moreno, A.; Aparicio-Ozores, G., Effect of thermal sterilization on ferulic, coumaric and cinnamic acids:dimerization and antioxidant activity[J]. Journal of the Science of Food and Agriculture 2012,92,2715-2720.
    187. Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R., The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition[J]. LWT-Food Science and Technology 2009,42,137-143.
    188. Zhishen, J.; Mengcheng, T.; Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals[J]. Food Chemistry 1999,64,555-559.
    189.王文平,植物样品中游离氨基酸总量测定方法的改进[J].北京农学院学报1998,13,9-13.
    190. Serpen, A.; Capuano, E.; Fogliano, V.; Gokmen, V., A new procedure to measure the antioxidant activity of insoluble food components[J]. Journal of Agricultural and Food Chemistry 2007,55, 7676-7681.
    191. Pin-Der Duh; Yen, G. C.; Yen, W. J.; Chang, L. W., Antioxidant effects of water extracts from barley (Hordeum vulgare L.) prepared under different roasting temperatures[J]. Journal of Agricultural and Food Chemistry 2001,49,1455-1463.
    192. Gorinstein, S.; Vargas, O. J. M.; Jaramillo, N. O.; Salas, I. A.; Ayala, A. L. M.; Arancibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S., The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals[J]. European Food Research and Technology 2007,225,321-328.
    193. Penarrieta, J. M.; Alvarado, J. A.; Akesson, B.; Bergenstahl, B., Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule):An Andean pseudocereal[J]. Molecular Nutrition & Food Research 2008,52,708-717.
    194. Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J. M., Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays[J]. Journal of Agricultural and Food Chemistry 2009,57,1768-1774.
    195. Carlsen, M. H.; Halvorsen, B. L.; Holte, K.; Bohn, S. K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C., The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide[J]. Nutrition Journal 2010,9,1-11.
    196. Serpen, A.; Gokmen, V.; Pellegrini, N.; Fogliano, V., Direct measurement of the total antioxidant capacity of cereal products[J]. Journal of Cereal Science 2008,48,816-820.
    197. Wilfart, A.; Jaguelin-Peyraud, Y.; Simmins, H.; Noblet, J.; van Milgen, J.; Montagne, L., Kinetics of enzymatic digestion of feeds as estimated by a stepwise in vitro method[J]. Animal Feed Science and Technology 2008,141,171-183.
    198. Perez-Vendrell, A.; Torrallardona, D., In vitro digestibility kinetics of diets containing different cereal sources[J]. Livestock Science 2010,134,47-49.
    199.Stalikas, C. D., Extraction, separation, and detection methods for phenolic acids and flavonoids[J]. Journal of Separation Science 2007,30,3268-3295.
    200.Verma, B.; Hucl, P.; Chibbar, R., Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions[J]. Food Chemistry 2009,116,947-954.
    201.Chen, H. Y.; Lin, Y. C.; Hsieh, C. L., Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs[J]. Food Chemistry 2007,104,1418-1424.
    202.Perez-Jimenez, J.; Saura-Calixto, F., Effect of solvent and certain food constituents on different antioxidant capacity assays[J]. Food Research International 2006,39,791-800.
    203.Sensoy,I.; Rosen, R. T.; Ho, C. T.; Karwe, M. V., Effect of processing on buckwheat phenolics and antioxidant activity[J]. Food Chemistry 2006,99,388-393.
    204.Sharma, P.; Gujral, H. S.; Singh, B., Antioxidant activity of barley as affected by extrusion cooking[J]. Food Chemistry 2012,131,1406-1413.
    205.Zielinski, H.; Michalska, A.; Piskula, M. K.; Kozlowska, H., Antioxidants in thermally treated buckwheat groats[J]. Molecular Nutrition & Food Research 2006,50,824-832.
    206.陈建宝.麦麸的挤压膨化加工及其对麦麸主要成分的影响研究.硕士学位论文,浙江工业大学,2008.
    207.邹弈星;潘志芬;邓光兵;赵桃;龙海;唐亚伟;余懋群,青藏高原青稞的淀粉特性[J].2008,1,74-79.
    208.郭项雨;任清;张晓,传统高温炒制工艺对裸燕麦淀粉品质的影响[J].食品科学2012,33,52-56.
    209. Fapojuwo,O.; Maga, J.; Jansen, G., Effect of extrusion cooking on in vitro protein digestibility of sorghum[J]. Journal of Food Science 2006,52,218-219.
    210. Altan, A.; McCarthy, K. L.; Maskan, M., Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products[J]. International Journal of Food Science & Technology 2009,44,1263-1271.
    211. Alberti, K. G.; Zimmet, P.; Shaw, J., The metabolic syndrome--a new worldwide definition[J]. Lancet 2005,366,1059-1062.
    212. Hansen, B. C., The metabolic syndrome X[J]. Annals of the New York Academy of Sciences 2006,892, 1-24.
    213. Lakka, H. M.; Laaksonen, D. E.; Lakka, T. A.; Niskanen, L. K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J. T., The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men[J]. JAMA: the journal of the American Medical Association 2002,288,2709-2716.
    214.Ford, E. S.; Giles, W. H.; Dietz, W. H., Prevalence of the metabolic syndrome among US adults[J]. JAMA: the Journal of the American Medical Association 2002,287,356-359.
    215.Li, Z. Y.; Xu, G. B.; Xia, T. A., Prevalence rate of metabolic syndrome and dyslipidemia in a large professional population in Beijing[J]. Atherosclerosis 2006,184,188-192.
    216.He, Y.; Jiang, B.; Wang, J.; Feng, K.; Chang, Q.; Fan, L.; Li, X.; Hu, F. B., Prevalence of the metabolic syndrome and its relation to cardiovascular disease in an elderly Chinese population[J]. Journal of the American College of Cardiology 2006,47,1588-1594.
    217.何虹;王桂清,代谢综合征的研究现状[J].实用医药杂志2009,26,69-72.
    218. Shen, B. J.; Todaro, J. F.; Niaura, R.; McCaffery, J. M.; Zhang, J.; Spiro III, A.; Ward, K. D., Are metabolic risk factors one unified syndrome? Modeling the structure of the metabolic syndrome X[J]. American Journal of Epidemiology 2003,157,701-711.
    219. Gajda, A. M.; Pellizzon, M. A.; Ricci, M. R.; Ulman, E. A., Diet-induced metabolic syndrome in rodent models[J]. Animal Lab News 2007.
    220. Rutledge, A. C.; Adeli, K., Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms[J]. Nutrition Reviews 2008,65, S13-S23.
    221. Buettner, R.; Parhofer, K.; Woenckhaus, M.; Wrede, C.; Kunz-Schughart, L.; Scholmerich, J.; Bollheimer, L., Defining high-fat-diet rat models: metabolic and molecular effects of different fat types[J]. Journal of Molecular Endocrinology 2006,36,485-501.
    222. Riccardi, G.; Rivellese, A., Dietary treatment of the metabolic syndrome—the optimal diet[J]. British Journal of Nutrition 2000,83, S143-S148.
    223.李园媛;闫娥;钟兰宇,青稞抗氧化和脂质过氧化研究[J].武警医学院学报2005,14,353-356.
    224.张延坤;张东祥;马燕;郝利民;肖忠海;聂鸿靖;谢印芝,青稞发酵液化学成分鉴别及其抗缺氧效果[J].解新军预防医学杂志2007,25,171-174.
    225.熊茉君;张红霞;陈瑾,青稞降血脂,减肥的临床观察[J].中国西部科技2005,05A,45-45.
    226.李珍梅;江彤;高继东,食用青稞对健康成人糖代谢影响研究[J].青海医学院学报2009,30, 46-50.
    227.陈学芬.粗杂粮膳食干预对血脂异常人群及脂代谢紊乱大鼠作用的研究.硕士学位论文,东南大学,2006.
    228. Allick, G.; Sprangers, F.; Weverling, G.; Ackermans, M.; Meijer, A.; Romijn, J.; Endert, E.; Bisschop, P.; Sauerwein, H., Free fatty acids increase hepatic glycogen content in obese males[J]. Metabolism 2004,53,886-893.
    229. Storlien, L.; James, D.; Burleigh, K.; Chisholm, D.; Kraegen, E., Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats[J]. American Journal of Physiology-Endocrinology And Metabolism 1986,25/, E576-E583.
    230. Guo, H.; Ling, W.; Wang, Q.; Liu, C.; Hu, Y.; Xia, M.; Feng, X.; Xia, X., Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats[J]. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 2007,62,1-6.
    231. Saltiel, A. R.; Kahn, C. R., Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature,2001,414,799-806. 232. Matsuzawa, Y., The metabolic syndrome and adipocytokines[J]. FEBS letters 2006,580,2917.
    233. Tilg, H.; Moschen, A. R., Adipocytokines: mediators linking adipose tissue, inflammation and immunity[J]. Nature Reviews Immunology 2006,6,772-783.
    234. Mishra, V.; Baines, M.; Wenstone, R.; Shenkin, A., Markers of oxidative damage, antioxidant status and clinical outcome in critically ill patients[J]. Annals of clinical biochemistry 2005,42,269-276.
    235. Droge, W., Free radicals in the physiological control of cell function[J]. Physiological Reviews 2002, 82,47-95.
    236. Demori, I.; Voci, A.; Fugassa, E.; Burlando, B., Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver[J]. Alcohol (Fayetteville, NY) 2006,40,185-191.
    237. Thomas-Moya, E.; Gomez-Perez, Y.; Fiol, M.; Gianotti, M.; Llado,I.; Proenza, A. M., Gender Related Differences in Paraoxonase 1 Response to High-fat Diet-induced Oxidative Stress[J]. Obesity 2012,16,2232-2238.
    238. Noeman, S. A.; Hamooda, H. E.; Baalash, A. A., Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats[J]. Diabetology & Metabolic Syndrome 2011,3,1-17.
    239. Yang, R. L.; Le, G.; Li, A.; Zheng, J.; Shi, Y., Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet[J]. Nutrition 2006,22,1185-1191.
    240. Suwannaphet, W.; Meeprom, A.; Yibchok-Anun, S.; Adisakwattana, S., Preventive effect of grape seed extract against high-fructose diet-induced insulin resistance and oxidative stress in rats[J]. Food and Chemical Toxicology 2010,48,1853-1857.
    241. Evans, J. L., Antioxidants: do they have a role in the treatment of insulin resistance?[J]. The Indian Journal of Medical Research 2007,125,355-372.
    242. Minamiyama, Y.; Bito, Y.; Takemura, S.; Takahashi, Y.; Kodai, S.; Mizuguchi, S.; Nishikawa, Y.; Suehiro, S.; Okada, S., Calorie Restriction Improves Cardiovascular Risk Factors via Reduction of Mitochondrial Reactive Oxygen Species in Type Ⅱ Diabetic Rats[J]. Journal of Pharmacology and Experimental Therapeutics 2006,320,535-543.
    243. Perlemuter, G.; Davit-Spraul, A.; Cosson, C.; Conti, M.; Bigorgne, A.; Paradis, V.; Corre, M. P.; Prat, L.; Kuoch, V.; Basdevant, A., Increase in liver antioxidant enzyme activities in non-alcoholic fatty liver disease[J]. Liver International 2005,25,946-953.
    244. Kakkar, R.; Kalra, J.; Mantha, S. V.; Prasad, K., Lipid peroxidation and activity of antioxidant enzymes in diabetic rats[J]. Molecular and Cellular Biochemistry 1995,151,113-119.
    245.谢飞舟;施冬云;肖玲;刘精东;刘珊林,2型糖尿病葡萄糖应激与抗氧化代偿的变化[J].复旦学报:医学版2009,36,23-23.
    246. Day, C, Pathogenesis of steatohepatitis[J]. Best Practice & Research Clinical Gastroenterology 2002, 16,663-678.
    247. Hoek, B., Non-alcoholic fatty liver disease: a brief review[J]. Scandinavian Journal of Gastroenterology 2004,39,56-59.
    248. Pittas, A. G.; Joseph, N. A.; Greenberg, A. S., Adipocytokines and insulin resistance[J]. Journal of Clinical Endocrinology & Metabolism 2004,89,447-452.
    249. Liu, R.; Mizuta, M.; Kurose, T.; Matsukura, S., Early events involved in the development of insulin resistance in Zucker fatty rat[J]. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity 2002,26,318-326.
    250. Zinman, B.; Hanley, A. J. G.; Harris, S. B.; Kwan, J.; Fantus, I. G., Circulating tumor necrosis factor-a concentrations in a native Canadian population with high rates of type 2 diabetes mellitus[J]. Journal of Clinical Endocrinology & Metabolism 1999,84,272-278.
    251. Hotamisligil, G. S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M. F.; Spiegelman, B., IRS-1-Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF--and Obesity-Induced Insulin Resistance[J]. Science-New York then Washinton-1996,665-667.
    252.Hotta, K.; Funahashi, T.; Arita, Y.; Takahashi, M.; Matsuda, M.; Okamoto, Y.; Iwahashi, H.; Kuriyama, H.; Ouchi, N.; Maeda, K., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients[J]. Arteriosclerosis, Thrombosis, and Vascular Biology 2000,20,1595-1599.
    253. Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nature Medicine 2001,7,941-946.
    254. Yang, B.; Brown, K.; Chen, L.; Carrick, K.; Clifton, L.; McNulty, J.; Winegar, D.; Strum, J.; Stimpson, S.; Pahel, G., Serum adiponectin as a biomarker for in vivo PPARgamma activation and PPARgamma agonist-induced efficacy on insulin sensitization/lipid lowering in rats[J]. BMC Pharmacology 2004,4, 23.
    255.方超;杨刚毅;李伶;唐毅;张凌;李钶;李清明;孙勤;舒朝忠,高脂诱导胰岛素抵抗大鼠糖代谢及血抵抗素,脂联素水平的变化[J].重庆医学2006,35,865-867.
    256. Wang, Y.; Lam, K.; Yau, M.; Xu, A., Post-translational modifications of adiponectin:mechanisms and functional implications[J]. Biochemical Journal 2008,409,623-633.
    257.朱晓岩;王建国;王晓旭;刘磊;邓清华;李东娜;王哲;刘国文,脂联素的最新研究进展[J].中国畜牧兽医2011,4,60-63.
    258.Kim, J.; Nunez, M.; Briggs, D. B.; Laskowski, B. L.; Chhun, J. J.; Eleid, J. K.; Quon, M. J.; Tsao, T. S., Extracellular conversion of adiponectin hexamers to trimers[J]. Bioscience Reports 2012,32,641-652.
    259.Benomar, Y.; Gertler, A.; De Lacy, P.; Crepin, D.; Hamouda, H. O.; Riffault, L.; Taouis, M., Central Resistin Overexposure Induces Insulin Resistance Through Toll-like Receptor 4[J]. Diabetes 2012, on line.
    260.Pirvulescu, M.; Manduteanu, I.; Gan, A. M.; Stan, D.; Simion, V.; Butoi, E.; Calin, M.; Simionescu, M., A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: Up-regulation of SOCS3 expression through STAT3 activation[J]. Biochemical and Biophysical Research Communications 2012,422,321-326.
    261.Skrzypski, M.; Pruszynska-Oszmalek, E.; Rucinski, M.; Szczepankiewicz, D.; Sassek, M.; Wojciechowicz, T.; Kaczmarek, P.; Kolodziejski, P. A.; Strowski, M. Z.; Malendowicz, L. K., Neuropeptide B and W regulate leptin and resistin secretion, and stimulate lipolysis in isolated rat adipocytes[J]. Regulatory Peptides 2012,776,51-56.
    262.Bostrom, E. A.; Svensson, M.; Andersson, S.; Jonsson, I. M.; Ekwall, A. K. H.; Eisler, T.; Dahlberg, L. E.; Smith, U.; Bokarewa, M. I., Resistin and insulin/insulin-like growth factor signaling in rheumatoid arthritis[J]. Arthritis & Rheumatism 2011,63,2894-2904.
    263.Moon, B.; Kwan, J. J. M.; Duddy, N.; Sweeney, G.; Begum, N., Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation[J]. American Journal of Physiology-Endocrinology And Metabolism 2003,285, E106-E115.
    264. Li, F. P.; Li, Z. Z.; Zhang, M.; Yan, L.; Fu, Z. Z., Effects of resistin on skeletal glucose metabolism[J]. Frontiers of Medicine in China 2010,4,329-335.
    265.Luo, Z.; Zhang, Y.; Li, F.; He, J.; Ding, H.; Yan, L.; Cheng, H., Resistin induces insulin resistance by both AMPK-dependent and AMPK-independent mechanisms in HepG2 cells[J]. Endocrine 2009,36, 60-69.
    266.Kieffer, T. J.; Heller, R. S.; Leech, C. A.; Holz, G. G.; Habener, J. F., Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic β-cells[J]. Diabetes 1997,46, 1087-1093.
    267.Emilsson, V.; O'Dowd, J.; Nolan, A. L.; Cawthorne, M. A., Hexosamines and Nutrient Excess Induce Leptin Production and Leptin Receptor Activation in Pancreatic Islets and Clonal(3-Cells[J]. Endocrinology 2001,142,4414-4419.
    268. Virkamaki, A.; Ueki, K.; Kahn, C. R., Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance[J]. Journal of Clinical Investigation 1999,103,931-943.
    269.张德利;刘正娟;李永昕;郎会利;蒋英姿,高脂喂养大鼠血清瘦素水平与肝脏瘦素受体mRNA的表达[J].中华内分泌代谢杂志2005,21,273-274.
    270.0 Moore-Sullivan, T. M.; Prins, J. B., Thiazolidinediones and type 2 diabetes: new drugs for an old disease[J]. Medical Journal of Australia 2002,176,381-386.
    271.Islam, S.; Nagasaka, R.; Ohara, K.; Hosoya, T.; Ozaki, H.; Ushio, H.; Hori, M., Biological abilities of rice bran-derived antioxidant phytochemicals for medical therapy[J]. Current Topics in Medicinal Chemistry 2011,11,1847-1853.
    272.Huang, T. H. W.; Peng, G.; Kota, B. P.; Li, G. Q.; Yamahara, J.; Roufogalis, B. D.; Li, Y., Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-y and identification of an active component[J]. Toxicology and applied pharmacology 2005,207,160-169.
    273.Li, H.; Ruan, X. Z.; Powis, S. H.; Fernando, R.; Mon, W. Y.; Wheeler, D. C.; Moorhead, J. F.; Varghese, Z., EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells:Evidence for a PPAR-γ-dependent mechanism [J]. Kidney International 2005,67,867-874.
    274.Zhang, Y.; Huang, C., Targeting adipocyte apoptosis: a novel strategy for obesity therapy[J]. Biochemical and Biophysical Research Communications 2011.
    275.Kim, H. K.; Nelson-Dooley, C.; Della-Fera, M. A.; Yang, J. Y.; Zhang, W.; Duan, J.; Hartzell, D. L.; Hamrick, M. W.; Baile, C. A., Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice[J]. The Journal of Nutrition 2006,136, 409-414.
    276.Yang, J. Y.; Della-Fera, M. A.; Rayalam, S.; Ambati, S.; Hartzell, D. L.; Park, H. J.; Baile, C. A., Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin[J]. Life Sciences 2008,82,1032-1039.
    277.Monteiro, R.; Assuncao, M.; Andrade, J. P.; Neves, D.; Calhau, C.; Azevedo, I., Chronic green tea consumption decreases body mass, induces aromatase expression, and changes proliferation and apoptosis in adult male rat adipose tissue[J]. The Journal of Nutrition 2008,138,2156-2163.
    278.Hsu, C. L.; Yen, G. C., Phenolic compounds:evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms[J]. Molecular Nutrition & Food Research 2008,52, 53-61.
    279.Briscini, L.; Tonello, C.; Dioni, L.; Carruba, M. O.; Nisoli, E., Bcl-2 and Bax are involved in the sympathetic protection of brown adipocytes from obesity-linked apoptosis[J]. FEBS Letters 1998,431, 80-84.