非混相驱替过程的格子Boltzmann模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
指进是一种相界面不稳定现象。通常情况下,其诱发的主要原因是流体间的黏度差,故有时也称黏性指进。黏性指进现象是多相渗流的重要特征之一,在很多工程应用中起着至关重要的作用,如化工、石油开采以及地下水污染的治理等领域。以石油开采为例,该现象的过早出现会减少波及效率,造成驱替流体的窜流,降低石油采收率。非混相驱油过程中的黏性指进现象是一个涉及到相界面捕捉、多组分多相流理论以及复杂几何流场内流体流动的复杂流体动力学问题。其影响因素众多,涉及到多孔介质的孔隙结构、壁面润湿性以及流体的物性等。该问题的内在产生机理至今尚不明晰,因此对于黏性指进现象的研究有着重要的学术意义和应用价值。本文以黏性指进现象为主要研究对象,针对采用Shan-Chen (SC)模型模拟具有不同密度比和黏度比流体系统时存在的问题,进行了改进,提出了一种新的LBM多组分模型,并利用格子Boltzmann方法(Lattice Boltzmann Method, LBM)模拟单孔隙和多孔介质内的指进现象,综合考虑不同因素对于相界面形态以及驱替效率的影响,具体内容包括:
     (1)基于SC模型,提出一个新的可以模拟具有不同密度比和黏度比流体系统的LBM多组分模型。新模型中,对SC模型施加作用力的方式进行改进,消除了原模型中由于作用力的施加方式引入的离散误差。不同组分粒子的格子速度和格子声速均不同,因此,在一个时间步内,不同组分粒子的迁移距离也不同,相互之间的比例关系由流体间的密度比确定。迁移后格子节点上的粒子分布函数由双线性插值格式确定。给出考虑固体边界的特殊处理方法。利用新的LBM多组分模型模拟了在不同管径的圆管内、不同体积流量下,水驱癸烷的非混相驱替过程,并与实验结果进行比较。模拟中的平均驱替速度和驱替完成时间与实验结果相比,相对误差在3.2%以内,证明了新模型的正确性。新模型具有良好的守恒性。通过适当地选取边界条件,并对流场进行适当地处理,该模型可以用于模拟流体速度远小于模型本身伪速度的低速驱替过程。
     (2)详细地讨论了不同影响因素:毛细管数(Ca)、黏度比(M)、邦德数(Bo)以及固体壁面润湿性(用接触角θ表征)对单孔隙内非混相驱替过程中指进现象的影响。着重分析了是否考虑与流动方向相垂直的重力场对指进过程的影响。比较了不同情况下相界面形态的差别。并用突破时间和面积扫掠效率两个参数考察了不同条件下的驱替效率。结果表明:不考虑重力时,相界面关于孔隙的中心是对称的。考虑重力时,相界面是不对称的,相界面前缘与孔隙中心有一定的偏移,而且相界面与孔隙上下壁面的交点位置也有所不同。同等条件下,和不考虑重力相比,当M>1时,重力的影响使得驱替效率有所降低。研究发现,随着Ca、M和Bo的增加,指进现象更加明显。当驱替流体的接触角θ1>90°时,指进现象被强化,而当驱替流体的接触角θ1<90°时,指进现象被抑制。指进现象明显时,驱替效率低。因此,从工程效益的角度出发,为了达到更大的驱替效率,对于单孔隙内的非混相驱替过程而言,驱替过程中Ca越小越好,M越小越好,Bo越小越好,驱替流体的θ1越小越好。
     (3)和单孔隙内非混相驱替过程相比,固体骨架的存在使得多孔介质内的指进现象更加复杂。不考虑重力时,相界面关于流场中心是对称的。考虑重力时,相界面是不对称的,相界面的指状前缘会朝斜下方倾斜,并且会有离散的被驱替流体小液滴附着在固体骨架上或者被夹带在驱替流体中。以交错形式排列的多孔介质骨架结构会抑制指进现象的发生。随着Ca的增加,并没有明显的指进现象出现。在有限的M范围内(M=1~5),由于驱替流体的注入速度恒定以及固体骨架的交错排列方式,当M≥3时,最终的相界面前缘的形态相差不多。随着Bo的增加,相界面前端沿斜下方的运动趋势更加明显,相界面的指状前缘细而长。在驱替结束时,当Bo=0.218~0.229时,相界面的指状前缘最为粗壮,被圈闭在固体骨架上被驱替流体的小液滴也较大。不考虑重力时,固体壁面润湿性对指进现象的影响规律和单孔隙内的影响规律相同(抑制作用或强化作用)。不同之处在于:有被圈闭的被驱替流体会附着在背向流体流动方向的固体骨架右侧,无法被驱替出来。考虑重力时,相界面的形态更加复杂,但是润湿性对指进现象的“抑制”和“强化”规律不变。对于不同的情况,指进现象越明显,驱替效率越低。同样条件下,重力的存在使得突破时间和面积扫掠效率有所降低。
Fingering refers to interface instability phenomenon. Generally, it is caused by the viscosity ratio between fluids; hence sometimes it is called viscous fingering. Viscous fingering phenomenon is an important feature of multiphase flow. In many engineering applications, such as chemical engineering, oil recovery field and remediation of underground water contamination, it plays a crucial role. For example, in the oil recovery field, the early occurrence of viscous fingering phenomenon will decrease sweep efficiency and result in the breakthrough of displacing fluid, therefore, the oil recovery is reduced. Viscous fingering phenomenon in immiscible displacement is a complex fluid dynamic problem related to the capture of phase interface, multi-component multi-phase flow theory and fluid flow in complex geometry. The various impact factors include the structure of porous media, surface wettability and fluid properties. So far, the intrinsic mechanism is not yet clear, so the study of viscous fingering phenomenon is quite important for both theory and application. In this paper, in order to solve the problem encountered in the simulation of fluids with various density ratio and viscosity ratio by the original Shan-Chen (SC) model, a new scheme of LBM model for multi-component is proposed. In addtion, viscous fingering phenomenon in immiscible displacement in a channel and porous media will be investigated by the lattice Boltzmann method, respectively. The effects of various factors on fingering pattern and displacement efficiency will be studied. The main contents are as follows:
     (1) Based on the original SC model, a new model for modelling immiscible fluids with various density ratio and viscosity ratio is proposed. In the new model, the incorporation scheme of the force is improved to remove the discretization error. The lattice speeds and lattice speeds of sound for fluid components are different, hence, the streaming distances of fluid components during a time step are different, and they are related to the density ratio. The particle distribution functions at the lattice points are determined by bilinear extrapolation scheme. Besides, the strategy for solid boundary condition is specified. The new model has been validated by modelling the displacement of decane by water at various volume fluxes in a circular tube with various diameters. Compared with the experimental data, the relative errors of average displacing velocity and displacement time are within 3.2%. The new model has a good conservativeness. By choosing suitable boundary condition and properly handling the flow domain, this model can be used to simulate low velocity displacement in which the displacing velocity is smaller than the pseudo-velocity.
     (2) The effect of various impact factors on fingering phenomenon in a channel are analysed detailly, such as capillary number (Ca), viscosity ratio (M), Bond number (Bo) as well as surface wettability (represented by contact angleθ). Specific focuses are put on the situations whether the effect of gravity is considered or not. The interface patterns are compared under different circumstances. The displacement efficiencies in various conditions are examined by the breakthrough time and areal sweep efficiency. Simulations show that the interface is symmetric to the channel center without consideration of gravity and it is asymmetric when the gravity is taken into account. There is an offset between the interface front and channel center, and the intersections between the interface and channel upper/lower boundaries are different. In the same condition, for M>1, the displacement efficiency decreases when the effect of gravity is incorporated. With the increasing of Ca, Bo and M, the fingering phenomenon becomes more and more obvious. When the contact angle of displacing fluidθ, is larger than 90°, the fingering phenomenon is enhanced, and when the contact angle of displacing fluidθ1 is smaller than 90°, the fingering phenomenon is suspended. The more significant the viscous fingering is, the lower the displacement efficiency is. In conclusion, from the economic benefit, in order to achieve higher displacement efficiency, as for the immiscible displacement in a channel, it is better to maintain small capillary number, small viscosity ratio, small Bond number and small contact angle of displacing fluid.
     (3) Compared to the situation in a channel, the existence of solid materials makes fingering phenomenon in porous media more complicated. The interface is symmetric when the gravity is ignored, and it is asymmetric when the gravity is considered. The interface front has a tendency of moving along the direction of gravity. In some circumstances, there are isolated droplets of displaced fluid adhering to the solid materials or being trapped in the displacing fluid. The staggered arrangement of solid materials suspends the occurrence of fingering. There is no significant fingering as Ca increases. In the limited viscosity ratio range (M=1~5), due to the constant injecting velocity of displacing fluid and staggered arrangement of solid materials, final interface pattern is similar in the case of M≥3. As Bo increases, the moving downwards tendency of the interface becomes more obvious. The finger front is narrow and long. In the end of displacement, the finger is the most strongest for Bo=0.218~0.229. Accordingly, the isolated droplets of displaced fluid adhering to the solid materials are bigger. No matter the gravity is taken into account or not, the effect of surface wettability on viscous fingering is the same as that in the case of displacement in a channel (enhancing or suspending). The difference is that, when the gravity is considered, there are isolated droplets of displaced fluid adhering to the solid materials which cannot be displaced. For various conditions, the more significant the viscous fingering is, the lower the displacement efficiency is. In the same situation, the existence of gravity decreases displacement efficiency.
引文
[1]张建华,罗俊,屈世显,等.粘性指进的实验、模拟与多分型研究[J].科技通报,1998,14(5):315-320.
    [2]Bacri J C, Salin D, Wouemeni R. Three-dimensional Miscible Viscous Fingering in Porous Media [J]. Physical Review Letters,1991,67(15):2005-2008.
    [3]Saghir M Z, Chaalal 0, Islam M R. Numerical and experimental modeling of viscous fingering during liquid-liquid miscible displacement [J]. Journal of Petroleum Science and Engineering,2000,26(1-4):253-262.
    [4]De Wit A, Bertho Y, Martin M. Viscous fingering of miscible slices [J]. Physics of Fluids, 2005,17(5):054114-054119.
    [5]Goyal N, Meiburg E. Miscible displacements in Hele-Shaw cells:two-dimensional base states and their linear stability [J]. Journal of fluid mechanics,2006, 558 (-1):329-355.
    [6]Schafroth D, Goyal N, Meiburg E. Miscible displacements in Hele-Shaw cells:Nonmonotonic viscosity profiles [J]. European Journal of Mechanics-B/Fluids,2007,26(3):444-453.
    [7]石钟慈.第三种科学方法-计算机时代的科学计算[M].北京:清华大学出版社,2000.
    [8]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [9]刘儒勋.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [10]Meier K, Laesecke A, Kabelac S. A Molecular Dynamics Simulation Study of the Self-Diffusion Coefficient and Viscosity of the Lennard-Jones Fluid[J]. International Journal of Thermophysics,2001,22(1):161-173.
    [11]Lv J, Cui W, Bai M, et al. Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition [J]. Microfluidics and nanofluidics, 2010,10(2):1-6.
    [12]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M]:科学出版社,2008.
    [13]Martys N S, Douglas J F. Critical properties and phase separation in lattice Boltzmann fluid mixtures [J]. Physical Review E,2001,63 (3):031205.
    [14]Fan L, Fang H, Lin Z. Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model [J]. Physical Review E,2001,63(5):051603.
    [15]Yan Y Y, Zu Y Q. A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio [J]. Journal of Computational Physics,2007, 227(1):763-775.
    [16]Inamuro T, Yoshino M, Ogino F. Lattice Boltzmann simulation of flows in a three-dimensional porous structure [J]. International Journal for Numerical Methods in Fluids,1999,29(7):737-748.
    [17]Sukop M C, Or D. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models [J]. Physica B:Condensed Matter,2003,338(1-4):298-303.
    [18]Pan C, Luo L-S, Miller C T. An evaluation of lattice Boltzmann schemes for porous medium flow simulation [J]. Computers & Fluids,2006,35(8-9):898-909.
    [19]Pico C E, Santos L 0 E d, Philippi P C. Lattice Boltzamnn simulation of two-phase fluid flow through porous media.18th International Congress of Mechanical Engineering. Ouro Preto, MG,2005:1-7.
    [20]Zu Y Q, Yan Y Y. Numerical Simulation of Electroosmotic Flow near Earthworm Surface [J]. Journal of Bionic Engineering,2006,3(4):179-186.
    [21]Krafczyk M, Cerrolaza M, Schulz M, et al. Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice-Boltzmann methods [J]. Journal of Biomechanics,1998,31 (5):453-462.
    [22]Dupin M M, Halliday I, Care C M. A multi-component lattice Boltzmann scheme:Towards the mesoscale simulation of blood flow [J]. Medical Engineering and Physics,2006, 28(1):13-18.
    [23]Harrison S E, Smith S M, Bernsdorf J, et al. Application and validation of the lattice Boltzmann method for modelling flow-related clotting [J]. Journal of Biomechanics, 2007,40(13):3023-3028.
    [24]段秋者,梁保升,罗平亚,等.孔隙介质中非混相微观驱替机理及影响因素[J].西南石油学院学报,2001,23(6):41-43.
    [25]Tchelepi H A, F. M. Orr J. Interaction of viscous fingering, permeability heterogeneity, and gravity segregation in three dimensions [J]. SPE Reservoir Engineering,1994, 9(4):266-271.
    [26]Aursj(?) O, L(?)voll G, Knudsen H, et al. A Direct Comparison Between a Slow Pore Scale Drainage Experiment and a 2D Lattice Boltzmann Simulation [J]. Transport in Porous Media,2010:1-10.
    [27]Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media [J]. Journal of Fluid Mechanics Digital Archive,1988, 189:165-187.
    [28]Hill S, P F I. Channeling in packed columns [J]. Chemical Engineering Science,1952, 1(6):247-253.
    [29]Saffman P G, Taylor G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid [J]. Proceedings of the Royal Society of London, Series A:Mathematical and Physical Sciences,1958,245:312-329.
    [30]Chuoke R L, Meurs P v, Poel C v d. The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media [J]. Transactions AIME,1959, 216:188-194.
    [31]Park C W, Gorell S, Homsy G M. Two-phase displacement in Hele-Shaw cells:experiments on viscously driven instabilities [J]. Journal of fluid mechanics,1984,141:275-287.
    [32]Homsy G M. Viscous Fingering in Porous Media [J]. Annual Review of Fluid Mechanics, 1987,19:271-311.
    [33]Tabeling P, Zocchi G, Libchaber A. An experimental study of the Saffman-Taylor instability [J]. Journal of fluid mechanics,1987,177:67-82.
    [34]Perkins T K, Johnston O C. A Study of Immiscible Fingering in Linear Models [J]. SPE Journal,1969,9(1):39-46.
    [35]Frette 0 I, ringal M, oslash, et al. Immiscible displacement of viscosity-matched fluids in two-dimensional porous media [J]. Physical Review E,1997,55(3):2969.
    [36]Dawe R A, Caruana A, Grattoni C A. Immiscible Displacement in Cross-Bedded Heterogeneous Porous Media [J]. Transport in Porous Media,2011,87:335-353.
    [37]屈世显,张建华,冯延春,等.粘性指进现象的分形研究[J].西安石油学院学报,1994,9(4):60-64.
    [38]P. Van Meurs K. The Use of Transparent Three-Dimensional Models for Studying the Mechanism of Flow Processes in Oil Reservoirs [J]. Petroleum Transactions, AIME,1957, 210:295-301.
    [39]Stokes J P, Weitz D A, Gollub J P, et al. Interfacial stability of immiscible displacement in a porous medium [J]. Physical Review Letters,1986,57 (14):1718-1721.
    [40]Frette V, Feder J, J(?)ssang T, et al. Fast, immiscible fluid-fluid displacement in three-dimensional porous media at finite viscosity contrast [J]. Physical Review E, 1994,50(4):2881.
    [41]Ovdat H, Berkowitz B. Pore-scale study of drainage displacement under combined capillary and gravity effects in index-matched porous media [J]. Water Resources Research,2006,42(6):W06411.
    [42]Wang S Y, Huang Y B, Pereira V, et al. Application of computed tomography to oil recovery from porous media [J]. Applied Optics,1985,24(23):4021-4027.
    [43]Peters E J, Hardham W D. Visualization of fluid displacements in porous media using computed tomography imaging [J]. Journal of Petroleum Science and Engineering,1990, 4 (2):155-168.
    [44]Zitha P, Nguyen Q, Currie P, et al. Coupling of Foam Drainage and Viscous Fingering in Porous Media Revealed by X-ray Computed Tomography [J]. Transport in Porous Media, 2006,64(3):301-313.
    [45]Williams J L A, Taylor D G, Maddinelli G, et al. Visualisation of fluid displacement in rock cores by NMR imaging [J]. Magnetic Resonance Imaging,1991,9(5):767-773.
    [46]Eleanor S D, Carpenter T A, Laurance D H, et al. NMR imaging of fractal fingering in Hele-Shaw cells [J]. AIChE Journal,1993,39(3):510-512.
    [47]Maddinelli G, Brancolini A. MRI as a tool for the study of waterflooding processes in heterogeneous cores [J]. Magnetic Resonance Imaging,1996,14(7-8):915-917.
    [48]Bencsik M, Ramanathan C. Direct measurement of porous media local hydrodynamical permeability using gas MRI [J]. Magnetic Resonance Imaging,2001,19(3-4):379-383.
    [49]Sheppard S, Mantle M D, Sederman A J, et al. Magnetic resonance imaging study of complex fluid flow in porous media:flow patterns and quantitative saturation profiling of amphiphilic fracturing fluid displacement in sandstone cores [J]. Magnetic Resonance Imaging,2003,21 (3-4):365-367.
    [50]Johns M L, Sullivan S P, Sederman A J, et al. MRI verification of complex flow simulations [J]. Magnetic Resonance Imaging,2007,25 (4):565-566.
    [51]Romero-Zern L B, Li L, Ongsurakul S, et al. Visualization of Waterflooding through Unconsolidated Porous Media Using Magnetic Resonance Imaging [J]. Petroleum Science and Technology,2009,27(17):1993-2009.
    [52]Suekane T, Ishii T, Tsushima S, et al. Migration of C02 in Porous Media Filled with water [J]. Journal of Thermal Science and Technology,2006,1(1-11).
    [53]Chen J-D, Dias M M, Patz S, et al. Magnetic Resonance Imaging of Immiscible-Fluid Displacement in Porous Media [J]. Physical Review Letters,1988,61 (13):1489.
    [54]Wang Z, Feyen J, Elrick D E. Prediction of Fingering in Porous Media [J]. Water Resources Research,1998,34(9):2183-2190.
    [55]Riaz A, Tchelepi H A. Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation [J]. Physics of Fluids,2004, 16(12):4727-4737.
    [56]Riaz A, Tang G-Q, Tchelepi H A, et al. Forced imbibition in natural porous media Comparison between experiments and continuum models [J]. Physical Review E,2007, 75(3):036305(036309).
    [57]Aleman M A, Slattery J C. A linear stability analysis for immiscible displacements [J]. Transport in Porous Media,1988,3 (5):455-472.
    [58]Neuman S P, Chen G. On Instability During Immiscible Displacement in Fractures and Porous Media [J]. Water Resources Research,1996,32(6):1891-1894.
    [59]Riaz A, Tchelepi H A. Numerical simulation of immiscible two-phase flow in porous media [J]. Physics of Fluids,2006,18(1):014104-014112.
    [60]Riaz A, Tchelepi H A. Influence of Relative Permeability on the Stability Characteristics of Immiscible Flow in Porous Media [J]. Transport in Porous Media, 2006,64(3):315-338.
    [61]Brailovsky I, Babchin A, Frankel M, et al. Fingering instability in water-oil displacement [J]. Transport in Porous Media,2006,63(3):363-380.
    [62]Brailovsky I, Babchin A, Frankel M, et al. A reduced model for fingering instability in miscible displacement [J]. Physics Letters A,2007,369(3):212-217.
    [63]Babchin A, Brailovsky I, Gordon P, et al. Fingering instability in immiscible displacement [J]. Physical Review E,2008,77(2):026301.
    [64]Tan X, Pei J, Chen J. Three dimensional simulation of unstable immiscible displacement in the porous medium [J]. Applied Mathematics and Mechanics,1997,18(1):81-89.
    [65]Ferdowsi P A, Manzari M T. A modified space-time finite element method for simulation of immiscible incompressible two-phase flow in heterogeneous porous media [J]. International Journal for Numerical Methods in Fluids,2007,53:1221-1242.
    [66]Sahimi M. Flow phenomena in rocks:from continuum models to fractals, percolation, cellular automata, and simulated annealing [J]. Reviews of Modern Physics,1993, 65(4):1393.
    [67]Tryggvason G, Aref H. Finger-interaction mechanisms in stratified Hele-Shaw flow [J]. Journal of fluid mechanics,1985,154:287-301.
    [68]Degregoria A J, Schwartz L W. A boundary-integral method for two-phase displacement in Hele-Shaw cells [J]. Journal of Fluid Mechanics Digital Archive,1986, 164 (-1):383-400.
    [69]Guan X, Pitchumani R. Viscous fingering in a Hele-Shaw cell with finite viscosity ratio and interfacial tension [J]. Journal of Fluids Engineering,2003,125(2):354-364.
    [70]李东霞,苏玉亮,高海涛,等.二氧化碳非混相驱油粘性指进表征方法及影响因素[J].油气地质与采收率,2010,17(3):63-67.
    [71]Paterson L. Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media [J]. Physical Review Letters,1984,52(18):1621.
    [72]Fernandez J F, Albarran J M. Diffusion-limited aggregation with surface tension: Scaling of viscous fingering [J]. Physical Review Letters,1990,64(18):2133.
    [73]Oxaal U. Fractal viscous fingering in inhomogeneous porous models [J]. Physical Review A,1991,44(8):5038.
    [74]Bogoyavlenskiy V A. Mean-field diffusion-limited aggregation:A "density" model for viscous fingering phenomena [J]. Physical Review E,2001,64(6):066303.
    [75]L(?)voll G, Meheust Y, Toussaint R, et al. Growth activity during fingering in a porous Hele-Shaw cell [J]. Physical Review E,2004,70(2):026301.
    [76]杨小刚,杨兆中,陈锐,等.分形生长DLA模型在粘性指进模拟中的应用探讨[J].钻采工艺,2006,29(3):76-78.
    [77]Aker E. A simulation Model for Two-Phase Flow in Porous Media. Norway:University of Oslo,1996.
    [78]Kueper B H, Frind E 0. An overview of immiscible fingering in porous media [J]. Journal of Contaminant Hydrology,1988,2(2):95-110.
    [79]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [80]Lenormand R, Zarcone C, Sarr A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts [J]. Journal of fluid mechanics,1983,135:337-353.
    [81]Ferer M, Anna S, Tortora P, et al. Two-Phase Flow in Porous Media:Predicting Its Dependence on Capillary Number and Viscosity Ratio [J]. Transport in Porous Media, 2010:1-17.
    [82]Ramstad T,(?)ren P-E, Bakke S. Simulation of Two Phase Flow in Reservoir Rocks Using a Lattice Boltzmann Method. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana,2009.
    [83]Burgess D, Hayot F. Saffman-Taylor-type instability in a lattice gas [J]. Physical Review A,1989,40(9):5187.
    [84]Hayot F. Fingering instability in a lattice gas [J]. Physica D:Nonlinear Phenomena, 1991,47(1-2):64-71.
    [85]Rothman D H. Macroscopic Laws for Immiscible Two-Phase Flow in Porous Media Results From Numerical Experiments [J]. Journal of Geophysical Research,1990, 95 (B6):8663-8674.
    [86]Succi S, et al. Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method [J]. EPL (Europhysics Letters),1989,10(5):433.
    [87]Gunstensen A K, Rothman D H. Lattice-Boltzmann Studies of Immiscible Two-Phase Flow Through Porous Media [J]. Journal of Computational Physics,1993,98(B4):6431-6441.
    [88]Hazlett R D, Chen S Y, Soll W E. Wettability and rate effects on immiscible displacement_Lattice Boltzmann simulation in microtomographic images of reservoir rocks [J]. Journal of Petroleum Science and Engineering,1998,20:167-175.
    [89]van Kats F M, Egberts P J P. Simulation of three-phase displacement mechanisms using a 2D lattice-Boltzmann model [J]. Transport in Porous Media,1999,37(1):55-68.
    [90]Suekane T, Soukawa S, Iwatani S, et al. Behavior of supercritical C02 injected into porous media containing water [J]. Energy,2005,30(11-12):2370-2382.
    [91]Suekane T, Tsukamoto Y, Hirai S. Numerical Analysis of Two-Phase Flow in Porous Media by LBM [J]. Theoretical and Applied Mechanics Japan 2005,54:235-242.
    [92]Langaas K, Yeomans J M. Lattice Boltzmann simulation of a binary fluid with different phase viscosities and its application to fingering in two dimensions [J]. European Physical Journal B,2000,15(1):133-141.
    [93]Chin J, Boek E S, Coveney P V. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2002,360(1792):547-558.
    [94]Grosfils P, Boon J P. Viscous fingering in miscible, immiscible and reactive fluids [J]. International Journal of Modern Physics B,2003,17(1/2):15-20.
    [95]Grosfils P, Boon J P, Chin J, et al. Structural and dynamical characterization of Hele-Shaw viscous fingering [J]. Philosophical Transactions of the Royal Society of London Series A,2004,362(1821):1723-1734.
    [96]Kang Q, Zhang D, Chen S. Immiscible displacement in a channel:simulations of fingering in two dimensions [J]. Advances in Water Resources,2004,27(1):13-22.
    [97]Chau J F, Or D, Sukop M C. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods [J]. Water Resources Research,2005,41 (8):W08410.
    [98]Chau J F, Or D. Linking drainage front morphology with gaseous diffusion in unsaturated porous media:A lattice Boltzmann study [J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2006,74(5):056304-056311.
    [99]Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media [J]. Water Resources Research,2004,40(1):W01501.
    [100]Li H, Pan C, Miller C T. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media [J]. Physical Review E,2005,72(2):026705.
    [101]Yiotis A G, Psihogios J, Kainourgiakis M E, et al. A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,300(1-2):35-49.
    [102]Thommes G, Becker J, Junk M, et al. A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method [J]. Journal of Computational Physics,2009,228(4):1139-1156.
    [103]Becker J, Junk M, Kehrwald D, et al. A combined lattice BGK/level set method for immiscible two-phase flows [J]. Computers & Mathematics with Applications,2009, 58(5):950-964.
    [104]Huang H, Li Z, Liu S, et al. Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media[J]. International Journal for Numerical Methods in Fluids,2008,61 (3):341-354.
    [105]Porter M L, Schaap M G, Wildenschild D. Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media [J]. Advances in Water Resources,2009,32(11):1632-1640.
    [106]Schaap M G, Porter M L, Christensen B S B, et al. Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations [J]. Water Resources Research,2007,43.
    [107]Fayers F J, Zhou D. On the importance of gravity and three-phase flow in gas displacement processes [J]. Journal of Petroleum Science and Engineering,1996, 15(2-4):321-341.
    [108]Zhang Y, Shariati M, Yortsos Y C. The Spreading of Immiscible Fluids in Porous Media under the Influence of Gravity [J]. Transport in Porous Media,2000,38(1):117-140.
    [109]Meheust Y, L(?)voll G, Mal(?)y K J, et al. Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects [J]. Physical Review E,2002,66(5):051603.
    [110]L(?)voll G, Meheust Y, Mal(?)y K J, et al. Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study[J]. Energy,2005,30(6):861-872.
    [111]Or D. Scaling of capillary, gravity and viscous forces affecting flow morphology in unsaturated porous media [J]. Advances in Water Resources,2008,31(9):1129-1136.
    [112]Doolen G, Frisch M, Hasslacher B, et al. Lattice gas methods for partial differential equations [M]:Addison Wesley,1989.
    [113]d'Humieres D, Lallemand P, Frisch U. Lattice Gas Models for 3D Hydrodynamics [J]. Europhysics Letter,1986,2 (4):291-297.
    [114]李元香,康立山,陈毓屏.格子气自动机[M]:清华大学出版社,1994.
    [115]Higuera F J, Jimenez J. Boltzmann Approach to Lattice Gas Simulations [J]. EPL (Europhysics Letters),1989,9(7):663-668.
    [116]Higuera F J, Succi S, Benzi R. Lattice Gas Dynamics with Enhanced Collisions [J]. Europhysics letter,1989,9(4):345-349.
    [117]Chen S, Chen H, Martnez D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics [J]. Physical Review Letters,1991,67(27):3776.
    [118]Qian Y H, D'humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. Europhysics Letters,1992,17(6):479-484.
    [119]Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics,1998,30(1):329-364.
    [120]Luo L-s. The lattice-gas and lattice Boltzmann methods:past, present, and future [J]. Proceedings of the "International Conference on Applied Computational Fluid Dynamics, " Beijing, China, October 17-20,2000.
    [121]Succi S. The lattice Boltzmann equation for fluid dynamics and beyond [M]. Oxford: Oxford university press,2001.
    [122]Bhatnagar P L, Gross E P, Krook M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems [J]. Physical Review, 1954,94(3):511.
    [123]He X, Luo L-S. Theory of the lattice Boltzmann method:From the Boltzmann equation to the lattice Boltzmann equation [J]. Physical Review E,1997,56(6):6811.
    [124]Yuan P. Thermal lattice Boltzmann two-phase model for fluid dynamics:University of Pittsburgh,2005.
    [125]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2009.
    [126]Sukop M C, Thorne D T. Lattice Boltzmann Modeling:An Introduction For Geoscientists And Engineers [M]. New York:Sringer, Heidelberg, Berlin,2006.
    [127]Chen S, Martinez D, Mei R. On boundary conditions in lattice Boltzmann methods [J]. Physics of Fluids,1996,8(9):2527-2536.
    [128]Noble D R, Georgiadis J G, Buckius R 0. Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows [J]. Journal of Statistical Physics,1995,81 (1-2):17-33.
    [129]Noble D R, Chen S, Georgiadis J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method [J]. Physics of Fluids,1995,7(1):203-209.
    [130]Inamuro T, Yoshino M, Inoue H, et al. A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and Its Application to a Heat-Transfer Problem [J]. Journal of Computational Physics,2002,179(1):201-215.
    [131]Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations [J]. Physics of Fluids,1995,7(12):2928-2930.
    [132]Guo Z, Zheng C, Shi B. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J]. Chinese Physics,2002, 11(4):366-374.
    [133]Latt J, Chopard B, Malaspinas 0, et al. Straight velocity boundaries in the lattice Boltzmann method [J]. Physical Review E,2008,77(5):056703-056716.
    [134]Rothman D H, keller J M. Immiscible cellular-automaton fluids [J]. Journal of Statistical Physics,1988,52(3/4):1119-1127.
    [135]Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmann model of immiscible fluids [J]. Physical Review A,1991,43(8):4320-4327.
    [136]Grunau D, Chen S, Eggert K. A lattice Boltzmann model for multiphase fluid flows [J]. Physical Review A,1993,5(10):2557-2562.
    [137]Latva-Kokko M, Rothman D H. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids [J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2005,71(5):056702-056708.
    [138]Reis T, Phillips T N. Lattice Boltzmann model for simulating immiscible two-phase flows [J]. journal of Physics A:Mathematical and Theoretical,2007,40:4033-4053.
    [139]Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Physical Review E,1993,47(3):1815-1819.
    [140]Shan X, Doolen G. Multicomponent lattice-Boltzmann model with interparticle interaction [J]. Journal of Statistical Physics,1995,81(1/2):379-393.
    [141]Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model [J]. Physics of Fluids,2006,18(4):042101-042111.
    [142]Yu Z. A Novel Lattice Boltzmann Method for Direct Numerical Simulation of Multiphase [Ph. D]. Columbus:The Ohio State University,2009.
    [143]Swift M R, R, R O, Yeomans J M. Lattice Boltzmann Simulation of Nonideal Fluids [J]. Physical Review Letters,1995,75(5):830-833.
    [144]Swift M R, Orlandini E, W. R 0, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems [J]. Physical Review E,1996,54(5):5041-5052.
    [145]Inamuro T, Konishi N, Ogino F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach [J]. Computer Physics Communications,2000,129(1-3):32-45.
    [146]Kalarakis A N, Burganos V N, Payatakes A C. Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics [J]. Physical Review E,2002
    65(5):056702 (056713).
    [147]Inamuro T, Ogata T, Tajima S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational Physics, 2004,198(2):628-644.
    [148]Zheng H W, Shu C, Chew Y T. A lattice Boltzmann model for multiphase flows with large density ratio [J]. Journal of Computational Physics,2006,218(1):353-371.
    [149]He X, Chen S, Zhang R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J]. Journal of Computational Physics,1999,152(2):642-663.
    [150]Xi H, Duncan C. Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow [J]. Physical Review E,1999, 59(3)-.3022-3026.
    [151]Raiskinmaki P, Koponen A, Merikoski J, et al. Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method [J]. Computational Materials Science,2000, 18(1):7-12.
    [152]Yang Z L, Dinh T N, Nourgaliev R R, et al. Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method [J]. International Journal of Heat and Mass Transfer,2001,44(1):195-206.
    [153]Yang Z L, Palm B, Sehgal B R. Numerical simulation of bubbly two-phase flow in a narrow channel [J]. International Journal of Heat and Mass Transfer,2002,45(3):631-639.
    [154]Fei K, Hong C. All-angle removal of C02 bubbles from the anode microchannels of a micro fuel cell by lattice-Boltzmann simulation [J]. Microfluidics and Nanofluidics, 2007,3(1):77-88.
    [155]Gupta A, Kumar R. Lattice Boltzmann simulation to study multiple bubble dynamics [J]. International Journal of Heat and Mass Transfer,2008,51(21-22):5192-5203.
    [156]Harting J, Venturoli M, Coveney P V. Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2004,362 (1821):1703-1722.
    [157]Sukop M C, Or D. Lattice Boltzmann method for modeling liquid-vapor interface configurations in porous media [J]. Water Resoures Research 2004,40:W01509.
    [158]Hatiboglu C U, Babadagli T. Pore-scale studies of spontaneous imbibition into oil-saturated porous media [J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2008,77(6):066311-066311.
    [159]Kang Q, Zhang D, Chen S. Displacement of a two-dimensional immiscible droplet in a channel [J]. Physics of Fluids,2002,14(9):3203-3214.
    [160]Yu Z, Hemminger 0, Fan L-S. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels [J]. Chemical Engineering Science,2007, 62(24):7172-7183.
    [161]Shan X. Simulation of Rayleigh-Benard convection using a lattice Boltzmann method [J]. Physical Review E,1997,55 (3):2780-2788.
    [162]Fei K, Chen W, Hong C. Microfluidic analysis of C02 bubble dynamics using thermal lattice-Boltzmann method [J]. Microfluidics and Nanofluidics,2008,5(1):119-129.
    [163]Martys N S, Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method [J]. Physical Review E,1996,53(1):743.
    [164]Huang H, Lu X-y. Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media:A lattice Boltzmann study [J]. Physics of Fluids, 2009,21(8):092104.
    [165]Boek E. Pore Scale Simulation of Flow in Porous Media Using Lattice-Boltzmann Computer Simulations. SPE Annual Technical Conference and Exhibition. Florence, Italy,2010.
    [166]Ghassemi A, Pak A. Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method [J]. Journal of Petroleum Science and Engineering,2011,77(1):135-145.
    [167]Martys N S. A Classical Kinetic Theory Approach to Lattice Boltzmann Simulation [J]. International Journal of Modern Physics C,2001,12(8):1169-1178
    [168]Hou S, Shan X, Zou Q, et al. Evaluation of Two Lattice Boltzmann Models for Multiphase Flows [J]. Journal of Computational Physics,1997,138:695-713.
    [169]Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation [J]. Physical Review E,1994,49(4):2941.
    [170]Cates M E, Desplat J-C, Stansell P, et al. Physical and computational scaling issues in Lattice Boltzmann Simulations of Binary Fluid Mixtures [J]. Philosophical Transactions:Mathematical, Physical and Engineering Sciences,2005, 363 (1833):1917-1935.
    [171]Feng Y T, Han K, Owen D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows:Computational issues [J]. International Journal for Numerical Methods in Engineering,2007,72(9):1111-1134.
    [172]Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method [J]. Physical Review E,2002,65(4):046308-046301-046306.
    [173]McCracken M E, Abraham J. Lattice Boltzmann methods for binary mixtures with different molecular weights [J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2005,71 (4):046704-046708.
    [174]Joshi A S, peracchio A A, Grew K N, et al. Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries [J]. Journal of Physics D: Applied Phsics,2007,40(9):2961-2971.
    [175]Dullien F A L. Porous Media:Fluid Transport and Pore Structure [M]. San Diego: Academic Press,1992.
    [176]Hollis A, Halliday I, Care C M. Enhanced, mass-conserving closure scheme for lattice Boltzmann equation hydrodynamics [J]. Journal of Physics A:Mathematical and General, 2006,39:10589-10601.
    [177]Bao J, Yuan P, Schaefer L. A mass conserving boundary condition for the lattice Boltzmann equation method [J]. Journal of conputational Physics,2008,227:8472-8487.
    [178]Timm K, athollah V, Dierk R. Shear stress in lattice Boltzmann simulations [J]. Physical Review E,2009,79(4):046704.
    [179]Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model [J]. Physics of Fluids,1997,9(6):1591-1598.