铝土矿浮选尾矿电热法生产一次铝硅合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年我国工业铝产量达到1300万吨以上,约占世界总产量的1/3,但我国用于生产氧化铝的铝土矿自给率已低于50%,铝土矿的缺乏已经成为制约我国铝行业发展的首要问题,低品位铝土矿的选矿拜耳法生产氧化铝将成为我国未来铝工业发展的主要方向之一,但在铝土矿浮选过程中产生约25%的尾矿,这部分尾矿如果不加以利用不仅造成资源的浪费,而且污染环境。目前,25%以上的原铝被用于生产铝硅合金,以低品位铝土矿为原料电热法生产一次铝硅合金,一次铝硅合金精炼加铝稀释后直接配制应用合金,不仅可以节约纯铝而且可以降低能耗,缩短流程。
     本论文首先对以铝土矿浮选尾矿为原料,烟煤为还原剂在电弧炉内直接熔炼生产一次铝硅合金和工业电热法生产铸造用共晶铝硅合金的生产工艺进行研究,得出以铝土矿浮选尾矿为原料生产的一次铝硅合金由于含铁量较高应用现阶段的生产工艺不适合用于铸造用铝硅合金的生产。
     对铝土矿浮选尾矿盐酸溶液除铁生产低铁尾矿,然后以低铁尾矿为原料电热法生产一次铝硅合金的工艺进行了研究。浮选尾矿的盐酸浸出除铁过程中,影响氧化铁浸出率的最主要因素为浸出温度,其次是浸出溶液的盐酸浓度,然后是浸出时间,影响最小的是浸出液固比。尾矿中氧化铁浸出率随浸出温度越高、浸出时间增长、浸出液盐酸浓度增大和浸出液固比的增大而越高,但同时氧化铝的浸出率也越高。较佳的浸出条件为:浸出温度80℃,浸出液固比5:1,浸出溶液盐酸浓度22%,浸出时间120分钟,在该条件下氧化铁的浸出率可以达到95%以上,氧化铝的浸出率在4.3%以下,浸出后尾矿中的氧化铁含量可以从10.52%降低到0.6%以下。浸出后的浆料加入絮凝剂进行固液分离,以聚丙烯酰胺为絮凝剂加入浸出料浆中可实现固液的快速分离,沉降后获得的上清液固含在0.2g/L以下。
     对尾矿盐酸浸出除铁的动力学分析得出,尾矿在盐酸溶液浸出的过程中可分为两个阶段:当氧化铁的浸出率小于55%时,浸出过程速率由界面化学反应控制,其表观活化能为86715J/mol;当氧化铁的浸出率大于60%时,浸出速率由流体反应物HCl在多孔固体中的非稳态扩散控制,其表观活化能为119647J/mol。
     由于尾矿浸出过程中氯化氢的利用率较低(只有14%),采用浸出液反复蒸馏浸出的方法可提高氯化氢的利用率。浸出液经蒸馏—浸出—蒸馏—浸出后可进行最多五次的反复浸出。每次蒸馏较佳的体积百分比为10%,经五次蒸馏浸出后,浸出液中的氯化铁浓度可达到18.50%,原浸出液中氯化氢的利用率超过50%,每1L浸出液可处理尾矿约0.8公斤。浸出后获得的浸出液可通过先蒸馏浓缩然后高温焙烧的方法处理,处理后获得氯化氢和含部分氧化铝的氧化铁的粉末,氯化氢可通过水吸收进行回收再利用,氧化铁可作为炼铁原料。每吨尾矿的除铁成本在300元以下。
     以除铁后的尾矿为原料,以神府烟煤为还原剂,亚硫酸纸浆废液为粘结剂,经配料计算和团块性能测试得出较佳的配料及制团条件为:每100公斤尾矿配入烟煤52.34公斤,干粉粘结剂9公斤,水9公斤,较佳的制团压力为20-25MPa,物料粒度为0.087-0.124mm。配好的团块在电弧炉内熔炼获得的一次铝硅合金含铝量达到了55%以上,含铁量低于1.7%,合金其它主要杂质为钙、钛、钾和钠,熔炼后尾矿中的铝元素的回收率达到了90%以上,硅元素的回收率达到85%以上。获得的一次铝硅合金可用于生产钛含量较高的铸造用铝硅合金或新型的铝硅钛多元合金。
     在真空碳管炉内对一次铝硅合金的还原机理进行了研究,通过对除铁尾矿在真空碳管炉内不同温度下获得产物进行物相分析,得到除铁尾矿在真空碳管炉内的还原过程为:首先是在较低温度下(1600℃以下),尾矿中的氧化硅与碳反应生成SiC,少量的氧化硅被还原成为硅并与由铁的氧化物还原成的单质铁结合成为硅铁化合物(主要是Fe2Si、Fe5Si3和Fe3Si),当温度继续上升到1700-1800℃时,尾矿中的氧化铝开始与碳反应生成铝氧碳化物(主要是Al4O4C,还有少量的A12OC),当温度继续升高到1800-1900℃时,在较低温度生成的铝氧碳化物被碳化硅分解,生成铝和硅,最终成为一次铝硅合金。
     实验结果证明铝土矿浮选尾矿经盐酸浸出除铁后生产的一次铝硅合金可作为生产铸造用铝硅合金的原料,该方法生产一次铝硅合金不仅节约了资源而且保护了环境,具有一定的实际意义。
The production of aluminum in China is more than 13 million tons in 2008, which is about one-third of the world's total output. But the bauxite self-sufficiency rate has been below 50% and the lack of bauxite in China has become the the primary issue to constrain the development of aluminum industry. The method producing Al2O3 by ore-dressing Bayer process with low-grade bauxite is one of the main directions of aluminum industrial development. It is about 25% of the low grade bauxite becomes tailings in the process. If the tailings is not be used, it will not only waste the resources, but also pollute the environment. At present more then 25% of the industrial aluminum was used in the production of Al-Si alloys. Producing the coarse Al-Si alloy by using bauxite tailings as raw material and then the cast Al-Si alloys can be obtained after the coarse Al-Si alloy diluted by pure aluminum and refined by purificant. This method can save industrial aluminum, reduce power consumption and shorten the process.
     In this paper, the process was studied that is producing coarse Al-Si alloys by using bauxite tailings as raw material, soft coal as reductant in arc furnace and the process of producing cast eutectic Al-Si alloys by carbothemal reduction in industry were studied. The results show that the content of iron in the coarse Al-Si alloys is too high to producing cast Al-Si alloys by using the production technique at the present stage.
     The removing iron process of bauxite tailings by leaching with hydrochloric acid to produce low iron bauxite tailings and the process of producing coarse Al-Si alloy used the bauxite tailings which removed iron as raw material were studied.
     In the removing iron process of bauxite tailings by leaching with hydrochloric acid, the most important influencing factor is leaching temperature, followed by the concentration of hydrochloric acid, and then the leaching time, the minimal is liquid-solid ratio. The leaching rate of iron oxide in tailings rise with the rising of leaching temperature, the accreting of the concentration of hydrochloric acid, the growing of leaching time and the increasing of liquid-solid ratio. The optimal leaching factors are leaching temperature 80℃, concentration of hydrochloric acid 22%, leaching time 120min and liquid-solid ratio 5:1. On this conditions, the leaching rate of iron oxide is more than 95%, the leaching rate of aluminum oxide is less than 4.3%, and the iron oxide content can be reduced from 10.52% to 0.6% after leaching process.
     The result of kinetics analysis of leaching of bauxite tailings with hydrochloric acid shows that there are two phases in the process:the rate of iron dissolution is controlled by the interface chemical reaction when the leaching rate of Fe2O3 is lower than 55%. Its apparent activation energy is 86715J/mol. The rate of iron dissolution is controlled by the non-steady-state diffusion in porous solids of the fluid reactant HCl when the leaching rate of Fe2O3 is higher than 60%. Its apparent activation energy is 119647J/mol.
     The flocculants were used for solid-liquid separation in the slurry of leaching tailings. The tailings and leaching solution can rapid separation used as polyacrylamide flocculant and the solid content in the supernatant is below 0.2g/L.
     Because of the low utilization of HCl (only 14%), the method of repeated distillation and leaching was investigated to increase the utilization of hydrogen chloride. The leaching solution can leach five times by distillation-leaching- distillation-leaching, the better distillation rate is 10% every time. After fifth leaching, the utilization of HCl is more than 50%, the Ferric chloride concentration is about 18.5%, and it can deal with 0.8 kg bauxite tailings every liter hydrochloric acid.The solution obtained by leaching of bauxite tailings was concentrated by distillation firstly and then baked on high temperature. Hydrogen chloride vapor and ferric oxide which concluded some aluminum oxide can be obtained after the leaching solution treated, the hydrogen chloride vapor can be absorbed by water to produce hydrochloric acid and recycle, the ferric oxide can be used as raw materials of iron. The cost is below three hundred yuan per ton bauxite tailings.
     Mixture and briquetting by using bauxite tailings which removed ferric oxide as raw materials, soft coal as reductant, sulfite pulp waste liquor as agglomerant. Based on the mixture calculating and the testing of conglomeration property, the optimum condition of mixture and briquetting are as following:adding 52.34 kilograms soft coal, nine kilograms agglomerant power and nine kilograms water every one hundred kilograms tailings. The pressure of briquetting is 20-25MPa and the grain of raw materials is 0.087-0.124mm.
     The coarse Al-Si alloy produced in arc furnace which used the tailings removed ferric oxide as raw material contained more than 55% aluminum,30.87% silicon and lower than 1.7% Fe. The main impurities were calcium, titanium, potassium and sodium. The aluminum recovery was 91.78%, the silicon recovery was 87.89%. the coarse can be used to produce cast Al-Si alloys or new type of Al-Si-Ti complex alloys.
     The reduction mechanism of bauxite tailings was studied in vacuum carbon tube furnace. The phases of products in different temperatures and carbon additions were analyzed by XRD. The reaction process of producing coarse Al-Si alloy was studied. It showed that the carborundum was gained in low temperature (below 1600℃) when the raw materials deoxidized in the vacuum carbon tube furnace. When temperature rised to 1700-1800℃, alumina began to react with carbon to form aluminum oxygen carbide. When the temperature was higher than 1900℃, the carborundum decomposed aluminum oxygen carbide into aluminum and silicon, and the aluminum and silicon reacted to form coarse Al-Si alloy.
     The results show that the coarse Al-Si alloy produced by carbothermal reduction used the bauxite tailings which removed iron by leaching with hydrochloric acid as raw material can be to produce cast Al-Si alloys or new type of Al-Si-Ti complex alloys. The process not only save save resources but also protect the environment, and It has significance for practice reference.
引文
1.刘政,刘小梅,陈慈诰等.增强体对铝硅合金基复合材料中共晶硅形貌影响[J].铸造.1999,(10):17-19.
    2.赖华清,李怀君,赖俊传.铝硅合金中共晶硅的粒化[J].汽车科技.2002,(1):27-29.
    3.赖华清,范宏训,徐祥.过共晶铝硅合金的研究及应用[J].汽车工艺与材料.2001,(10):21-23.
    4. Hengcheng Liao, Yu Sun, Guoxiong Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium[J]. Materials Science and Engineering A.2002, (335):62-66.
    5. Xiang Chen, Huiyuan Geng, Yanxiang Li. Study on the eutectic modification level of Al-7Si Alloy by computer aided recognition of thermal analysis cooling curves. Materials Science and Engineering A.2006, (419):283-289.
    6.王宇,陈刚,费黄霞.浇注温度对亚共晶Al-Si合金组织和硬度的影响[J].热加工工艺.2006,35(9):14-16.
    7. Mohd Hamn, LA. Talib, A.R. Daud. Effect of element additions on wear property of eutectic aluminium-silicon alloys[J]. Wear.1996, (194):54-59.
    8. D.K. Dwivedi, T.S. Arjun, P. Thakur etc. Sliding wear and friction behaviour of Al-18%Si-0.5%Mg alloy[J]. Journal of Materials Processing Technology.2004, (152): 323-328.
    9. James G. Conley, Julie Huang, Jo Asada, etc.Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on microporosity formation in Al A356 alloys. Materials Science and Engineering A.2000, (285) 49-55.
    10.彭晋民,钱翰城.铸态铸造铝硅合金的现状和发展[J].铸造技术.2000,(6)32-34.
    11.戚喜全.泄流式TiB2/C阴极电解槽研究[D].沈阳:东北大学,2006:1-3.
    12.欧阳坚,卢寿慈.国内外铝土矿选矿研究的现状[J].矿产保护与利用.1995,(6):40-51.
    13.付霞.中国有色矿企“走出去”大有可为[J].世界有色金属.2008,(6):10-12
    14.李升,侯景星,董亦民.对铸造铝硅合金生产现状与发展的认识[J].中国有色工程,2006,(3):18-23.
    15.杨冠群,杨升.电解法直接生产铝硅钛多元合金可行性分析[J].铸造.1997,(1):44-46.
    16.杨升,杨冠群,顾松青.电解法生产铝基合金[J].特种铸造及有色合金.2001,(2): 102-104.
    17.柳连舜.电热法制取铝硅合金—发展铝工业的捷径[J].轻金属.1995,(6):35-38
    18.吕政堂.俄罗斯用块状炉料和团块炉料生产工业硅.用矿石直接生产粗铝硅合金[J].轻金属.2004,(3):63-64.
    19. Kiyotaka Matsuura, Kazuhiro Suzuki, Tatsuya Ohmi, etc. Dispersion Strengthening in a Hypereutectic Al-Si Alloy Prepared by Extrusion of Rapidly Solidified Powder. Metallurgical and Materials Transactions A.2004,35A:333-338
    20.王杰芳,谢敬佩,刘忠侠等.国内外铝硅活塞合金的研究及应用述评[J].铸造.2005,54(1):24-27.
    21. M. SlaAmova, Y.BreAchet, C.Verdu, etc. Al-Si Alloys as a Model System for Damage Accumulation in Composite Materials. phys. stat. sol.168(a):117-121.
    22. J.Grum, M.Kisin. The influence of the microstructure of three Al-Si alloys on the cutting-force amplitude during fine turning. International Journal of Machine Tools & Manufacture.2006, (46):769-781.
    23. Y.L. Saraswathi, S. Das, D.P. Mondal. Influence of microstructure and experimental parameters on the erosion-corrosion behavior of Al alloy composites[J]. Materials Science and Engineering A.2006, (3):11-21.
    24. Pedro R. Goulart, Jose E. Spinelli et al. Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings [J], Materials Science and Engineering.2006, (A 421):245-253.
    25.李升,刘冬梅,杨保安等.铸造铝硅合金的生产[J].内燃机配件.2001,(2):13-16.
    26.杨海洋,陈建宏.铝土矿资源安全与供给保障的战略分析[J].资源环境与工程.2008,22(6):628-630.
    27.翟义民.关于铝土矿的可持续发展分析[J].科技创新导报.2008,(32):125.
    28.王秋霞,张克仁,赵军伟等.我国铝土矿资源及开发利用现状、问题及对策[J].矿产保护与利用.2008,(5):47-50.
    29.黄波.粉煤灰的经济价值与综合利用.内蒙古科技与经济.2008,(15):27-30.
    30.郑和平.粉煤灰综合利用有效途径探讨.管理观察.2008,(8):170-172.
    31.程永强,姚爱民.铸造铝合金的直接熔炼[J],有色矿冶,2004,20(4):38-40.
    32.邱竹贤.电热还原法生产铝硅铁合金[C].铝冶金进展—庆祝邱竹贤院士八十诞辰论文集.沈阳:东北大学出版社.2001:414-417.
    33.东北大学轻金属冶炼教研室.专业轻金属冶金学[M],北京:冶金工业出版社,1959:351-417.
    34. Jose Eduardo Spinell, Ivaldo Leao Ferreira, Amauri Garcia. Evaluation of heat transfer coefficients during upward and downward transient directional solidification of Al-Si alloys. Struct Multidisc Optim.2006, (31):241-248.
    35.姚广春.电热法制取铝硅合金[M].沈阳:东北大学出版社.1998:1-6.
    36.陈福亮.铸造铝合金的杂质控制[J],云南冶金,1999,28(4):53-55.
    37. M.V.Kral. A crystallographic identification of intermetallic phases in Al-Si alloys [J], Materials Letters,2005, (59):2271-2276.
    38. T.Turmezey, V. Stefaniay. Proceedings of International Workshop on the Effect of Iron and Silicon in Aluminium and its Alloys [J]. Trans Tech Publ.1990, (5):57-62.
    39. L.F. Mondolfo, Aluminum Alloys:Structure and Properties[M], London:Butterworths and Co. Ltd,1976:270-301.
    40.王苏北.铝硅合金中铁的有害影响及控制措施[J],铸造设备研究,2002,10(5):35-36.
    41. J.Z. Yi, Y.X. Gao, P.D. Lee, etc. Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum-silicon alloy (A356-T6) [J], Materials Science and Engineering A.2004,386:396-407.
    42. P.N. Crepeau. Effect of Iron in Al-Si Casting Alloys:A Critical Review[J]. AFS transactions.1995, (103):361~365.
    43. Cameron M.Dinnis, John A.Taylor, Arne K.Dahle. Iron-related porosity in Al-Si-(Cu) foundry alloys[J]. Materials Science and Engineering.2006, (3):11.
    44. L.A.Narayanan, F.H.Samuel, J.E.Gruzleski. Crystallization Behavior of Iron-containing Intermetallic Compouds in 319 Aluminium Alloys[J]. Metallurgical and Materials Transaction A.1992,25 A:1761.
    45. N.Stoichev, S.Yaneva, P. Kovachev, E.Momchilova. Kinetics of Structural Coarsening of Microcrystalline Al-Si-Mg Alloys during Thermal Treatment and Compacting[J]. Cryst. Res. Technol.1998,33(3):483-487.
    46.印飞,杨江波,孙宝德.高含铁量铝硅合金中铁相的凝固行为与形貌控制[J],上海交通大学学报.2002,36(1):43-46.
    47.王耀武,冯乃祥,尤晶等.由一次铝硅合金制取铸造共晶铝硅合金过程中杂质的去除[C].全国博士生(冶金学科)学术论坛论文集.2006:88-89.
    48.欧阳坚,卢寿慈.国内外铝土矿选矿研究的现状[J].矿产保护与利用,1995,(6):40-51.
    49.杨慧芬.铝土矿的强化除铁方法[J].轻金属.1992,(9):15.
    50. Kahn H, Tassinari M M L, Ratti G. Characterization of bauxite fines aiming to minimize their iron content[J]. Mineral Engineering.2003,16 (11):1313-1315.
    51.庞思明,文明芬.一水硬铝石型铝土矿盐酸浸出脱铁过程表观动力学[J].有色金属.1999,51(3):49-53.
    52.李光辉,董海刚,肖春梅等.高铁铝土矿的工艺矿物学及铝铁分离技术[J].中南大学学报(自然科学版).2006,37(2):235-238.
    53.杜玉成,郑水林,李杨等.煤系高岭土磁种法除铁铁工艺研究[J].非金属矿.1997,(3):26-28.
    54. R.Bhima Rao. Novel approach for the beneficiation of ferruginous bauxite by microwave[J]. Minerals And Metallurgical processing,1996,13(3):103-106.
    55. Leon Y. Sadler.A process for enhanced removal of iron from bauxites ores. International Journal of Mineral processing,1991,31:233-246.
    56.温英,甘怀俊,王巧华.阳泉铝矾土矿富铝除铁的研究[J].中国锰业.1995,13(6):26-28.
    57.苏成德,李桂琴,郑权贵.反浮选法除铁试验[J].中国建材.1996,(2):44-46.
    58.魏克武,惠学德.双液浮选法脱除高岭土的铁[J].非金属矿.1992,(1):54-58.
    59.袁延英.高岭土的几种除铁方法[J].国外金属矿选矿.2000,(9):19-21.
    60.周国华,薛玉兰,何伯泉.铝土矿选矿除铁研究进展概况[J].矿产保护与利用,1999,(4):44-47.
    61.董波,吴猛,胡玉静.某硅线石矿选矿、尾矿除铁及石榴石综合回收试验研究[J].矿业快报.2007,(6):25-28.
    62.袁明亮,赵国魂,胡岳华.铝土矿浮选尾矿中铁的溶解行为[J].过程工程学报.2004,4(1):12-14.
    63.吴艳,翟玉春,牟文宁.粉煤灰提铝渣的除铁工艺研究[J].矿产综合利用.2007,(6):37-39.
    64.曾善林.铝土矿酸浸除铁最佳工艺条件研究[J].铝镁通讯.1987,(4):16-22.
    65. Patermarakis, G, paspaliaris, Y. The leaching of iron oxides in boehmitic bauxite by hydrbchloric acid. Hydrometallurgy,1989,23:77-90.
    66.李永聪.对武安高岭土除铁工艺研究[J].中国矿业.2002,11(3):66-69.
    67.刘学胜,刘洁.某硅线石矿石选别中除铁研究[J].有色矿冶.2004,20(3):26-29.
    68.刘伟,刘祥民,李小斌.中州300kt/a选矿拜耳法产业化技术分析[J].轻金属.2005,(2):3-8.
    69.刘家瑞,刘祥民.应用选矿-拜耳法工艺处理一水硬铝石型中低品位铝土矿生产氧化铝的工业实践[J].轻金属.2005,(4):11-14.
    70. M. Gupta, S.Ling. Microstructure and mechanical properties of hypo/hyper-eutectic Al-Si alloys synthesized using a near-net shape forming technique[J]. Journal of Alloys and Compounds.1999,287:284-294.
    71.尤晶.由电热法生产的一次铝硅合金制取铸造用铝硅合金的研究[D].沈阳:东北大学.2008:40-56.
    72.王耀武,冯乃祥,尤晶等.氯化锰去除铝硅合金中铁杂字的研究[J].稀有金属与硬质合金.2008,36(4):10-12.
    73. Gobrecht J. Gravitional Separation of Fe and Mn in Al-Si Alloys [J]. Giesserei.1975, 62(10):263-266.
    74.张磊,焦万丽,姚广春.锰结合预先热处理对铝硅合金中富铁相组织和力学性能的影响[J],中国有色金属学报,2005,3(15):368-373.
    75. D. L. Colwell, R. J. Kissing. Die and Perment Mold Casting Aluminium Alloy Minor Elements[J]. AFS Transactions.1961, (69):610~615.
    76. Cameron M.Dinnis, John A.Taylor, Arne K.Dahle. Iron-related porosity in Al-Si-(Cu) foundry alloys[J]. Materials Science and Engineering.2006, (3):11.
    77.日本长崎诚三,平林真著,刘安生译.二元合金状态图集[M].北京:冶金工业出版社,2004:36.
    78. Xu Zhenming, Li Tianxiao, Zhou Yaohe. Elimination of Fe in Al-Si cast alloy scrap by electromagnetic filtration [J]. Journal of Materials Science.2003,38:4557-4565.
    79. Wang Yaowu, Yang mingsheng, You Jing, etc. Study of making casting grade aluminum-silicon alloy with coarse aluminum-silicon alloy produced by carbothermal reduction of aluminous ore[C]. Light Metals.2007:477-480.
    80.谭天恩,麦本熙,丁惠华.化工原理[M].北京:化学工业出版社.2004,128-132.
    81. Guo Jingjie. Alloy melt and the treatment[M]. Beijing:Machinery Industrial Press.2005: 18-28.
    82.庞思明,陶卫东,文明芬等.一水硬铝石型铝土矿盐酸浸出脱铁过程表观动力学[J].有色金属.1999,51(3):49-53.
    83.王向丽.絮凝剂在拜耳赤泥沉降分离过程中的应用研究[J].河南有色金属.2003,(1):25.
    84.曹文仲,顾松青.合成高分子絮凝剂的物理化学性质和应用技术研究[J].轻金属.1996,(5):21.
    85. Perrie X. Application of the New Type of Water-soluble Flocculant of the Red mud in Bayer Process [C]. Light Metals.1999:39~44.
    86. E.O.Olanipekun. Kinetics of leaching laterite[J]. Int. J. Miner. Process.2000,60:9-14.
    87. B.R. Reddy, S.K. Mishra, G.N. Banerjee. Kinetics of leaching of a gibbsitic bauxite with hydrochloric acid[J]. Hydrometallurgy,1999,59:131-138.
    88. Suong Oh Lee, Tan Tran, Yi Yong Park. Study on the kinetics of iron oxide leaching by oxalic acid[J]. Int. J. Miner. Process.2006,80:144-152.
    89.张国斌.铝土矿选矿及尾矿综合利用[J].轻金属.1998,(9):3-5.
    90.兰叶,王毓华,胡业民.铝土矿浮选尾矿基本特性与再利用研究[J].轻金属.2006,(10):9-12.
    91.刘焦萍,黄春成.铝土矿正浮选尾矿浆沉降新工艺研究[J].轻金属.2006,(5):8-12.
    92.王玉国.伊利石制取钾明矾[J].化工矿物与加工.2002,(2):1-4.
    93.蒋汉瀛.湿法冶金物理化学[M].北京:冶金工业出版社.1984:70-76.
    94.王耀武,冯乃祥,尤晶等.絮凝剂的复配提高赤泥沉降效果的研究[J].轻金属.2007,(6):9-11.
    95.82.傅洵,傅有君.P538与P204从盐酸介质中萃取Fe(Ⅲ).应用化学,1991,8(4):43-47.
    96.董贵,王仑蕃.几种盐酸废酸处理方法的比较[J].鞍钢技术,1992,(4):9-12.
    97.张玉婷,干铭.氯化铁酸性溶液升温水解中相转变规律.纺织基础科学学报.1994,7(1):5-9.
    98.欧阳红英.负压蒸发技术处理盐酸酸洗废液[J].江西冶金.2002,22(2):23-25.
    99.张新欣,赵凯,刘灿生.盐酸洗涤废液及其再生回收[J].中国给水排水.2008,24(12):96-99.
    100.贾沛泰,胡锡山.国内外有色金属材料对照手册[M].南京:江苏科学技术出版社.2006:241-259.
    101.王成之.以高岭土为主要原料炼制铝硅合金[J].中国金属通报.2006,(12):12
    102. M. H. Kim, C. H. Jung, H. H. Jo. The Effects of Ti and Sr on the Microstructures of Al-11.3wt%Si Alloys Produced by the Ohno Continuous Casting Process. Metals and Materials.2000,6(3):235-240.
    103.董仕节,潘汉满.含TiZL108合金性能的研究[J].特种铸造及有色合金.1993,(1):15-18.
    104.关绍康,姚波,沈宁福等.新型铝硅钛多元合金管材的研究[J].热加工工艺.1999,(6):47-49.
    105.姜玉敬.大型预焙铝电解槽直接生产A1-Si-Ti多元合金工业试验[J].世界有色金属.2000,(3):31-33.
    106. A. Amroune, G. Fantozzi, J. Dubois et al. Formation of Al2O3-SiC Powder From Andalusite and Carbon[J]. Materials Science and Engineering A,2000, (290):11-15
    107. IO.B.baHMaKOB3, IO.H.bpycakoB.Borrpocy. KBoccTaHOBHTe(?)bOH (?)(?)aBKH A(?)(?)oMocH(?)HKaTOB. (?)py(?)bI (?)(?)(?).1957,188:31-37
    108.A.И.别略耶夫,费尔散,拉勃勃尔特.电冶铝[M].王延明译.北京:高等教育出版社.1957:700-705
    109.格奥尔格·叶格尔.有色金属电热熔炼[M].刘富如译.北京:中国工业出版社.1964:224-226
    110.狄鸿利.炭还原法熔炼铝硅合金[J].轻金属.1982,(11):38-41
    111. Halmanna M, Frei A, Steinfeld A. Carbothermal Reduction of Alumina:Thermochemical Equilibrium Calculations and Experimental Investigation[J]. Energy.2007, (32): 2420-2427
    112. Lihrmann JM. Thermodynamics of the Al2O3-Al4C3 System I. Hermochemical Functions of Al Oxide, Carbide and Oxycarbides between 298 and 2100K[J]. Journal of the European Ceramic Society.2007,28 (2008):633-642
    113. A. Amroune, G. Fantozzi, J. Dubois et al. Formation of Al2O3-SiC Powder From Andalusite and Carbon[J]. Materials Science and Engineering A.2000, (290):11-15.
    114. J. M. Lihrmann, J. Tirlocq, P. Descamps et al. Thermodynamics of the Al-C-O System and Properties of SiC-AlN-AlOC Composites[J]. Journal of the European Ceramic Society.1999,19:2781-2787.
    115. You J, Wang YW, Feng NX et al. Study on Making Casting Alloy ZL101 with Coarse Aluminum-Silicon Alloy[J]. Transaction of Nonferrous Metals Society of China.2008, 18(1):116-120