骨髓基质细胞用于牙周组织工程的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙周治疗的最终目标是牙周组织的完全再生和形成牙周新附着,因牙周病而丧失的牙周组织,其修复与重建的难度很大,传统的牙周治疗和引导性组织再生技术虽取得一定的临床效果,但总的看来,尚不能达到牙周组织完全再生的目的。组织工程技术为牙周病的治疗带来了新的希望。组织工程学研究的主要内容包括种子细胞的来源、生物载体支架的选择以及组织工程化组织的构建等三个方面。种子细胞的研究是牙周组织工程的重要内容。自体牙周膜细胞(PDLCs)可作为牙周组织工程较为理想的种子细胞,但必须拔除一定量的自体牙才能获得,临床应用受到很大限制,不易开展。骨髓基质细胞(MSCs)具有与PDLCs相似的多向分化潜能,较PDLCs来源丰富、取材简单、对机体的损伤小的优势。本研究体外分离培养了犬MSCs,并与支架材料复合修复犬人工牙周组织缺损,通过组织学观察、免疫组化及示踪方法评价MSCs对牙周组织再生的作用。初步探讨了MSCs作为牙周组织工程种子细胞的可行性,并为牙周病的治疗提供新的思路和途径。
     方法:穿刺抽吸犬髂骨骨髓,进行体外培养,采用细胞形态学观察、生长曲线测定、碱性磷酸酶(ALP)染色、钙染色等方法观察MSCs的生物学特性;以自体MSCs复合乌贼骨转化羟基磷灰石材料(CBHA)修复犬人工牙周组织缺损,通过组织学观察、免疫组化方法评价MSCs对牙周组织再生的作用;
    
     第四军医大学硕士学位论文
    采用示踪实验观察MSCs在新生牙周组织的分布。
     结果:犬MSCs可以在体外适宜条件下培养,经诱导有成
    骨特性;MSCs复合CBHA可促进牙周组织再生;MSCs分布
    在新生牙槽骨、新生结缔组织及新生牙骨质中。
     结论:MSCs来源丰富、取材方便、损伤小、可参与牙周
    组织修复,有可能成为牙周组织工程的种子细胞。
The ultimate aim of periodontal treatment is periodontal regeneration or forming new attachment apparatus which is one of the hotspot of periodontology. Tissue engineering has been introduced into the field of periodontology, which contribute a new vista to periodontal regeneration. One of the important parts of tissue engineering is finding proper seeded cells. Autogenous periodontal ligament cells (PDLCs) is expected to be the ideal seeded cells. However, there are also some disadvantages for PDLCs to be seeded cells, for example , extraction is necessary to obtain PDLCs, which is difficult to carry out in clinic. Marrow stromal cell (MSCs) has potential of multiple differentiation like PDLCs. Being seeded cells of periodontal tissue engineering MSCs has some advantages including abundant source, easy to obtain, less injury to body compared with PDLCs. In this study, to evaluate the effects of MSCs in periodontal regeneration, MSCs of dogs were cultured in vitro and were implanted to artificial furcation d
    efects combined with cuttlebone-transformed-hydroxyapatite (CBHA). The feasibility of MSCs as seeded cells of periodontal tissue engineering was discussed.
    
    
    
    This study may provide a new method of periodontal regeneration.
    Method: MSCs of dogs obtained from dogs' iliac crest were cultured. During the culture, the growth and biological characteristic of MSCs were observed by cell morphological survey, cell growth curve, alkaline phosphatase(ALP) stain and Von Kossa stain. MSCs were placed into artificial furcation defects combined with CBHA. Immunohistochemical stain and histological observation were carried to evaluate the effects of MSCs in periodontal regeneration. The distributing of MSCs in regenerate tissue was observed by cell labeling.
    Result: MSCs of dogs obtained from dogs' iliac crest could be cultured in vitro under certain condition and express osteoblastic characteristic after being cultured in induced culture media. Periodontal regeneration was promoted by MSCs combined with CBHA. MSCs were distributing in regenerate tissue including alveolar bone, cementum, periodontal ligament.
    Conclusion: MSCs can be seeded cells of periodontal tissue engineering.
引文
1. Cochran DL, Wozney JM. Biological mediators for periodontal regeneration. Periodontol 2000, 1999; 19(2):40-58
    2. Sherman PR, Hutchens LH Jr, Jewson LG. The effectiveness of subgingival scaling and root planing. Ⅱ. Clinical responses related to residual calculus. J Periodontol, 1990;61 (1): 9-15
    3. Egelberg J. Regeneration and repair of periodontal tissues. J Periodont Res,1987;22(3):233-42
    4. Marks SC Jr, Mehta NR. Lack of effect of citric acid treatment of root surfaces on the formation of new connective tissue. J Clin Periodontol, 1986; 13(2): 109-116
    5. Laurell L, Gottlow J, Zybutz M, Persson R. Treatment of intrabony defects by different surgical procedures. A literature review. J Periodontol, 1998;69(3):303-313
    6. Moskow BS, Karsh F, Stein SD. Histological assessment of autogenous bone graft. A case report and critical eveluation. J Periodontol, 1979; 50(6):291-300
    7. Mellonig JT. Freeze-dried bone allografts in periodontal reconstructive surgery. J Dent Clin North Am, 1991;35(3):505-20
    8. Carraro JJ. Current regenerative periodontal therapy. J Int Dent, 1988;38(3):170-6
    9. Becker W, Caffesse RG, SMith BA, et al. Class Ⅱ furcations treated by guided tissue regeneration in humans: case reports. J Periodontol, 1990;61 (8):510-4
    10. Teparat T, Solt CW, Claman LJ, Beck FM, et al. Clinical comparison of bioabsorbable barriers with non-resorbable barriers in guided
    
    tissue regeneration in the treatment of human intrabony defects. J Periodontol, 1998;69(6):632-41
    11.朱国强,吴织芬.牙周引导组织再生治疗Ⅱ~Ⅲ度根分叉区病变的临床研究.第四军医大学硕士学位论文,2001;18-37
    12. 12. Needleman IG, Giedrys-Leeper E, Tucker RJ, Worthington HV. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev, 2001;(2):CD001724
    13.鄂征 刘流 主编,医学组织工程技术与临床应用,北京:北京出版社 2003,1-2,443-446
    14.毛天球.骨组织工程的研究.中华口腔医学杂志,2001;36(2):158-160
    15. Dan Ferber. Tissue Engineering. Science,1999, 284 (5413): 422-25
    16. Langer, Vacanti JP. Tissue engineering. Science, 1993;260(5110): 920-6
    17. Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA. Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec, 2001; 262(2): 193-195
    18.欧龙,刘宏伟,庞劲凡,袁志萍.自体牙周膜细胞移植对狗牙周组织再生的影响.中华口腔医学杂志,2000;35(1):44-46
    19. Hoang AM, Chen D, Oates TW, Jiang C, Harris SE, Cochran DL. Development and characterization of a transformed human periodontal ligament cell line. J Periodontol, 1997; 68(11): 1054-62
    20. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature biotechnology, 2000; 18(4): 399-404
    21. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocytes. Science, 1998 Nov 6;282(5391): 1145-7
    
    
    22. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM.Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cell. Tissue engineering, 2001; 7(1):89-99
    23. Kramer J, Hegert C, Guan K. Embryonic stem cell-derived chondrogenic diferentiation in vitro activation by BMP-2 and BMP-4. Mech Dev, 2000; 92(2):193-205
    24. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci, 1997;110(11): 1279-1286
    25. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice J. Diabetes,2000;49(2):157-162
    26. Pini Prato GP, Rotundo R, Magnani C, Soranzo C. Tissue engineering technology for gingival augmentation procedures: a case report. Int J Periodontics Restorative Dent, 2000 ; 20(6):552-9
    27. Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7 transduced human fibroblasts form bone in vivo. Hum Gene Ther, 2000; (11): 1201-1210
    28.董广英,吴织芬.hBMP2基因转染牙龈成纤维细胞对牙周组织再生影响的实验研究.第四军医大学学位论文,2003;48-56
    29. Owen ME. Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA, eds. Bone and Mineral Research. Amsterdam: Elsevier, 1984.1-25
    30. Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop, 1989; 240:270-280
    31. Vogel G.Harnessing the Power of stem Cell. Science, 1999;
    
    283(5407): 1432-1434
    32. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR.Adult bone marrow stromal cells differentiate into neural cell、in vitro. Experiment Neurology, 2000;164(2): 247-256
    33. Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle.Proc Natl Acad Sci USA, 1999;96(25): 14482-14486
    34. David C. Colter, Ichiro Sekiya, Darwin J. Identification of a subpopulation of rapidly self—renewing and multipotential adult stem cells in colonies of human marrow stromal cells J. Proc Natl Acad Sci USA, 2001;98(14):7841-7845
    35.夏万尧,商庆新,崔磊,徐蓉,丁小邦,曹谊林.骨髓间质干细胞向软骨细胞表型定向诱导分化的实验研究.中华整形外科杂志,2002;18(1):12-14
    36.刘宏伟,欧龙,庞劲凡.自体骨髓基质细胞用于牙周骨缺损移植的动物实验研究.牙体牙髓牙周病学杂志,2000;10(3):117-119
    37.涂小丽,刘宏伟.体外培养狗骨髓基质细胞在牙根上生长的超微结构,牙体牙髓牙周病学杂志,2003;13(6):318-320
    38. Mizuno M, Shindo M, Kobayashi D, Tsuruga E, Amemiya A, Kuboki Y. Osteogenesis by bone morrow stromal cells maintained on type Ⅰ collagen matrix gels in vivo. Bone, 1997; 20(2): 101-7
    39. Klokkevold PR, Vandemark L, Kermey EB, Bernard GW. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontrol, 1996;67(11):1170
    40. Okumura M, Ohgushi H, Dohi Y, Katuda T, Tamai S, Koerten HK, Tabata S.Oseoblastic phenotype expression on the sueface of hychoxyapatite ceramics. J Biomed Mater Res, 1997;37(1):122-9
    
    
    41. Tsuang YH, Lin FH, Sun JS, Hang YS, Liu HC. In vitro cell behavior of osteoblasts on pyrost bone substitute. Anat Rec, 1997; 247(2): 164-9
    42. Hofman S, Sidqui M, Abensur D, Valentini P, Missika P. Effects of landdec on the formation of calcified bone matrix in tat calvariae cells culture.Biomaterials, 1999;20(13):1155-66
    43. Garcia A J, Ducheyne P, Boettiger D. Effect of surface reaction stage on fibroncectin-mediated adhesion of osteoblast-Like cells to bioactive glass. J Biomed Mater Res. 1998; 40(1): 48-56
    44.王惠明,李梵,王模堂,陈安玉.四种骨替代材料的人成骨细胞生物相容性研究.中国生物医学工程学报,1996,15(3):239-244
    45. Grundel RE, Chapman MW, Yee T, Moore DC. Autogeneic Bone Marrow and porous Biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna .Clin Orthop, 1991 ;(266):244-258
    46. Bhatnagar RS, Qian JJ, Wedrychowska A, Sadeghi M, Wu YM, Smith N.Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. Tissue Eng, 1999; 5(1): 53-65
    47.鲁红,吴织芬,田宇,马志伟,钱奇春.人牙周膜细胞体外三维立体培养模型的建立.牙体牙髓牙周病学杂志,2002;12(3):132-134
    48.鲁红,吴织芬,田宇.异体脱矿松质骨基质和纳米羟基磷灰石材料应用于牙周组织工程的可行性探讨.中国临床康复,2002;6(17):2538-2539
    49.鲁红,吴织芬,田宇,陈书军.狗牙周膜细胞三维立体培养的体外实验研究.实用口腔医学杂志 2003;19(4):304-307
    50.闫福华,骆凯,金岩,刘源,赵宇,王新文.牙周膜成纤维细胞与三种
    
    可吸收引导组织再生膜生物相容性实验研究.口腔医学研究 2003;19 (3):161-165
    51.骆凯,闫福华,金岩,刘源,赵宇,王新文.组织工程方法构建复合培养细胞的引导组织再生膜.牙体牙髓牙周病学杂志,2003;13(03):139-141
    52.冯庆玲,崔福斋,张伟.纳米轻基磷灰石/胶原骨修复材料.中国医学科学院院报,2002;24(2):124-128
    53.祝建中,苗宗宁,戴涟生,刘登生.骨随来源成骨细胞复合纳米晶羟基磷灰石胶原构建组织工程骨的实验研究.交通医学,2003;17(6):615-617
    54.杨维东,毛天球.口腔颌面骨替代材料与骨组织工程.实用口腔医学杂志,1999;15(6):469-471
    55.鲁红,吴织芬.应用组织工程方法促进牙周组织再生的实验研究.第四军医大学博士学位论文,2002
    56. Jin QM, Zhao M, Webb SA, Berry JE, Somerman MJ, Giannobile WV. Cementum engineering with three-dimensional polymer scaffolds. J Biomed Mater Res, 2003 Oct 1;67A(1):54-60
    57. Takayama S, Murakami S, Miki Y, Ikezawa K, Tasaka S, Terashima A, Asano T, Okada H. Effects of basic fibroblast growth factor on human periodontal ligament cells. J Periodontal Res, 1997; 32(8): 667-75
    58. Murakami S, Takayama S, Ikezawa K, Kitamura M, Nozaki T, Terashima A, Asano T, Okada H. Regeneration of periodontal tissues by basic fibroblast growth factor. J Periodont Res, 1999; 34(7): 425-430
    59. Rossa C Jr, Marcantonio E Jr, Cirelli JA, Marcantonio RA, Spolidorio LC, Fogo JC. Regeneration of Class Ⅲ furcation defects with basic fibroblast growth factor (b-FGF) associated with GTR. A
    
    descriptive and histometric study in dogs. J Periodontol, 2000; 71(5): 775-84
    60. Wang JS. Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants. Acta Orthop Stand Suppl, 1996; 269:1-33
    61. Kobayashi M, Takiguchi T, Suzuki R, Yamaguchi A, Deguchi K, Shionome M, Miyazawa Y, Nishihara T, Nagumo M, Hasegawa K. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic differentiation in cells isolated from human periodontal ligament. J Dent Res, 1999; 78(10): 1624-33
    62. Danesh-Meyer MJ. Tissue engineering in periodontics using rhBMP-2. J N Z Soc Periodontol, 2000;(85): 10-14
    63. Gestrelius S, Andersson C, Lidstrom D, Hammarstrom L, Somerman M. In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol, 1997; 24(9 Pt 2): 685-92
    64. Howell TH, Martuscelli G, Oringer J. Polypeptide growth factors for periodontal regeneration. Curr Opin Periodontol, 1996; 3: 149-56
    65. Dennison DK, Vallone DR, Pinero GJ, Rittman B, Caffesse RG. Differential effect of TGF-beta 1 and PDGF on proliferation of periodontal ligament cells and gingival fibroblasts. J Periodontol, 1994 ; 65(7):641-8
    66. Sodek J, Overall CM. Matrix metalloproteinases in periodontal tissue remodelling. Matrix Suppl, 1992; 1:352-62
    67. Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. J Periodontol. 2003 Sep; 74(9):1282-92
    
    
    68. Wikesjo UM, Xiropaidis AV, Thomson RC, Cook AD, Selvig KA, Hardwick WR Periodontal repair in dogs: rhBMP-2 significantly enhances bone formation under provisions for guided tissue regeneration. J Clin Periodontol, 2003 Aug; 30(8):705-14
    69. Pittenger MF, Mackay AM, Beck SC, Mackay, Stephen C. Beck, Rama K. Jaiswal, Robin Douglas, Joseph D. Mosca, Mark A. Moorman, Donald W. Simonetti, Stewart Craig, Daniel R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science, 1999 Apr 2; 284(5411): 143-7
    70. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stomaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998 Mar 6; 279(5356): 1528-1530
    71.毛天球.组织工程的研究概况.实用口腔医学杂志,2000;16(1):74-76
    72.彭磊,许诺,王臻.组织工程中骨髓基质细胞研究进展.现代康复,2001;5(11):74-75
    73.陶凯,毛天球.乌贼骨转化羟基磷灰石材料(CBHA)的制备及其作为骨组织工程支架材料的应用基础研究.第四军医大学博士学位论文,2002:34-38
    74. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomater, 2000;21(17): 1803-1810
    75. Wozney JM. Overview of bone morphogenetic proteins. Spine, 2002 Aug 15;27(16 Suppl 1):S2-8
    76. Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein- 2: biology and application. Clin Orthop, 1996Mar; (324):39-46
    
    
    77. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL. Differentiation of human marrow stromal precursor cells: bone morphogeneticprotein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibitslate adipocyte maturation. J Bone Miner Res, 1999 Sep; 14(9):1522-35
    78. Isobe M, Yamazaki Y, Mori M, Amagasa T. Bone regeneration produced in rat femur defects by polymer capsules containing recombinant human bone morphogenetic protein-2. J Oral Maxillofac Surg, 1999 ; 57(6):695-8
    79. Wheeler DL, Chamberland DL, Schmitt JM, Buck DC, Brekke JH, Hollinger JO, Joh SP, Suh KW. Radiomorphometry and biomechanical assessment of recombinant human bone morphogenetic protein 2 and polymer in rabbit radius ostectomy model. J Biomed Mater Res, 1998 ; 43(4):365-73
    80. Horisaka Y, Okamoto Y, Matsumoto N, Yoshimura Y, Kawada J, Yamashita K, Takagi T. Subperiosteal implantation of bone morphogenetic protein adsorbed to hydroxyapatite. Clin Orthop, 1991;(268): 303-12
    81.司晓辉,刘正.骨形成蛋白-2基因转染的人牙周膜成纤维细胞的骨诱导作用.华西口腔医学杂志.2003;21(5):347—349
    82. Ripamonti U, Heliotis M, Rueger DC, Sampath TK. Induction of cementogenesis by recombinant human osteogenic protein-1 (hop-1/bmp-7) in the baboon (Papio ursinus). J Arch Oral Biol, 1996; 41(1): 121-26
    83. Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med, 1997;8(2): 154-63
    84. Kinoshita A, Oda S, Takahashi K, Yokota S, Ishikawa I. Periodontal
    
    regeneration by application of recombinant human bone morphogeneticprotein-2 to horizontal circumferential defects created by experimental periodontitis in beagle dogs. J Periodontol, 1997; 68(2): 103-9
    85. Matsuura M, Herr Y, Han KY, Immunohistochemical expression of extracellular matrix components of normal and healing periodontal tissues in the beagle dog. J Periodontol, 1995 Jul; 66(7):579-93
    86. MacNeil RL, Berry J, D'Errico J, Role of two mineral-associated adhesion molecules, osteopontin and bone sialoprotein, during cementogenesis. Connect Tissue Res, 1995; 33(1-3):1-7
    87. Robey PG. Biochemistry of bone. In:Riggs BK, Melton Ⅲ LJ, eds Osteoporosis: etiology, diagnosis, and management. 2nd ed Philadelphia: Mayo Foundation, 1995; 41-66
    88. Uede T, Katagiri Y, Iizuka J, Murakami M. Osteopontin, a coordinator of host defense system: a cytokine or an extracellular adhesive protein? Microbiol Immunol, 1997;41 (9):641-8.
    89. Fujisawa R, Wada Y, Nodasaka Y, Kuboki Y. Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals .Biochim Biophys Acta, 1996; 292(1): 53-56
    90. MacNeil RL, Berry J, D'Errico J, Strayhom C, Somerman MJ. Localization and expression of osteopontin in mineralized and nonmineralized tissues of the periodontium. Ann N Y Acad Sci, 1995;760:166-76
    91. D'Errico JA, MacNeil RL, Takata T, Berry J, Strayhom C, Somerman MJ. Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone, 1997;20(2):117-26
    92. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med, 1999;10(1):79-98
    
    
    93. Goldberg HA, Warner K J, Stillman M J, Hunter GK. Determination of the hydroxyapatite-nucleating region of bone sialoprotein. Connect Tissue Res, 1996; 35(1-4):385-92
    94. Bradshaw AD, Sage EH. A matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest, 2001; 107(9): 1049-54
    95. Fujisawa R, Kuboki Y. Affinity of bone sialoprotein and several other bone and dentin acidic proteins to collagen fibrils. Calcif Tissue Int, 1992;51(6): 438
    96. Amar S, Chung KM, Nam SH, Karatzas S, Myokai F, Van Dyke TE. Markers of bone and cementum formation accumulate in tissues regenerated in periodontal defects treated with expanded polytetrafluoroethylene membranes. J Periodontal Res, 1997;32(1 Pt 2):148-58
    97. Yu JM, Emmons RV, Hanazono Y, Sellers S, Young NS, Dunbar CE. Expression of interferon-gamma by stromal cells inhibits murine long-term repopulation hematopoietic stem cell activity J.Exp-Hematol, 1999; 27(5): 895-903