电磁吸波混凝土材料关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息化战争条件下,为了对抗电磁脉冲武器及雷达侦察监视技术对指挥防护工程生存造成的严重威胁,克服当前防护工程电磁防护方面存在的问题,开展了此项新型电磁防护材料研究。本文是作者在带领课题组工作中所开展的研究工作。本文分别在吸波材料基础理论研究、测试技术、电磁吸波混凝土研制等方面取得了突破性和创新性成果。论文的具体研究内容和取得的主要成果如下:
     1)详细分析了当前防护工程在电磁脉冲防护和雷达隐身等方面存在的主要问题,提出了解决问题的方法与对策,确立了本文的研究思路。2)从平面电磁波在吸波材料传播的Maxwell方程出发,推导了材料宏观电磁参数达到阻抗匹配的条件,提出了电磁吸波材料阻抗匹配条件的一个关系式。该匹配关系式指出了材料达到匹配的条件,为高性能吸波材料研制提供了基本依据。3)首次应用电磁场时域有限差分算法(FDTD)分别结合遗传算法(GA)与粒子群优化算法(PSO),研究了混合介质等效电磁参数与组分电磁参数之间的关系,得到了混合材料等效电磁参数的计算方法,与传统结构相关公式和经验公式相比,该方法具有更高的计算精度和更宽的适用频段。在此基础上编制了计算机优化辅助设计软件,达到了对吸波材料计算机辅助设计的目的。4)研制了一套适合材料电磁屏蔽性能、反射特性、电磁参数测试的测试系统,包括雷达吸波材料弓形反射率测试系统、矩形同轴测试系统、波导测试系统和带法兰的同轴探头测试系统,对其测试方法进行了研究。5)提出了通过材料反射率的谐振特性测量电磁参数的一种新的自由空间法,这是对非磁性材料电磁参数测试方法的丰富和突破。6)研究了电磁吸波混凝土的作用机理,揭示了材料的吸波机理,提出了完善材料特性的方法和措施。由此,给出了工程上选用低成本、高效能电磁吸波与屏蔽材料的原则与方法,并结合工程实际,给出了一种快速选材的方法。7)研制了一种电磁吸波混凝土材料。该材料结构与功能一体化,集电磁屏蔽、雷达隐身功能和建筑结构于一体,能够起到工程整体电磁脉冲防护,提高地下空间利用率,降低雷达侦察暴露征候的作用。具有显著的军事、经济和社会效益显著。8)在材料研制中,详细研究了影响材料电磁吸波特性和强度的各项因素。在电磁吸波混凝土的研究中,通过采用骨料电磁吸波矿物材料,成功解决了吸波混凝土材料电磁特性和力学性能兼顾的技术难题;通过材料配方和表面成型技术等,成功解决了普通屏蔽材料电磁反射率高的技术难题;通过材料复合技术和材料设计,研究解决了混凝土类材料全频谱范围的电磁屏蔽问题;研究了电磁吸波混凝土在工程实际应用关心的问题,有效解决了其耐腐蚀性、长期稳定性、耐久性问题和安全性问题,使电磁吸波混凝土的使用寿命与普通混凝土相同,而且性能稳定,使用不受限制。研究解决了电磁吸波混凝土施工工艺技术问题,使其与普通混凝土具有相同的工艺,方便了应用,降低了成本。9)对电磁吸波混凝土与碳纤维混凝土、碳粉类混凝土等做了综合效益对比分析,表明其性能、综合效益等方面都具备优越性。
Under the informationization warfare condition, for antagonizing serious threaten caused by electromagnetic pulse weapon and radar scouting technique to the survival of the protective engineering, overcoming the existing problems in the field of EMP protection, the new electromagnetic protective material technique is studied. This paper is author's production in the course of guiding task. The breakthrough and innovative achievements in the field of the basic theory of radar absorbing materials, testing techniques and development of electromagnetic absorbing concrete have obtained. The specific thesis research content and main achievements are as follows:
     1. Detailed analysis of the problems existing in the stealth and electromagnetic pulse protection of the protective engineering is worked. The solutions and measures are proposed. The idea of this study is established.2. The impedance matching condition of macro electromagnetic parameters of materials is deduced from the Maxwell equation of the plane electromagnetic wave pread in the absorbing materials, a new impedance matching condition on the electromagnetic absorbing material is brought foreword. The impedance matching condition indicates conditions of achieving impedance matching, provides the basis for the development of high-performance absorbing material.3. The electromagnetic fields finite difference time domain method (FDTD) separately combined with genetic algorithm (GA) and particle swarm optimization (PSO) is first applicated to study the relationship of the equivalent electromagnetic parameters between a mixed medium and compositions materials. The calculation method of equivalent electromagnetic parameters of mixed medium is obtained, and has higher accuracy and wider application spectrum compared with the traditional formula and empirical formula. On this basis, a computer-aided design optimization software is developed to computer-aided design for the purpose of absorbing material.4. A set of the suitable materials test systems for electromagnetic shielding, reflection characteristics, electromagnetic parameters are developed such as radar absorbing materials bow reflectivity testing system, rectangular coaxial test system, waveguide test system and coaxial probe with flange test system. The respectively testing methods were studied.5. A new free-space method of measurement of electromagnetic parameters by the resonant characteristics of material reflectance in the free space is proposed, which is rich and make a breakthrough at test method of non-magnetic material electromagnetic parameters.6. The process mechanism of electromagnetic wave absorbing concrete is studied and revealed. Further, the improving the material properties of the methods and measures is proposed. Thus, the principles and methods selected low-cost, high-performance electromagnetic wave absorbing and shielding raw is also given. And base on engineering practice, a method of quick selecting raw is given.7. It is developed the electromagnetic wave absorbing concrete with integration of structure and function, such as electromagnetic shielding, radar stealth and building structural material. It can play important role in the whole electromagnetic pulse protection, and improving utilization of underground space, and reducing symptoms of exposure to the radar surveillance, which has significant military, economic and social benefit.8. During materials development, the detailed factors impacted material electromagnetic wave absorbing properties and strength are studied. And by the use of coarse aggregate of electromagnetic absorbing mineral materials, the technical difficulties in concordance between electromagnetic properties and mechanical properties of electromagnetic wave absorbing concrete are successfully resolved. The technical difficulty of common Electromagnetic shielding materials with high reflectivity is successfully soluted by material preparation and surface molding technology. The technical difficulty of electromagnetic shielding under the full spectrum range of concrete-like materials is solved by composite technologies and materials design. The problems concerned in the practical engineering such as corrosion resistance, long-term stability, durability and material security issues of this materials are effective soluted, so that the electromagnetic wave absorbing concrete has a life as same as ordinary concrete's and stable performance, using unrestricted. The problem of construction technology of this material is studied and solved to make it with the same process of ordinary concrete and to reduce costs.9. A synthesis benefits analysis among electromagnetic wave absorbing concrete and carbon fiber reinforced concrete, carbon powder concrete and so on indicates this material have advantages in the field of its performance, synthesis benefits and other aspects.
引文
[1].王殿华.国外防护工程现状与发展趋势.第九次防护工程年会论文集.2004,8
    [2].何典章.防护工程科研现状及发展趋势.第九次防护工程年会论文集.2004,8
    [3].丁世敬,冯进技,葛德彪,等.对工程电磁脉冲屏蔽存在问题的认识与看法.人防科研,2006,1,P28
    [4].李德钜,苏晓晨,刘锋戈等.对防电磁脉冲屏蔽室与隔震地板关系的看法.防护工程,2006,28(5)
    [5].粟毅,黄春琳,雷文太.探地雷达理论与应用.北京:科学出版社,2006
    [6].侯容.美国“透地雷达”等地下探测技术取得重大突破.科研动态,2001,(3)P27-28
    [7].周竹虚.从阿富汗战争看防护工程技术面临的新挑战.科研动态,2001,(3)P16-20
    [8].阳开新.铁氧体吸波材料及其应用.磁性材料及器件,27(3),1996,P19-23
    [9].宋保钢,赵晖.金属磁性微波吸收材料.金属功能材料,1994,1,P21-23
    [10].王海.雷达吸波材料的研究现状和发展方向.上海航天,1999,1,P55-59
    [11].王智勇,刘俊能.超细金属粉微波电磁性能的研究.航天材料学报,14(13),1994
    [12].秦嵘,陈雷.国外新型隐身材料研究动态.宇航材料工艺,1997,4
    [13]. Charles E B, Eric J B, Richard J K, et al. Microwave absorber employing acicular magnetic metallic filaments. US Patent 5085931,1992
    [14].刘顺华,郭辉进.电磁屏蔽与吸波材料.功能材料与器件学报,8(3),2002,P213-217
    [15].赵福辰.电磁屏蔽材料的发展现状.材料开发与应用,16(5),2001,P29-33
    [16].赵灵智,胡社军,何琴玉.电磁屏蔽材料的屏蔽原理与研究现状.包装工程,2006,27(2):1-4
    [17].王锦成.电磁屏蔽材料的屏蔽原理与研究现状.化工新型材料,30(7),2002:16-18
    [18].万刚,李荣德.电磁屏蔽材料的进展.安全与电磁兼容,2003,1:40-41
    [19].刘献明,付绍云,黄传军.电磁波屏蔽复合材料的研究现状.材料导报,19(1),2005 17-23
    [20].贾志勇.新时代的发展需要屏蔽混凝土电磁防护混凝土之一——屏蔽混凝土.中国建材科技,2001,5
    [21].李建保,周益春.新材料科学及其实用技术.北京:清华大学出版社,2004,11
    [22].董波等.具有电磁屏蔽功能的新型建筑材料研究.广东建材,2006,11
    [23].沈刚,董发勤.电磁屏蔽混凝土及其发展趋势.混凝土,2004,10
    [24].赵清荣,丁世敬,任王军.电磁屏蔽混凝土与人防工程建设.人防科技,2003,1 P30
    [25].李建保,周益春.新材料科学及其实用技术.北京:清华大学出版社,2004,11
    [26].贾志勇.新时代的发展需要屏蔽混凝土电磁防护混凝土之——屏蔽混凝土.中国建材科技,2001,
    [27].陈德明,管永良.国外导电混凝土的研究和应用.混凝土,1991,3
    [28].蒋正武,孙振平,王新友.导电混凝土技术.混凝土,2000,9
    [29].关新春,欧进萍,韩宝国,等.碳纤维机敏混凝土材料的研究与进展.哈尔滨建筑大学学报,2002,12
    [30].杨海燕,李劲,叶齐政等.钢纤维混凝土的吸波性能研究院.功能材料,2002,33(3):341-345
    [31]. AL-Qadi I L,Hazim O A,Su W,et al. Dielectric properties of Portland cement concrete at low radio frequencies. Journal of Materials in Civil Engineering,7(3),1995
    [32]. Buyukozturk O. Electromagnetic properties of concrete and their significance in nondestructive testing. Transportation Research Record,1996,(1574)
    [33]. Hong C Rhim, Buyukozturk Oral. Electromagnetic properties of concrete at microwave frequency range. ACI Materials Journal,1998,95(3)
    [34].沈刚,董发勤.电磁屏蔽混凝土及其发展趋势.混凝土,2004,
    [35]. Xu Li, Qing Kang,Congzhi Zhou. Research on absorbing properties of the concrete shielding material at 3mm wave bands. Asia-Pacific conference on Environmentel Electromagnetics. Nov.4-7,2007. Hangzhou, China.
    [36]. Fu Xuli,Cheng D D L. Submicron carbon filament cement-matrix composites for electromagnetic interference shielding. Cement and Concrete Research,1996,26(10)
    [37]. Chung D D L. Cement reinforced with short carbon fibers:a multifunctional material. Composites:Part B, 2000,31(6-7)
    [38]. Chiou J M,岳中仁.碳纤维增强水泥对电磁干扰的屏蔽作用.新型碳材料,1990,(1)
    [39]. Otsuka Hiroshi, Haga Akira(Japan). Magnetic concrete having electromagnetic shielding effect. Jpn Kokai Tokkyo Koho,JP,2001302318 A2.2001,10.31
    [40]. Bache Hans Henrik, Knud Lund.Magnetic concrete with metal or alloy powder additions for electromagnetic apparatus. PCT Int Appl, WO,9208678 AL.1992-05-29
    [41].董波,高培伟,闫亚楠,乐建新.具有电磁屏蔽功能的新型建筑材料研究.广东建材,2006,11
    [42].李旭,康青,周从直,王德水.3mm波段混凝土屏蔽材料的研究.后勤工程学院学报,2004,20(1)
    [43].欧进萍,高雪松,韩宝国.碳纤维水泥基材料吸波性能与隐身效能分析.硅酸盐学报,2006,34(8)
    [44].张跃,职任涛.碳纤维LCF—无宏观缺陷MDF水泥基复合材料电学性能的研究.材料科学进展,1992,6(4)
    [45].张跃,袁润章.石墨—MDF水泥基复合材料屏蔽电磁波性能。材料研究学报,1995,9(6)
    [46]. Gulio Antonini etc. Shieding Effects of Reinforce Concrete Structures to Electromagnetic Fields due to GSM and UMTS Systems, IEEE Trans on Magnetic, VOL.39, NO.3, May 2003,P.1582-1585
    [47]. Chen Bin etc. Analysis of Shielding Effectiveness of Reinforced-concrete in High Power Electromagnetic Environment, Asia Pacific Conference on Environmental Electromagnetics CEEM'2003 Nov.4-7,2003 Hangzhou, China
    [48]. Xu Li, Qing Kang etc. Research on Absorbing Properties of the Concrete Shielding Material at 3mm Wave Bands Asia-pacific Conference on Environment Electromagnetic CEEM'2003 Nov.4-7,2003 Hangzhou,China
    [49]. Roger A. Dalke etc. Effects of Reinforced Concrete Structures on RF Communications, IEEE Trans on Electromagnetic Compatibility. VOL.42, NO.4, P486-496
    [50].康青,李旭.氧化锌晶须(ZnOw)水泥基复合材料微波吸收特性研究.功能材料,2004,35(增刊)
    [51].李旭,康青,周从直.铁晶矿砂水泥基复合材料电磁吸收特性研究.功能材料,2004,35(增刊)
    [52].胡传忻.隐身涂层技术.北京:化学工业出版社,2004,9
    [53].赵鹤云,项金钟,吴兴惠.电磁污染与电磁波吸波材料.云南大学学报(自然科学版),24(1),2004:58-62
    [54].苑金生.开发防电磁建筑材料近在眉睫.房材与应用,2001,29(6),P.47-48
    [55].王延永.新型电磁屏蔽材料在防护工程防电磁毁伤中的应用研究.工程兵勘察设计,2003,2
    [56].康青.手性吸波混凝土研制与展望.材料导报,2005,19(4)
    [57].丁世敬,赵跃智.电磁吸波材料在工程电磁脉冲防护与隐身技术中的应用前景分析.防护工程,2003,6 P.46
    [58]. Xu Li, Qing Kang etc. Research on Absorbing Properties of the Concrete Shielding Material at 3mm Wave Bands Asia-pacific Conference on Environment Electromagnetic CEEM'2003 Nov.4-7,2003 Hangzhou.China
    [59].曹旭等.单涂层吸波材料电磁参量匹配解析式的推导.齐齐哈尔师范学院学报(自然科学版),1997,17(3)
    [60].曹茂盛.单涂层微波吸收材料参量的匹配机制分析.纺织高校基础科学学报,1999,12,(2)
    [61].甘治平,官建国,王维.单层均匀吸波材料电磁参数的匹配研究.航空材料学报,2002,12,(2)
    [62]. Valenzllela. A Q, Fernandez F A, General design theory for single-layer homogeneous adsorber. IEEE. Trans on Ap,1996,44(7):822-826
    [63]. Musal Jr H M smith D C, Universal design chart for specular absorbers, IEEE Trans on Magnetics,1990, 26(5):1460-1464
    [64].张纪纲,张百良.广角电磁波吸收板.专利号ZL[93236640.6] 1994,4,13
    [65].赵振声,吴明忠,何华辉.雷达吸波材料对斜入射电磁波的反射.华中理工大学学报,26(4),1998:36-38
    [66].吴明忠,赵振声,何华辉.单轴各向异性吸波材料对斜入射电磁波的反射.华中理工大学学报,1998,26(11):29-31
    [67].吴明忠,赵振声,何华辉.各向异性肿波材料对电磁波的反射.华中理工大学学报,1998,26(9):81-82
    [68].梁昌洪,赵向阳,胡小培等.电磁波斜入射到单层吸波材料上的最佳吸收条件.应用科学学报,1992,10(4):283-287
    [69].陈季丹,刘子玉.电介质物理学.北京:机械工业出版社,1982
    [70].秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及其在隐身材料中的应用.哈尔滨工业大学学报,1997,29(4),115
    [71].张海丰,周忠祥,秦柏,等.“广义匹配规律”在多涂层吸波材料设计中的应用.哈尔滨工业大学学报,2003,35(9),1140
    [72].谢处方,饶克谨.电磁场与电磁波.北京:高等教育出版社,1979
    [73].廖绍彬.铁磁学(下册).北京:科学出版社,1988 P40
    [74].廖绍彬,尹光俊,周丽年.微波吸收材料电磁参数的控制.空航材料工艺,1989,4-5
    [75]. Goncharenkol A V, Lozovski V Z, Venger E F. Effective dielectric response of a shape-distributed particle system.J. Phys:Condens. MATTER,2001,13:8217-8234
    [76].邱才明,刘章述,林为干.含强散射体的随机混合媒质的等效电磁参数的计算.电子学报,1993,21(6):6-13
    [77]. Wu M Z, Zhang H J, Yao X et al. Microwave characterization of ferrite particles. J. Phys. D:Appl.Phys,2001, 34:889-895
    [78]. Gordano Stefano. Effective medium theory for dispersions of dielectric ellipsoids. Journal of Electrostatics,2003, 58:59-76
    [79]. Weng Cho Chew, Friedrich J A. Robert Geiger. A multiple scattering solution for the effective permittivity of a sphere mixture. IEEE Transactions on Geosciences and Remote Sensing,1990,28(2):207-214
    [80].刘章述,邱才明.含涂层椭球粒子随机混合媒质的等效电磁参数计算.应用科学学报,1996,14(1):67-73
    [81]. Sihvola A H, Lindell I. V Polarizability modeling of heterogeneous media and effective permeability of mixtures in A. Prioued.Progress in Elelectromagnetices Research.Dielectric Properties of Heterogeneous Mixtures. New York:Elsevier Science Publishing CO., Inc.,1991:101,153
    [82].葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响.宇航材料工艺,1996,5:42-49
    [83]. Yaghjian A D. Electric dyadic Green's function in the source region. Proc. IEEE,1980:68(2):248
    [84]. Maxwell-Garnett C. Colours in metal glasses and in metal films. Transactions of the Royal Society, London, 1904;CCⅢ:385
    [85].对日技术座谈资料之四.铁氧体吸收材料及应用,磁性材料及器件,1976,(5-6),119
    [86].都有为.超微颗粒的物理特性.材料导报,1992,(5):1-5
    [87].吴明忠.介质材料和磁性材料的射频和微波电磁参数的测量方法研究.博士后研究工作报告,同济大学,2007
    [88].王相元,盛玉宝,邱志强等.吸波材料电磁参量与吸收剂百分体积关系.南京大学学报,28(4),1992:551-556
    [89].王相元,盛玉宝,钱鉴.羰基铁复合材料的复介电常数和复磁导率与体积浓度的关系.宇航材料工艺,1987,4-5:47-49
    [90].王小平,曹立明.遗传算法-理论、应用与软件实现.西安:西安交通大学出版社,2001
    [91]. Goldberg D.E. Genetic algorithm in search optimization and machine learning New York. Addison-wesley.1989
    [92]. Johnson S.M. and Yahya Rahmat-Samii, Genetic Algorithms in Engineering Electromagnetic. IEEE Transaction on Antennas and propagation.1997. APM-Vol.39(4):7-24
    [93].葛德彪.电磁波理论.西安:西安电子科技大学出版社,1997
    [94]. J. Kennedy and R.C. Eberhart, Particle Swarm optimization. Proceedings of IEEE International conference. On Neural. Networks. P1942~1948, Perth, Dec.1995
    [95]. Jacob Robinson and Yahya Rahmat-Samii, Particle Swarm Optimization in Electromagnetics, IEEE Transactions on Antennas and propagation.52(2).2004
    [96]. M.Clere, The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary 6(1).2002:58-73
    [97].葛德彪.电磁逆散射原理.西安:西北电讯工程学院出版社,1987
    [98].程杰,王为.吸波材料的计算机辅助设计.雷达与对抗,2000,2:18-25
    [99].吴晓光.国外微波吸收材料.长沙:国防科技大学出版社,1992
    [100].袁杰,王荣国,李颖慧等.多层吸波材料的计算机辅助化设计.哈尔滨工程大学学报,2000,21(2):51-54
    [101].高正平.电路模拟多层雷达吸波材料的设计.宇航材料工艺,1996,24(3):20-23
    [102].陆鸿良,於乾英,白洁雁等.钠米Fe304微晶电磁吸波性能的神经网络研究.上海大学学报(自然科学版),2000,6(2):179-182
    [103].吴铸,刘洪霖.一种微波吸收涂层的计算机辅助设计新方法.功能材料与器件学报,1995,1(1):32-38
    [104].张跃,张明雪.多目标规划方法在隐身涂层设计中的应用.宇航材料工艺,2001,31(6):63-66
    [105].李承祖,陈健华,赵风章.电磁波吸收材料电磁参数优化设计中目标函数的构造.宇航材料工艺,1989,4:91-97
    [106].张秀成,何华辉.遗传算法在涂层吸波材料设计中的应用.磁性材料及器件,1999,3(5)11-14
    [107].倪维立,曾霖.遗传算法在电磁散射中介质涂覆部位优化上的应用.上海大学学报(自然科学版),1997,3(3)243-248
    [108].张世田.目标散射计算可视化软件设计及导弹RCS分析.西安:西安电子科技大学硕士学位论文,2006
    [109].王小华C++Builder编程技巧、经验与实例.北京:人民邮电出版社,2004
    [110].梅志红,杨万铨MATLAB程序设计基础及其应用.清华大学出版社,2005
    [111].雷达吸波材料反射率测试方法.GJB2038-94
    [112].电磁屏蔽室屏蔽效能的测量方法.GB/T 12190-2006
    [113].曹江.介质材料电磁参数测量综述.宇航计测技术,13(3),1994,P30-34
    [114].李小玲,范仰才.介电材料参数测量中的时域新方法.大学物理实验,8(4),1995,P15-17
    [115]. Nicolson A. Met al. Measurement of intrinsic properties of materials by time-domain techniques. IEEE. Irans. IM. 1970,IM-19(4):37)-382
    [116].康青.新型微波吸收材料.北京:科学出版社,2006
    [117].汤世贤.微波测量.北京:国防工业出版社,1981
    [118].周清一.微波测量技术.北京:国防工业出版社,1964
    [119]. I.V. Lindell. Methods for Electromagnetic Field Analysis. Oxford:Clarendon press.1992
    [120].赵春晖,杨萃元.微波测量与实验教程.哈尔滨:哈尔滨工程大学出版社,2000.10
    [121].倪尔瑚.微波吸收材料特征参数的测量.微波学报,1989,(4),P.64-74
    [122]. Ching-Lieh Li and Kun-Mu chen, Determination of electromagnetic properties of materials using flanged open-ended coaxial probe-full-wave analysis. IEEE Trans. IM., Vol.44,1995,P.19-26
    [123].苏勇,钮茂德,徐得名.用开口波导反射法测量材料电磁特性的新技术.电子测量与仪器学报,1998,12,P53-58
    [124]. Niu Maode. Su Yong.Yang Jin Kui.et al. An improved open-ended wave quide measurement technique on parameters and of high-loss materials. IEEE. Trams.IM.,47,1999 P.476-481
    [125].张伟,苏东林.自由空间法测量复合材料复电磁参数.复合材料学报,24(1),2007,P.141-145
    [126].张娜,王立春,张国华.自由空间法测试材料电磁参数的探讨.宇航计测技术,26(3),2006,P.22-25
    [127].赵常青,李世智.电磁材料的复介电常数和复磁导率的空间标量测量方法.微波学报,13(1),1997,P.26-32
    [128].景革慧,蒋全兴.基于同轴线的传输/反射法测量射频材料的电磁参数.宇航学报,26(5),2005,P.630-634
    [129].田步宁,杨德顺,唐家明等.传输/反射法测量复介电常数的若干问题.电波科学学报,17(1),2002,P.21-27
    [130].田步宁,杨德顺,唐家明等.传输/反射法测量复介电常数的三个方程研究.宇航学报,23(5),2002,P.21-27
    [131].PNA36系列网络分析仪用户手册.南京普纳科技设备有限公司
    [132]. Co.Hp. Measuring dielectric constant with Hp8510B net work analyzer. Hewlett pack and product note No. 8510-3
    [133]. Harry.E.Green.The characteristic Impedance of square coaxial line.IEEE. Transactions on Microwave Theory and Techniques.1963,12, P.554-555
    [134]. K.H. Lau.Loss Calculations for Rectangular Coaxial Lines.IEEE. proleedings.135(3) 1988, P.207-209
    [135]. Shigeru Takeya, Kazuoshimada. New measurement method of RF absorber characteristics by large square Coaxial line. IEEE.1993 P.397-402
    [136].廖承恩.微波技术基础.西安:西安电子科技大学出版社,2000
    [137]. M.A. Stuchly and S.S. Stuchly. Coaxial line reflection methods for measuring dielectric properties of biological Substances at radio and microwave frequencies EM dash a review. VOL.2 M-29, P.176-183 1980
    [138]. H.Company. Hp8507M Dielectric probe system:Hp Test & Measurement catalog.1998
    [139].张尊泉,张兵.使用同轴探头进行微波无损探伤的研究.空军雷达学院学报,13(3),1999,P.16-20
    [140].余剑平,陈春平,徐得名.复电磁参数的现场测量新方法.电子测量与仪器学报,18(3),2004,P70-75
    [141].王宁军,钮茂德,徐得名.同轴探头测量电磁参数的变频率法研究.电子学报,26(12),1998,P52-56
    [142].董宇,陈春平,钮茂德等.同轴探头测量材料电磁参数变频率法的改进.微波学报,19(1),2003,P.66-71
    [143].王荣.有限发兰开口同轴探头的FDTD分析及其在现场测试中的应用.硕士论文,上海大学,1999
    [144].方大纲.电磁理论中的谱域法.合肥:安徽教育出版社,1995
    [145].楼仁海,符果行,袁敬闳.电磁理论.成都:电子科技大学出版社,1996
    [146]. Weir W B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE.vol.62(1):36-38
    [147]. Ligthart L P. A fast computation technique for accurate permittivity determination using transmission line methods. IEEE Trans. MTT,1983-31(3):249-254
    [148]. Nowr-Eddine Belhadi-Tahar. Dat. Broad-band Simultaneous measurement of complex permittivity and perbility using a coaxial discontinuity.IEEE Trans.1990, MTT-38(1)
    [149]. Belhadj NE. et al. Broad-band simultaneous measurement of the complex permittivity tensor for uniaxial material discontinuity. IEEE Trans.1991, MTT-39(10):1718-1724
    [150]. Saed M.A. Wide-band cavity. IEEE Trans. MTT,1989, MTT-38(2):488-495.
    [151]. Szendreng I B B et al. An alternative broad-band method for measuring the complex permiurivity and permeability of materials at microwave.1988. MTT-S(2):751-754
    [152]. Afsar M N et al. The measurement of the properties of materials. Proc. IEEE,1986,74(1):183-199
    [153]. Aguirre D G Frequency domain measurement of microwave absorber material. AD-A012225
    [154]. Julie A. Complex permittivity and permeability measurement of flatsamples. Proceeding of 3rd international symposium or relent advances in microwave technology.487-90
    [155]. Cullen ALA new free-wave method for ferrites measurement at millimeter wavelength. Radio sci. (U. S. A) 11987,22(7):1168-1170
    [156]. Umari M H et al. A free-space biostatic calibration technique for the measurement of parallel and perpendicular reflection coefficients of planar samples. IEEE Trans. IM,1991 IM-40(1):19-21
    [157].司琼,董发勤.电磁屏蔽混凝土.材料导报,19(2),2005,P.57-59
    [158].董波,高培伟,闫亚楠等.具有电磁屏蔽功能的新型建筑材料研究.广东建材,2006,11,P.15-17
    [159]. Xu Li, Qing Kang,Congzhi Zhou. Research on absorbing properties of the concrete shielding material at 3mm wave bands. Asia-Pacific conference on Environmental Electromagnetics. Nov.4-7,2007. Hangzhou, China. P.536-540
    [160].王宁,米俊,冯俊明.隐身材料研究开发现状与矿物材料在其中的应用.矿物学报,2001,9
    [161].冯俊明.矿物材料在微波技术领域中应用简介.中国非金属矿工业导报,2000,5
    [162].冯俊明.矿物材料在微波与电子技术中的应用.岩石矿物学杂志,16增刊,1997,P.199-202
    [163].娄明连,阚涛.结构型铁砂基复合电波吸收体研究.电子元件与材料,17(3),1998,P.18-20
    [164]. GM.O. Nwaiwn,I.B.K. Alkali,U.A.Ahmed. Properties of ironstone Lateritic gravels in relation to gravel road pavement construction. Geotechnical engineering.24(2),2006, P.283-298
    [165].海戴媛,张慧珠.论赤铁矿的激发极化特性及其控制因素.桂林冶金地质学院学报,1981,1,P.69-79
    [166].姚淳,郭祥玉.电磁屏蔽技术探讨.电源技术,2005,4,P.36-41
    [167].许先福,潘振克,黄正忠.电磁屏蔽材料的种类及应用.安全与电磁兼容,2000,3,P19-23
    [168].周壁华,陈彬,石立华.电磁脉冲及其工程防护.北京:北京国防工业出版社,2003,P.308
    [169]. Roger A. Dalke etc. Effects of Reinforced Concrete Structures on RF Communications, IEEE Trans on Electromagnetic Compatibility. VOL.42, NO.4, P486-496
    [170]. Gulio Antonini etc. Shielding Effects of Reinforce Concrete Structures to Electromagnetic Fields due to GSM and UMTS Systems, IEEE Trans on Magnetic, VOL.39, NO.3, May 2003 P.1582-1585
    [171]. Chen Bin etc. Analysis of Shielding Effectiveness of Reinforced-concrete in High Power Electromagnetic Environment, Asia Pacific Conference on Environmental Electromagnetics CEEM'2003 Nov.4-7,2003 Hangzhou, China
    [172].云月厚,邰显康,李国栋等.富含稀土白云鄂博铁尾矿制备的微波吸收材料特性.研究稀土,24(2),2003,P.68-70
    [173].云月厚,邰显康,李国栋等.用白云鄂博铁矿制备的微波吸收材料特性研究.内蒙古大学学报(自然科学版),33(3),2002,P.280-282
    [174].甘永学,陈昌麒.颗粒度对Mn-Zn铁氧体吸波性能的影响.材料工程,1992,4:12-13
    [175].阮圣平,张力.钡铁氧体钠复合材料的制备及其微波吸收性能.物理化学学报,2003,19(3):275-277
    [176].车仁超,李永清.钴铁氧体吸波材料的复数磁导率.北京大学学报(自然科学报),1990,26(3):327-332
    [177].魏克珠.烧结Ni-Zn铁氧体的微波吸收性能.电子工程信息,1997,11:27-29
    [178].罗志勇,秦汝虎.楔体周期结构电磁波衰减的理论计算及数值模拟.微波学报,22(1),2006,P.14-18
    [179].濮方正,刘继.简论现代接地技术与接地测量.防雷世界商情,2007,5,P23-36
    [180].北京大学数学力学系概率统计组.正交设计法.北京:化学工业出版社,1979
    [181].中国现场统计研究会二次设计组、全国总工会电教中心.正交法和三次设计.北京:科学出版社,1985
    [182]. Su,N.Wu,Y-H. Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cement and Concrete Research.2000,30(4),599-605
    [183]. Colic M, Morse D. Effects of amplitude of the radio frequency electromagnetic radiation on aqueous suspensions and solutions. Journal of Colloid and Interface Science.1998,200(2),265-272
    [184].王立久,李慧芝.磁化水混凝土的研究现状及进展.建材技术与应用,2007,1
    [185].吴忠,秦本东等.磁化水混凝土增强机理的微观分析.2004,4
    [186].李长根.电选法应用实践评述(Ⅱ).国外金属矿选矿,2002,11
    [187]. C.M.O. Nwaiwu, I.B.K.. Alkali,U.A.Ahmed Properties of ironstone lateritec gravels in relation to gravel road pavement construction. Geotechnical and geological engineering.2006,24(2),283-298
    [188].黄思盛,张兴彦.重型C80级铁矿石特种混凝土初步研究.铁道标准设计,1998,8
    [189]. Wen Sihai,Chung D.D.L. Seebeck effect in carbon fiber reinforced cement. Cement and Concrete Research. 1999,29:1989-1993
    [190]. Fu Xuli, Chung D.D.L. Self-monitoring in carbon fiber reinforce mortar by reactance measurement. Cem. Concr.Res.1997,27(6),845-852
    [191].韩国宝,关新春等.碳纤维水泥石电阻测试方法研究.玻璃钢/复合材料,2003,6
    [192].王群、高东海、郭红霞等.非晶态电磁屏蔽材料的制备与性能.屏蔽技术与屏蔽材料,2006,1:74-76
    [193].杨克俊.电磁兼容原理与设计技术.北京:人民邮电出版社,2004
    [194].王庆斌,刘萍,尤利文等.电磁干扰与电磁兼容技术.北京:机械工业出版社,1999
    [195].司琼,董发勤.短碳纤维在石墨低频电磁屏蔽混凝土中的应用研究.混凝土,2004,11,P25-27
    [196].梁福康.碳纤维混凝土.建筑技术,32(1),2001,P17
    [197].曾光群,康青,万步勇.碳纤维混凝土特性的数值模拟.兵器材料科学与工程,28(5),2005,P27-34
    [198].王秀峰.碳纤维增强水泥复合材料的电导性能及其应用.复合材料学报,15(30),1998,P75-80
    [199]. Das N C, Chaki T K, Khastgir D, et al. Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate Based Conductive Composite Containing Carbon Fillers[J]. Journal of Applied Polymer Science,2001, 80(10):1601-1608
    [200]. Das N C, Chaki T K, Khastgir D, el at. Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-filled Composites Based on Rubber and Rubber Blends [J]. Advances in Polymer Technology.2001,20(3):226-236
    [201]. Sau K P, Chaki T K, Chakraborty A, el at. Electromagnetic Interference Shielding by Carbon Black and Carbon Fiber Filled Rubber Composites [J]. Plastics, Rubber and Composites Processing and Application,1997, 26(7):291-297
    [202]. Jou W S, Wu T L, Chiu S K, el at. The influence of Fiber Orientation on Electromagnetic Shielding in Liquid-crystal Polymers [J]. Journal of Electronic Materials,2002,31(3):178-184
    [203]. Wu J H, Chung D D L. Increasing the Electromagnetic Interference Shielding Effectiveness of Carbon Fiber Polymer matrix Composite by Using Activated Carbon Fibers[J]. Carbon,2002,40(3):445-447
    [204]. Jou W S. A Novel Structure of Woven Continuous Carbon Fiber Composites with High Electromagnetic Shielding [J]. Carbon,2002,40(3):445-447
    [205]. Paligova M, Vilcakova J, Saha P, el at. Electromagnetic Shielding of Epoxy Resin Composites Containing Carbon Fibers Coated with Polyaniline Base [J]. Physics A:Statistical Mechanics and Its Applications,2004,335(3-4):421-429
    [206]. Lee C Y, Lee D E, Jeong C K, el at. Electromagnetic Interference Shielding by Using Conductive Poly pyrrole and metal Compound Coasted on Fibrics [J]. Polymers for Advanced Technologies,2002,13(8):577-583
    [207]. HUANG Chi-yuan, PAI Jui-fen. Optimum Conditions of Electro less Nickel Plating on Carbon Fibers for EMI Shielding Effectiveness of ENCF/ABS Composites [J]. European Polymer Journal,1998,34(2):261-267
    [208]. HUANG Chi-yuan, WU Chang-cheng. The EMI Shielding Effectiveness of PC/ABS/nickel-coated carbon-fiber Composites [J]. European Polymer Journal,2000,36:2729-2737
    [209]. HUANG Chi-yuan, el at. The Effect of Reprocessing on the EMI Shielding Effectiveness of Conductive Fiber Reinforced ABS Composites [J]. European Polymer Journal,1998,34(1):37-43
    [210]. HUANG Chi-yuan, el at. The Influence of Heat Treatment on Electro less-nickel Coated Fiber (ENCF) Reinforced ABS Polymeric Composites [J]. Surface and Coating Technology,2004(184):123-132
    [211]. Chiang W Y, Chiang Y S. Effect of Titanate Coupling Agent on Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of PC-ABS-NCF Composite[J]. Journal of Applied Polymer Science, 1992,46(4):673-681
    [212]. Huang C Y, el at. The Effect of Attached Fragments on Dense Layer of Electro less Ni/P Deposition on the Electromagnetic Interference Shielding Effectiveness of Carbon Fiber/Acrylonitrile-butadiene-styrene Composites[J]. Surface and Coating Technology,2002,154(1):55-62
    [213]. Wen Sihai, Chung D. D. L. Seebeck effect in carbon fiber reinforced cement. Cement and Concrete Research.1999,29:1989-1993
    [214]. Fu Xuli, Chung D.D.L. Self-monitoring in carbon fiber reinforce mortar by reactance measurement. Cem. Concr.Res.1997,27(6),845-852
    [215]. Bache Hans Henrik, Knud Lund. Magnetic concrete with metal or alloy powder additions for electromagnetic apparatus. PCT Int Appl, WO,9208678 AL.1992-05-29
    [216].杨伯科.混凝土实用新技术手册.长春:吉林科学技术出版社,1998
    [217].朱宝明.隐身技术与成本问题.飞航导弹,1997,7,p.8-13
    [218].SJ/T10244-91.中华人民共和国电子工业行业标准.
    [219].SJ/T10244-91.复合微波介质片.
    [220].娄明连,阚涛,娄天红.一种廉价的电波吸收材料研究.功能材料,1997,28(4),p.383-385
    [221].胡国光,姚学标,尹平,等.用铁砂制备的铁氧体微波吸收剂的特性研究.磁性材料与器件,1998,29(5),p.54-56
    [222].国内第一条200吨/年PNA基碳纤维原丝生产正式投产.中华服装网,2006年7月7日