IGF-1基因转染骨髓基质细胞应用于牙周组织工程的基础与动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因牙周病而丧失的牙周组织的修复再生难度较大,因此要达到牙槽骨、牙骨质和牙周膜的完全功能性再生一直是牙周病学领域研究的热点。传统的牙周治疗只能部分修复牙周组织,近年来发展起来的引导性组织再生技术(GTR)虽可使一定的牙周组织获得再生,但总的看来,尚不能达到牙周组织完全再生的目的。将组织工程技术引入牙周病治疗的研究领域,为牙周组织再生带来新思路。现代的组织工程学包括种子细胞/支架材料、生长因子/支架材料和种子细胞/生长因子/支架材料三种构建方式。但生长因子复合入支架材料时一般需要高温和高浓度的表面活性剂,这会加快蛋白的降解,使其活力降低,重组蛋白的免疫毒性增加。复合入支架材料后由于湿度的变化和苛刻的微环境,生长因子可出现不可逆的聚合、脱氨基和氧化,因此需要大剂量的使用生长因子才能维持生长因子的生物学活性和持续释放,而生产这些蛋白价钱昂贵,且大剂量使用有很多安全危险:如蛋白可能扩散到血液中,在机体其他组织发挥生物学效应等。如果种子细胞在一定的时间内,在损伤组织局部高表达细胞因子,可以避免将蛋白复合入支架材料的上述缺点。因此我们把基因治疗技术与组织工程技术相结
    
     第四军医大学博士学位论文
    合,成功地克隆了犬胰岛素样生长因子一1(IGF-l)编码区基因,构建两种
    真核质粒载体,利用荃因转染技术,将其转染入自体骨盆荃质细胞(MSCs),
    赋予细胞新的生物学特性。将这种IGF一1基因修饰的MSCs与鸵鸟钙磷陶
    瓷骨复合,修复动物模型上的牙周组织缺损。探讨IGF-1墓因修饰的MSCs
    在牙周组织再生中的作用,为将基因治疗与组织工程联合应用于牙周组织
    缺损再生治疗莫定实验基础。为此,本研究进行了如下几方面的实验:
    1.新鲜犬左心室组织中提取总RNA,以RT一PCR方法获取IGF一1编码区
     cDNA全序列,将其与真核表达载体peDNA3.1(+)连接,转化大肠杆
     菌,将构建的重组表达载体peDNA3.1(+)一IGF一1侧序鉴定.结果重
     组质粒peDNA3.1(+)一IGF一1的酶切图谱和序列分析结果与国外文献报
     道一致.将PcDNA3.1(+)一IGF一1质粒双酶切,获得目的基因,·亚克
     隆入真核表达载体PI双s2一EGFP质粒中,转化大肠杆菌,构建重组真
     核表达载体pIRESZ一EGFP一IGF一1.结果酶切鉴定证实犬IGF-l成功的克
     隆入PIRESZ一EGFp中。
    2.体外培养大鼠骨髓基质细胞(MSCs),利用脂质体将
     pIREsZ一EGFP·IGF-1基因转染至MsCs中,荧光显微镜、免疫组化检测
     MSCs是否表达重组细胞因子,收集转染细胞的培养液上清,培养L929
     细胞,流式细胞仪检测转染细胞的培养液上清对L929细胞周期的影响。
     结果pIREsZ-EGFP-IGF一1转染阳性MsCs细胞,荧光显徽镜观察与免
     疫组化证实转染细胞内有目的蛋白的高表达;转染目的荃因的MSCs
     培养液存在有活性的生长因子,可明显促进L929细胞的增殖。
    3.培养狗自体MSCs细胞,利用脂质体将p1RESZ一EGFP.IGF一1基因转染
     至MSCs中,经G418筛选后获得了稳定表达IGF一1蛋白的细胞克隆;
     在体外培养扩增后,通过W七Stem blot、免疫组化、夹心EllSA检侧基
     因转染对MSCs表达IGF一1的影响:通过检测IGF。1基因转染的MSCs
     细胞的碱性磷酸醉活性,MTT检测转染细胞培养上清液对人牙周膜细
     胞(PDLCs)增殖活性的影响,对该细胞的生物学特性进行了观察.结
     果:荃因转染后的MSCs细胞形态没有明显变化,免疫组化和W粉怨m
     blot证实,转染细胞内有IGF一1蛋白的高表达。ELISA方法检侧显示
     IGF·1能分泌至细胞外。IGF一1基因转染的MSCs细胞的孩性磷酸醉活
     性较未转染细胞明显升高(p<0 .05).转染细胞培养上清液能明显促进
    
     第四军医大学博士学位论文
     PDLcs细胞的增殖(卜0.05)。
    4.通过免疫组化和图像分析的方法检侧IGF-l基因转染对MSCs合成血管
     内皮细胞生长因子(VEGF)、骨形成蛋白一2(BMP一2)、骨涎蛋白(BSP)、
     骨桥蛋白(OFN)、骨粘连素(ON)和I型胶原的形响。结果:IGF一1
     基因转染后可促进MSCs合成BMP一、VEGF、ON、OPN和I型胶原
     (p<0 .05),但对合成BsP影响不显著(p>.05),当与矿化液培养9d
     后,IGF一1基因转染的MSCs与未转染的MSCs相比较可明显的促进
     BSP的合成。
    5.将IGF一1基因转染的自体MSCs与鸵鸟钙磷陶瓷骨(OTBC)复合后,
     体外培养,扫描电镜观察。将IGF一1基因转染后的自体MSCs细胞作为
     种子细胞,与OTBC复合,植入狗的人工牙周组织缺损区。通过组织
     学观察和组织学测盆,评价基因转染MSCs细胞对牙周组织再生的影
     响,并以未转染的MSCs细胞和无细胞的支架材料作对照。结果:MScs
     复合OTBC后生长良好,24h细胞已贴附、伸展,随着时间的增加,细
     胞生长与增殖明显,并有大量细胞外基质分泌。证明IGF一1基因转染
     MSCs与01,BC有较好的生物相容性。动物实验修复狗人工牙周组织缺
     损,sw后,基因转染的MSCs细胞组可见近乎完全的牙周组织再生,
     未见结合上皮长入、根吸收和骨粘连等不良愈合方式.未转染M
Periodontal regeneration is expected to reconstitute the injured periodontal tissues physiologically and functionally, including cementum, periodontal ligament and alveolar bone. It is difficult for the traditional treatment to attain this goal. Although the guided tissue regeneration(GTR) achieved the periodontal regeneration, it can not fulfill this goal entirely. To treat the periodontitis with tissue engineering established the new field for the therapy of periodontal regeneration. Nowadays the form styles of tissue engineering have included cell/scaffolds, growth factors/ scaffolds and cells/ growth factors/ scaffolds. But the proteins have to expose in high temperature and high concentrations of surfactants when the protein incorporated into scaffolds. These conditions can promote the protein degradation, and in turn, decrease potency and increase risk of immune toxicity. Moreover, protein successfully incorporated in scaffolds may undergo irreversible aggregation, deamidation and oxidation because of
    elevated levels of moisture and evolution of harsh microclimate. So to maintain full bioactivity and to sustain the release of growth factors, we need a large amounts of recombinant cytokine. The proteins are expensive to manufacture. High-dose proteins bring us an additional safety risk: the cytokine may diffuse from the wound bed into the bloodstream. If the cells in the scaffolds can highly express the recombinant cytokine, the disadvantages of using the protein will be overcome. So we
    
    
    combine gene therapy with tissue engineering. Dog's Insulin-like growth factor I (IGF-1) gene was transfected into bone marrow stem cells (MSCs). The transfected MSCs with ostrich true bone ceramics(OTBC) were used to repair the periodontal defects. This study is to estimate the potential effects of IGF-1 gene transfected MSCs and to provide a new way for restoring the periodontal defects. This study has included five experiments:
    1. Total RNA was extracted from dog's left ventricular myocardium. The desired DNA product was obtained from the total RNA by RT-PCR. The segment (about 297bp) was inserted into pcDNA3.1(+) vector and the inserted plasmid was transformed into E.coli DH5 a . The positive clone was analyzed by restriction endonuclease mapping and DNA sequencing. The restriction endonuclease map and sequence of dog IGF-I functional fragment were consistent with those of the published. The IGF-1 gene in the pcDNA3.1(+)-IGF-l were subcloned into pIRES2-EGFP expressing vector. The plasmid was transformed into E.coli DH5 a . Restrictive enzyme(Nhe I, EcoR I) digestion analysis showed that recombinant expression vector pIRES2-EGFP-IGF-l has been constructed successfully.
    2. pIRES2-EGFP-IGF-l was transfected into MSCs with lipofectamine. After 48h transfection, the Insulin-like growth factor I (IGF-1) expression in the transfected MSCs was detected under fluorescence microscope and by immunohistochemistry. The supernatant of the transfected MSCs cultured with L929 fibroblasts. The effect of the recombinant IGF-1 on the L929's cell cycle was observed by flow cytometer analysis. Result: The transfected MSCs displaying green fluorescence were observed under fluorescence microscope. The immunohistochemical staining showed that positive reactant of brown-yellow can be seen in the cytoplasm of MSCs transfected by pIRES2-EGFP-IGF-l. The supernatant of the transfected MSCs can increase the L929's proliferation.
    3. pIRES2-EGFP-IGF-l was transfected into MSCs with lipofectamine. Positive clones were selected with G418. The expression of IGF-1 protein in the MSCs was determined by immunohistochemistry and Western blot analysis. The IGF-1 in the supernatant of the transfected MSCs was detected
    
    
    by sandwich-in ELISA. The transfected MSCs' ALP activity were investigated. Add culture medium of stably transfected MSCs cells to periodontal ligament cells (PDLCs). The change of PDLCs' proliferation was observed by MTT.The results of immunohistochemistry and Western blot analysis suggested that IGF-1-trnsfected MSCs could e
引文
1. Donos N, Seulean A, Glavind L, Reich E, Karring T. Wound healing of degree Ⅲ furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. J Clin Periodontol. 2003;30(12):1061-8.
    2. Parashis A, Andronikaki-Faldami A, Tsiklakis K. Clinical and radiographic comparison of three regenerative procedures in the treatment of intrabony defects, Int J Periodontics Restorative Dent. 2004;24(1):81-90.
    3. Kostopoulos L, Karring T. Susceptibility of GTR-regenerated periodontal attachment to ligature-induced periodontitis. J Clin Periodontol. 2004 May;31 (5):336-40.
    4.朱国强,吴织芬,王勤涛,李袁飞.牙周引导组织再生术治疗根分叉区骨缺损临床观察.临床口腔医学杂志.2003,19(9).540-542
    5. Culver K.W. (Ed.), Gene Therapy. A Primer For Physicians. 2nd Edition. Mary Ann Liebert, Larchmont, NY, 1996.21
    6. Lieberman A, Daluiski J.R.., Stevenson S., Wu L., McAllister P., Lee Y., Kabo M., Finerman G.A., Berk A. Witte O.N.. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J. Bone Joint Surg, 1999;81 (A): 905-917.
    7. Morgan J.R., Barrandon Y., Green H., Mulligan R.C. Expression of an exogenous growth hormone by transplant-able human epidermal cells. Science 1987;237: 1476-1479.
    8. Palmer T.D., Hock R.A., Osborne W.R., Miller A.D. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-defieient human. Proc. Natl. Acad. Sci. USA 1987;114: 1055-1059.
    9. Garver R.I., Chytil A., Courtney M., Crystal R.G. Clonal gene therapy:
    
    transplanted mouse fibroblast clones express human al-antitrypsin gene in vivo. Science 1987;237: 762-764.
    10. Rosenberg M.B., Fdedmann T., Robertson R.C., Tyszynski M., Wolff J.A., Breakefield X.O., Gage F.H. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 1988;242:1575-1578.
    11. Wilson J.M., Mulligan R.C., Callow A.D., Libby P., Salomon R.N., Birinyi L.K. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 1989;244:1344-1346.
    12. Barr E., Lieden J.M. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 1991 ;254:1507-1509.
    13. Dai Y., Roman M., Naviaux R.K., Verma I.M. Gene therapy via primary myoblasts: long-term expression of factor Ⅸ protein following transplantation in vivo. Proc. Natl. Acad. Sci. USA 1992;89:10892-10895.
    14. Bonadio J., Goldstein S.A., Levy R.J.Gene therapy for tissue repair and regeneration. Adv. Drug Deliv. Rev. 1998;33:53-69.
    15. Surbek D.V., Gratwohl A., Holzgreve W. In utero hemato-poietic stem cell transfer: current status and future strategies. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999;85:109-115.
    16. Feigner P.L. Nonviral strategies for gene therapy. Sci. Am. 1997;276:102-106. ,
    17. Christou P.,Particle bombardment. Methods Cell Biol. 1995;50:375-382.
    18. Haynes J.R., McCabe D.E., Swain W.F., Widera G., Fuller J.T. Particle-mediated nucleic acid immunization. J. Biotechnol. 1996;44:37-42.
    19. Isner J.M., Pieczek A., Schainfeld R., Blair R., Haley L., Asahara T., Rosenfield K., Razvi S., Walsh K., Symes J.F. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996;348:370-375.
    20. Mathiowitz E., Jacob J.S., Jong Y.S., Carino G.P., Chickering D.E., Chaturvedi P., Santos C.A., Vijayaraghavan K., Montgomery S., Bassett M., Morrell C., Biologically erod-able microspheres as potential oral drug
    
    delivery systems. Nature 1997;386:410-414.
    21. Davis D.D. Biomedical applications of nanotechnology -implications for drug targeting and gene therapy, Trends Bioteehnol. 1997;15:217-224.
    22. Bonadio J. Tissue engineering via local gene delivery, J. Mol. Med. 2000;78:303-311.
    23. Ripamonte U., van den Heever B., Sampath T.K., Tucker M.M., Rueger D.C., Reddi A.H. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (OP-1, bone morphogenetic protein-7). Growth Factors 123 (1996) 273-289.
    24. Crystal R.G. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404-410.
    25. Hartley J.W., Rowe W.P. Naturally occurring murine leukemia viruses in wild mice: characterization of a new "amphotropic" class. J. Virol. 1976; 19:19-25.
    26. Risser R., Horowitz J.M., McCubrey J. Endogenous mouse leukemia viruses. Ann. Rev. Genet. 1983;17: 85-121.
    27. Weinberg J.B., Matthews T.J., Cullen B.R., Malim M.H. Productive human immunodeficiency virus type 1 (HIV-1) infection of non-proliferating human monocytes. J. Exp. Med. 1991; 174: 1477-1482.
    28. Poeschla E., Corbeau P., Wong-Staal F. Development of HIV vectors for anti-HIV gene therapy. Proc. Natl. Acad. Sci. USA. 1996;93:11395-11399.
    29. Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F.H. I.M.Verma, D. Trono, In vivo gene delivery and stable transduetion of nondividing cells by a lentiviral vector. Science 1996;272: 263-267.
    30. Blomer U., Naldini L., Kafri T., Trono D., Verma I.M., Gage F.H., Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 1997; 71: 6641-6649.
    31. Kafri T., Blomer U., Peterson D.A., Gage F.H., Verrna I.M. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 1997; 17:314-317.
    32. Miyoshi H., Takahashi M., Gage F.H., Verma I.M. Stable and efficient
    
    gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA. 1997;94: 10319-10323.
    33. CJailichan W.S., Kafri T., Krahl T., Verma I.M., Sarvetnick N. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum. Gene Ther. 1999;9:2717-2726.
    34. Reynolds PN. Delivery of DNA to pulmonary endothelium using adenoviral vectors. Methods Mol Biol. 2004;246:69-89.
    35. Parks R.J., Chen L., Anton M., Sankar U., Rudnicki M.A., Graham F.L. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA. 1996;93:13565-13570.
    36. Schiedner G., Morral N., Parks P.J., Wu Y., Koopmans S.C., Langston C., Graham F.L., Beaudet A.L., Kochanek S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 1998; 18:180-183.
    37. Hemmi S., Geertsen R., Mezzacasa A., Peter I., Dummer R. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum. Gene Ther. 1998;9: 2363-2373.
    38. Roelvink P.W., Lizonova A., Lee J.G., Li Y., Bergelson J.M., Finberg R.W., Brough D.E., Kovesdi I., Wickham T.J. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E and F. J. Virol. 1998;72: 7909-7915.
    39. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309-319.
    40. Wickham T.J., Filardo E.J., Cheresh D.A., Nemerow G.R. Inteogrin alpha ⅴ beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J. Cell Biol. 1994; 127:257-264.
    41. Yang Y., Li, Q. Ertl H.C., Wilson J.M. Cellular and humoral immune
    
    responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 1995;69:2004-2015.
    42. Tripathy S.K., Black H.B,, Goldwassere E., Leiden J.M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors,Nat. Med. 1996;2:545-550.
    43. Hollon T. Researchers and regulators reflect on first gene therapy death. Nat. Med. 2000; 6: 6.
    44. Sato Y., Roman M., Tighe H., Lee D., Corr M., Nguyen M.D., Silverman G.J., Lotz M., Carson D.A., Raz E., Immunostimulatory DNA sequences necessary for effective intradertnal gene immunization. Science 1996;273: 352-354.
    45. Bonadio J., Smiley E., Patil P., Goldstein S. Localized, direct plasmid-gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 1999;5:753-759.
    46. Fang J., Zhu Y.-Y., Smiley E., Bonadio J., Rouleau J.A., Goldstein S.A., McCauley L.K., Davidson B., Roessler B. Stimulation of new bone formation by direct transfer of osteoin-ductive plasmid genes. Proc. Natl. Acad. Sci. USA. 1996;93:5753-5758.
    47. Shea L.D., Smiley E., Bonadio J., Mooney D.J. Controllable DNA delivery from three- dimensional polymer matrices. Nat. Biotech. 1999;17: 551-554.
    48. Zhu Y.Y., Voytik S.L., Badylak S.F., Bonadio J. Direct gene transfer into regenerating Achilles' tendon. Trans. Ortho. Res. Soc. 1994;19: 233.
    49. Labhasetwar V., Bonadio J., Goldstein S., Chen W., Levy R.J. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci. 1998;87:1347-1350.
    50. Berry M., Gonzalez A.M., Clarke W., Greenlees L., Seymor L., Bonadio J., Logan A., Baird A. Sustained effects of gene activated matrices after CNS injury. Mol. Neurosci. 2000; in press.
    51. Power RA, Iwaniec UT, Magee KA, Mitova-Caneva NG, Wronski TJ. Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized
    
    rats. Osteoporos Int. 2004 Mar 30 [Epub ahead of print]
    52. Baek KH, Lee WY, Oh KW, Kim HS, Han JH, Kang MI, Cha BY, Lee KW, Son HY, Kang SK, Kim CC. Changes in the serum growth factors and osteoprotegerin after bone marrow transplantation: impact on bone and mineral metabolism. J Clin Endocrinol Metab. 2004 ;89(3): 1246-54.
    53. Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, Watzek G. Platelet-released supematants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004 ;15(1):29-35.
    54. Rucker D, Ezzat S, Diamandi A, Khosravi J, Hanley DA. IGF-Ⅰ and testosterone levels as predictors of bone mineral density in healthy, community-dwelling men. Clin Endocrinol (Oxf). 2004;60(4):491-9.
    55. Wildemann B, Kandziora F, Krummrey G, Palasdies N, Haas NE Raschke M, Schmidmaier G. Local and controlled release of growth factors (combination of IGF-Ⅰ and TGF-beta Ⅰ, and BMP-2 alone) from a polylactide coating of titanium implants does not lead to ectopic bone formation in sheep muscle. J Control Release. 2004;95(2):249-56.
    56. Sellers RS, LeRoy BE, Blomme EA, Tannehill-Gregg S, Corn S, Rosol TJ. Effects of transforming growth factor-betal on parathyroid hormone-related protein mRNA expression and protein secretion in canine prostate epithelial, stromal, and carcinoma cells. Prostate. 2004;58(4):366-73.
    57. Blum B, Moselcy J, Miller L, Richelsoph K, Haggard W. Measurement of bone morphogenetic proteins and other growth factors in demincralized bone matrix. Orthopedics. 2004;27(1 Suppl):s161-5.
    58. Szivek JA, Nelson ER, Hajdu SD, Yablonski K, DeYoung DW. Transforming growth factor-betal accelerates bone bonding to a blended calcium phosphate ceramic coating: a dose-response study. J Biomed Mater Res. 2004;65A(3):537-43.
    59. Chaudhary LR, Hofmeister AM, Hruska KA. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone. 2004 Mar;34(3):402-11.
    
    
    60.戴毅敏.陈新梅.毛天球.基因重组人骨形成蛋白-2与珊瑚/聚乳酸复合异位诱导成骨的实验。研究口腔医学纵横.2002;18(1)14-15
    61. Bartus R.T., Tracy M.A., Emerich D.F., Zale S.E.,Sustained delivery of proteins for novel therapeutic products. Science 1998;281:1161-1162.
    62. Kuhl P.R., Griffith-Cima L.G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat. Med. 1996;2:1022-1027.
    63. Zhu G., Mallery S.R., Schwendeman S.P. Stabilization of proteins encapsulated in injectable poly (lactide-co-gly-colide). Nat. Biotech. 2000; 18:52-57.
    64. Ripamonte U., van den Heever B., Sampath T.K., Tucker M.M., Rueger D.C., Reddi A.H. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (OP-1, bone morphogenetic protein-7). Growth Factors 1996; 123: 273-289.
    65. Bonadio J. Local gene delivery for tissue regeneration,.E-biomed 2000;1: 25-29.
    66. Lieberman J. Daluiski R., A., Stevenson S., Wu L., McAllister P., Lee Y., Kabo M., Finerman G.A., Berk A., Witte O.N., The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rots. J. Bone Joint Surg. 1999;81A: 905-917.
    67. Breitbart A.S., Grande D.A., Mason J.M., Barcia, M. James T., Grant R.T., Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann. Plast. Surg. 1999;42: 488-495.
    68. Bonadio J., Goldstein S.A., Levy R.J. Gene therapy for tissue repair and regeneration. Adv. Drug Deliv. Rev,. 1998;33: 53-69.
    69. Fang J., Zhu Y.-Y., Smiley E., Bonadio J., Rouleau J.P., Gotdstein S.A., McCauley L.K., Davidson B.L., Roessler B.J. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes, Proc. Natl. Acad. Sci. USA. 1996;93: 5753-5758.
    
    
    70. Bonadio J., Smiley E., Patil P., Goldstein S. Localized, direct plasmid gene therapy in vivo: prolonged therapy results in reproducible tissue regeneration, Nat. Med. 1999; 5:753-759.
    71. Labhasetwar,V. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci.1998;87: 1347-1350
    72. Byung-Soo, K. and Mooney, D.J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16: 197-237
    73. Shea, L.D.. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 1999; 17:551-554
    74. Mini T., Alexander M. K. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Applied Biological Science.2003; 100(16): 9138-9143
    75. Giannobile WV. What does the future hold for periodontal tissue engineering? Int J Periodontics Restorative Dent. 2002;22(1):6-7
    76.司晓辉,杨连甲,金岩.转染人骨形成蛋白2基因对NIH3T3细胞生物学行为的影响.中华口腔医学杂志.1999:34(2):103-105
    77.司晓辉,刘正.骨形成蛋白2基因转染的人牙周膜成纤维细胞的生物学特性.上海第二医科大学学报.2001:21(1):24—27
    78. Krebsbach PH, Rermy KG, Franceshi RT, et al. Gene therapy-directed osteogenesis: BMP-7 transduced human fibroblasts form bone in vivo. Hum Gene Ther, 2000, 11: 1201-1210.
    79. Bonadio J, Simley E, Patti P, et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration[J]. Nature Med, 2000, 5: 753-759.
    80.董广英,吴织芬.hBMP_2基因转染牙龈成纤维细胞对牙周组织再生影响的实验研究.第四军医大学博士论文.2003年4月
    81. Langer R., Vacanti J.P. Tissue engineering.Science. 1993;260: 920-926.
    82. Stocum D.L. New tissues from old. Science. 1997 ;276: 15.
    83. Mooney D.J., Mikos A.G. Growing new organs. Sci. Am. 1999;280: 60-65.
    
    
    84. Langer R., Vacanti J.P. Tissue engineering. Science. 1993; 260: 920-925.
    85.杨维东,李石保,陈富林.可注射性自体组织工程软骨的研究.中华口腔医学杂志.2001;36(2):102-4
    86. Okano T, Matsuda T. Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant, 1995;7(5):435-42
    87. Nakamura M, Masuzawa T, Tatsumi E, et al. The development of a control method for a total artificial heart using mixed venous oxygen saturation. Artif Organs, 1999;23(3):235-41
    88.解慧琪,杨志明,辛军平.组织工程化肌腱修复喙锁韧带术后的短串联重复位点检测.中国修复重建外科杂志.2000;14(4):237-240
    89. Hassel TM. Tissues and cells of the periodontium. Periodomol 2000, 1993: 3:9-28
    90. Piche JE, Carnes DL,Graves DT. Initial characterization of cells derived from human periodontaium. J Dent Res, 1989,68; 5:761-7
    91.鲁红,吴织芬.应用组织工程方法促进牙周组织再生的实验研究.第四军医大学学位论文.2002年4月
    92. Malkin HM. Julius Cohnheim (1839-1884). His life and contributions to pathology. Ann Clin Lab Sci. 1984 ;14(5):335-42.
    93. Fdedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980;25:19-29.
    94.蒋世忠,黄岚,武晓静,于世勇,宋明宝,张坡,赵刚,晋军,周音频.骨髓基质细胞的血管新生作用及对心功能的影响.岭南心血管病杂志.2003;9(6):426-429
    95.杨立业,刘相名,郑佳坤,惠国桢,郭礼和.神经干细胞诱导骨髓基质细胞向神经元样细胞分化.中华神经医学杂志.2003;2(6):407-409
    96.李光辉,夏仁云,陈超.骨髓基质细胞/藻酸盐凝胶复合修复骨缺损的研究中华实验外科杂志.2003;20(11):1031-1032
    97. Mankani MH, Kuznetsov SA, Avila NA, Kingman A, Robey PG. Bone formation in transplants of human bone marrow stromal cells and hydroxyapatite-tricalcium phosphate: prediction with quantitative CT in
    
    mice.Radiology. 2004;230(2):369-76.
    98.涂小丽,刘宏伟,覃昱,李毅.骨髓基质细胞及其在牙周组织工程中的应用.口腔医学.2003;23(2):113-114
    99.刘宏伟,欧龙,庞劲凡,袁志萍.自体骨髓基质细胞用于牙周骨缺损移植的动物实验研究.牙体牙髓牙周病学杂志.2000;10(3):117-119.
    100. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003 ;48(12):3464-74.
    101. Holland T .A., Mikos A.G. Advances in drug delivery for articular cartilage. Journal of Controlled Release. 2003 ;86:1-14
    102. Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int. J. Oral Maxillofac. Stag. 2002; 31:469-484
    103. Bartold PM, Clayden AM, Gao J. The role of growth factors in periodontal and pulpal regeneration. J N Z Soc Periodontol, 1998;(83):7-14
    104. K ü BLENR. Osteoinduktion undreparation. Mund Kiefer Oesichtschirurgie1.997:1: 2-25.
    105. Scheufler C., Sebald W, Hulsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol. 1999; 287: 103-105.
    106. Miyazono K. Positive and negative regulation of TGF-β signalling. J Cell Sci 2000; 113: 1101-1109.
    107. Reddi AH. Bone morphogenetic proteins: an conventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev. 1997; 8:11-20.
    108. Giannobile WV, Somerman MJ. Growth and amelogenin-like factors in periodontal wound healing. A systematic review. Ann Periodontol. 2003 Dec;8(1): 193-204..
    109. Koide M, Murase Y, Yamato K.Bone morphogenetic protein-2 enhances osteoclast formation mediated by interleukin-lalpha through upregulation of osteoclast di.erentiation factor and cyclooxygenase-2. Biochem Biophys Res Commun. 1999;259: 97-102.
    110. Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and
    
    regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rcv Oral Biol Mcd. 1997;8(2):154-63
    111.Kuboki Y, Sasaki M, Saito A. Regeneration of periodontal ligament and cementum by BMP-applicd tissue engineering. Eur J Oral Sci. 1998;106 Suppl 1:197-203
    112.Miki T, Harada K, Imai Y, Enomoto S. Effect of freeze-dried poly-L-lactic acid discs mixed with bone morphogenetic protein on the healing of rat skull defects. J Oral Maxillofac Surg. 1994;52(4):387-91
    113.Gao J, Symons AL, Bartold PM.Expression of transforming growth factor-beta 1 (TOF-beta 1) in the developing periodontium of rats. J Dent Res 1998; 77: 1708-1716.
    114.Entchev EV, Schwabedissen A, Gornzalez-Gaitan M. Gradient formation of the TGF-beta homolog Dpp. Cell. 2000; 103: 981-991.
    115.Takehara K.Growth regulation of skin fibroblasts. J Dermatol Sci 2000;24(Suppl.): S70-S77.
    116.Van Osch GJ,Van Der Veen SW,Verwoerd-Verhoef HL. In vitro: redifferentiation of culture-expanded rabbit and human articular chondroeytes for cartilage reconstruction. Plast Reconstr Stag 2001;107: 433-440.
    117.Hong L, Tabata Y, Niyamoto S. Promoted bone healing at a rabbit skull gap between autologous bone fragment and the sun'ounding intact bone with biodegradable mierospheres containing transforming growth factor-beta Ⅰ. Tissue Eng 2000; 6: 331-340.
    118.Cannalis E,Varghese W, Mccarthy TL. Role of platelet derived growth factor in bone cell function. Growth Regul. 1992; 2: 151-155.
    119.Ataliotis P, Mercola M. Distribution and function of platelet-derived growth factors and their receptors during embryogenesis. Int Rev Cytol 1997; 172: 95-127.
    120.Yang D,Cheng J, Jing Z.Platelet-derived growth factor (PDGF)- AA: a self-imposed cytokine in the proliferation of human fetal osteoblasts. Cytokine. 2000; 12: 1271-1274.
    
    
    121.Park JB, Matsaura M, Han KY, Norderyd O, Lin WL, Genco RJ, Cho MI. Periodontal regeneration in class Ⅲ furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J Periodontol 1995; 66(6): 462-477.
    122.O'Connor R.Survival factors and apoptosis. Adv Biochem Eng Biotechnol. 1998; 62:137-166.
    123.Liu JL, Grinberg A, Westphal H. Insulin-like growth factor-Ⅰ affects perinatal lethality and postnatal development in a gene disage-dependent manner: manipulation using the Cre/loxP system in transgenic mice. Mol Endocrinol. 1998; 12: 1452-1462.
    124.Kecha O,Brilot F,Martens H.Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures. Endocrinology. 2000; 141: 1209-1217.
    125.Ravn P, Overgaard K,Spencer EM.Insulin-like growth factors Ⅰ and Ⅱ in healthy women with and without established osteoporosis. Eur J Endocrinol. 1995; 132:313-319.
    126.Morgan DO, Edman JC, Standring DN. Insulin-like growth factor Ⅱ receptor as a multifunctional binding protein. Nature. 1987; 329: 301-307.
    127.Thrailkill KM,Siddhanti SR, Folwkes JL. Diferentiation of MC3T3-El osteoblasts is associated with temporal changes in the expression of IGF-Ⅰ and IGFBPs. Bone. 1995; 17: 307-313.
    128.Vam Kleffens M, Groffen C, Lindenbergh-Kortleve DJ.The IGF system during fetal-placental development of the mouse. Mol Cell Endocrinol. 1998; 140: 129-135.
    129.Servold SA. Growth factor impact on wound healing. Clin Podiatr Med Surg. 1991;8(4):937-53.
    130.Yonemura K, Narayanan AS, Miki Y, Page RC, Okada H. Isolation and partial characterization of a growth factor from human cementum. Bone Miner. 1992; 18(3): 187-98.
    131.Nohutcu R.M., McCauley L.K., Koh A.J. Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro.
    
    J Periodontol 1997; 68:320-327
    132. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone. 2004;34(4):665-71.
    133. Lekovic V, Camargo PM, Weinlaender M, Vasilic N, Aleksic Z, Kenney EB. Effectiveness of a combination of platelet-rich plasma, bovine porous bone mineral and guided tissue regeneration in the treatment of mandibular grade Ⅱ molar furcations in humans. J Clin Periodontol. 2003 ;30(8):746-51.
    134.毛天球.骨组织工程的研究.中华口腔医学杂志.2001;36(2):158-160
    135.杨耀武,毛天球,孙沫逸,陈富林,陈书军,杨成.将煅烧鸵鸟松质骨转化为多相钙磷陶瓷.上海口腔医学.2003;12(4):277-280
    136. Pini Prato GP, Rotundo R, Magnani C, et al. Tissue engineering technology for gingival augmentation procedures: a case report. Int J Periodontics Restorative Dent, 2000 ;20(6):552-9
    137.李静.人生长激素和胰岛素样生长因子-Ⅰ作用的分子机制.国外医学内分泌分册.1999;19(3):113-116.
    138.袁乃梅,万玲,张贤华,吴织芬.胰岛素样生长因子和碱性成纤维细胞生长因子对人牙周膜细胞增殖的影响.实用口腔医学杂志.2001.Nov;17(6):492-494
    139.齐晓娟,彭如心.胰岛素样生长因子(IGF).齐齐哈尔医学院学报.1999;20(4):400-402
    140. Di Genio M, Barone A, Ramaglia L, Sbordone L. Periodontal regeneration: the use of polypeptide growth factors. Minerva Stomatol. 1994;43(10):437-43.
    141.储诚兵,陈艺新,尹培荣,陈雄德.胰岛素样生长因子-1(IGF-1)对成骨细胞的成骨影响.中国矫形外科杂志.2002;10(11):1104-1105
    142. Tozum TF, Demiralp B.Platelet-rich plasma: a promising innovation in dentistry. J Can Dent Assoc. 2003;69(10):664-72.
    143. Giannobile WV, Hemandez RA, Finkelman RD, Ryan S, Kiritsy CP, D'Andrea M, Lynch SE. Comparative effects of platelet-derived growth
    
    factor-BB and insulin-like growth factor-Ⅰ, individually and in combination, on periodontal regeneration in Macaca fascicularis. J Periodontal Res. 1996;31(5):301-12.
    144. Rutherford RB, Niekrash CE, Kennedy JE, Charette MF. Platelet-derived and insulin-like growth factors stimulate regeneration of periodontal attachment in monkeys. J Periodontal Res. 1992;27(4 Pt 1):285-90.
    145.蒋欣泉,张志愿,陈建国,马贵骧,陈传俊.人骨形成蛋白4基因修饰的组织工程化骨的实验研究.中华口腔医学杂志.2003;38(5):390-392
    146.奚刚,许梓荣,戚益军.杜大长猪IGF-Ⅰ基因的克隆及其序列分析.中国兽医学报.2000;20(1):74-76
    147. Seethala R. Fluorescence polarization competition immunoassay for tyrosine kinases. Methods. 2000;22(1):61-70.
    148. Ward ES, Gussow DH, Griffiths AD. Binding activity of a repertoire of single immunoglogulin variable domain secreted from Escherichia Coli. Nature. 1989;341:544-546
    149. Yang TT, Cheng LZ, Kain SR. Optimized coden usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 1996; 24: 4592-4593.
    150. He ZM, Li HP, Li BJ. Applications of green fluorescent protein in life science research. Heredity. 1998; 20:43-46.
    151. Plautz JD, Day RN, Dailey GM, Welsh SB, Hall JC, Halpain S, Kay SA. Green fluorescent protein and its derivatives as versatile markers for gene expression in living cells. Gene. 1996;173(1 Spec No): 83-87.
    152. Meinel L, Zoidis E, Zapf J, Hassa P, Hottiger MO, Auer JA, Schneider R, Gander B, Luginbuehl V, Bettschart-Wolfisberger R. Illi OE, Merkle HP, von Rechenberg B. Localized insulin-like growth factor Ⅰ delivery to enhance new hone formation. Bone. 2003; 33(4): 660-72.
    153. Maloney EK, McLaughlin JL, Dagdigian NE. An anti-insulin-like growth factor Ⅰ receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res. 2003; 63(16): 50 73-83.
    154.顾健人,曹雪涛主编.基因治疗.科学出版社生命科学编辑部.北京.2002
    
    年1月.p2-83
    155.成党校,黄桂君,钱桂生.新型基因转染阳离子脂质体研究进展.国外医学药学分册.2000;27(5):257-260
    156.吴岚晓.李明.王萍.陈白虹.人胰岛素样生长因子-1在大肠杆菌中的表达.药物生物技术.001,8(4):185-188
    157.刘宏,吴织芬,王勤涛.胰岛素样生长因子-Ⅰ和骨形态发生蛋白-2对人牙周膜细胞增殖的作用.牙体牙髓牙周病学杂志.1999;9(1):31-33
    158.刘宏,吴织芬,王勤涛,周斌.胰岛素样生长因子-1对体外培养人牙周膜细胞骨钙素分泌的影响.第二军医大学学报.2001;22(5):456-458
    159. Miedsch CM, Anderson PC, Balian G, Diduch DR. Treatment with insulin-like growth factor-1 increases chondrogenesis by periosteum in vitro. Connect Tissue Res. 2002; 43(4): 559-68.
    160. Giannobile W.V. Periodontal Tissue Engineering by Growth Factor. Bone. 1996; 19(1) supplement: 235-375.
    161. Saito Y, Yoshizawa T, Takizawa F. A cell line with characteristics of the periodontal ligament fibroblasts isnegatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part ofwhich can be overcome by bone morphogenetic protein-2. J Cell Sci.2002;115(Pt 21):4191-200
    162. Claudia M, Justin JR, Nathalie F. Insulin and Insulin-like Growth Factor-Ⅰ Induce Vascular Endothelial Growth Factor mRNA Expression via Different Signaling Pathways. J. Biol. Chem.2000;275(28):21695-21702.
    163. Frerich B, Lindemann N, Kurtz-Hoffmann J, Oertel K. In vitro model of a vascular strorna for the engineering of vascularized tissues. Int. J. Oral Maxillofac.Surg. 2001; 30: 414-420.
    164. Akita S, Fukui M, Nakagawa H, Fujii T, Akino K. Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair Regen. 2004 Mar-Apr; 12(2):252-9.
    165. Gabbitas B,Canalis E.Bone morphogenetic protein-2 inhabits the synthesis of insulinlike growth factor binding protein-5 in bone cell cultures. Endocrinology. 1995; 136(6):2397
    
    
    166.Li H, Bartold PM, Young WG, Xiao Y, Waters MJ. Growth hormone induces bone morphogenetic proteins and bone-related proteins in the developing rat periodontium. J Bone Miner Res. 2001 Jun; 16(6): 1068-76.
    167.Daian T, Ohtsuru A, Rogounovitch T, Ishihara H, Hirano A, Akiyama-Uchida Y, Saenko V, Fujii T, Yamashita S. Insulin-like growth factor-Ⅰ enhances transforming growth factor-beta-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J Invest Dermatol. 2003; 120(6):956-62.
    168.姚晖.口腔医学领域的组织工程学.现代康复.2001;5(8):11-15
    169.Romanos GE, Schroter-Kermani C, Hinz N, Wachtel HC, Bemimoulin JP. Immunohisto- chemical localization of collagenous components in healthy periodontal tissues of the rat and marmoset (callithrix jacchus). Ⅰ. Distribution of collagen types Ⅰ and Ⅲ J Periodont Res.1992;27:101-110
    170.Tung PS, Domenicucci C, Wasi S, Sodek J. Specific immunohistochemical localization of osteonectin and collagen type Ⅰ and Ⅲ in fetal and adult porcine dental tissues. J Histochem Cytochem.1985;33:531-540
    171.Araujo M.G., Berglundh T., Lindhe J. On the dynarnics of periodontal tissue formation in degree furcation defects. An experimental study in dogs. J Clin Periodontol. 1997; 24: 738-746
    172.束蓉,李超伦,刘正,王洪海,陈佩丽,刘文.猪釉基质蛋白的提取及N末端氨基酸序列分析.口腔医学纵横.1999;15(2):67-68
    173.Amar S. Implications of cellular and molecular biology advances in periodontal regeneration. Anat Tec. 1996;245:361-373
    174.Sodek KL, Tupy JH, Sodek J, Grynpas MD. Relationships between bone protein and mineral in developing porcine long bone. and calvaria. Bone.2000;26(2): 189-98
    175.Uede T, Katagiri Y, Iizuka J. Osteopontin, a coordinator of host defense system: a cytoldne or an extracellular adhesive protein? Microbiol Immunol. 1997;41(9):641-8
    
    
    176. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med.2000; 11(3):279-303
    177. Denhardt DT, Noda M. Osteopontin expression and function: role in bone remodeling. J Cell Biochem Suppl. 1998;30-31:92-102
    178. McKee MD, Nanci A. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech. 1996 ;33(2): 141-64
    179. Sommer B, Bickel M, Hofstetter W, Wetterwald A..Expression of matrix proteins during the development of mineralized tissues. Bone,1996;19(4):371-80
    180.刘宏,王勤涛,吴织芬,周斌.rhBMP22对人牙周膜细胞骨桥蛋白表达的影响.中华口腔医学杂志.2000;35(5):330-332
    181. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med. 1999;10(1):79-98
    182. Goldberg HA, Warner K J, Stillman M J, Hunter GK.. Determination of the hydroxyapatite- nucleating region of bone sialoprotein. Connect Tissue Res. 1996;35(1-4):385-92
    183. MacNeil RL, Berry J, D'Errico J, Strayhom C, Somerman MJ. Localization and expression of osteopontin in mineralized and nonmineralized tissues of the pedodontium. Ann N Y Acad Sci, 1995;21;760:166-76
    184.步星耀,黄志起,张永福.骨髓基质细胞的生物学特性及应用研究.实用诊断与治疗杂志.2004;18(1):35-38
    185.鲁红.吴织芬.应用组织工程方法促进牙周组织再生的实验研究.第四军医大学学位论文 2002年4月.
    186. Rutherford RB, Moalli M, Franceschi RT. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 2002 Jul;8(3):441-52
    187.杨耀武,毛天球,何帅,陈富林,杨成,程晓兵.陶瓷化鸵鸟松质骨支架制备及成分、性能分析.第四军医大学学报.2003;24(16):1476-1478
    188. Lynch SE, de Castilla GR, Williams RC, Kiritsy CP, Howell TH, Reddy
    
    MS, Antoniades HN. The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol. 1991 Jul;62(7):458-67
    189.刘红云,童富淡.鱼类胰岛素样生长因子-1及其结合蛋白研究进展.生命的化学.2003;23(4):287-288