植物多酚拮抗高盐升压作用及保护靶器官的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     我国正迈入老龄化社会,高血压是最常见的老年慢性病之一,也是心脑血管病最主要的危险因素。近百年来人们围绕盐与血压的关系进行研究,基本上确定了盐是高血压的重要易患因素。但在人群内个体间对盐负荷或限盐却呈现不同的血压反应,即存在盐敏感性问题。肾脏生理功能异常是诱发及维持高血压的重要因素,而高血压又可成为慢性肾损害的病因,两者相互影响。近年来研究发现,血管内皮氧化应激参与高血压、肾脏受损、老龄化血管功能障碍等多种心肾血管疾病的发生发展。其中,内皮功能损伤和高血压特别是盐敏感性高血压的发病机制密切相关。流行病学研究表明,多种膳食因素可影响血压和血管功能,在过去的十余年中,通过减少钠盐的摄入、增加钾盐的摄入和增加以蔬菜和水果为基础的“清淡饮食”的摄入,可有效的降低血压和改善血管功能。其中,膳食植物多酚广泛分布于各种水果、蔬菜、谷物中,其对健康的影响受到人们越来越多的关注。芹菜素和姜黄素是两种重要的植物多酚,既往研究发现芹菜素和姜黄素具有降压、扩血管、抗氧化等作用,但具体机制尚不清楚。研究发现激活过氧化物酶体增殖物激活受体δ(peroxisome proliferator-activated receptor δ,PPARδ)产生的非基因作用可通过磷酯酰肌醇-3-激酶/丝氨酸-苏氨酸激酶/内皮型一氧化氮合酶(phosphatidylinositol-3-kinase/serine-threonine kinase/endothelial nitric oxide synthase,PI3K/Akt-eNOS)信号通路改善内皮依赖性血管功能障碍,而芹菜素可激活PPARγ发挥抗炎作用;研究表明,姜黄素可以调节老龄小鼠的血管内皮功能障碍相关的5'-AMP激活的蛋白激酶(5'-AMP-activated protein kinase,AMPK)信号通路。因此我们推测,芹菜素可能通过上调PPARδ激活PI3K/Akt-eNOS,促进内皮细胞一氧化氮(nitric oxide,NO)的生成,改善血管功能、预防盐敏感性高血压和保护肾脏;姜黄素可通过激活AMPK、上调解偶联蛋白2(uncoupling protein2,UCP2),减少活性氧簇(oxygen species,ROS)的产生,改善老龄化相关的脑血管功能障碍。
     目的:
     为了验证上述假设,本研究分为三部分进行。第一部分研究膳食芹菜素对醋酸脱氧皮质酮-盐(deoxycorticosterone acetate-salt,DOCA-盐)高血压大鼠是否具有降压作用和改善内皮依赖性血管舒张功能作用,芹菜素对DOCA-盐高血压大鼠24小时尿蛋白、肾小球硬化的影响。第二部分观察芹菜素对DOCA-盐高血压大鼠肾内动脉内皮ROS和NO水平、PPARδ-PI3K/Akt-eNOS通路信号分子蛋白表达的影响,应用芹菜素与SD大鼠肾内动脉孵育12小时,观察芹菜素是否通过PPARδ-PI3K/Akt-eNOS发挥改善血管功能和抗氧化应激作用。第三部分通过体内和体外实验,明确姜黄素是否通过激活AMPK/UCP2信号通路减少老龄鼠的脑血管ROS的产生和增加NO的生成,从而改善老化脑血管功能障碍。
     材料与方法:
     整个研究由在体实验和离体实验两部分组成。在体试验采用了多种动物模型。首先以DOCA-盐高血压大鼠作为盐敏感性高血压模型,按照是否注射DOCA造高血压模型和是否喂食芹菜素饲料4周,分为对照组、芹菜素组、DOCA组、DOCA+芹菜素组。选取24个月的SD大鼠、UCP-/-小鼠和对照鼠作为老龄鼠,分别喂食普通饲料和姜黄素饲料,选取6个月龄大鼠喂食普通饲料被用来作为青龄大鼠对照组。离体实验选以SD大鼠肾内动脉、SD大鼠和UCP2-/-小鼠脑动脉以及培养的内皮细胞为研究对象。
     1.无创鼠尾血压仪测大鼠鼠尾血压、多通道生理检测仪记录大鼠平均颈动脉压。
     2.组织冰冻切片HE染色观察大鼠肾脏病理结构变化。
     3.小动物代谢笼收集大鼠24小时尿液,γ放射免疫法检测尿蛋白含量,全自动生化检测仪检测尿电解质。
     4.小血管张力测定技术检测芹菜素急性刺激后或长期干预后大鼠肾内动脉舒张功能;姜黄素急性刺激后或长期干预后鼠脑基底动脉舒张功能。
     5.荧光显像技术检测芹菜素长期干预后对大鼠肾内动脉ROS和NO水平的影响;姜黄素长期干预后对老龄鼠脑动脉ROS和NO水平影响。
     6.蛋白免疫印迹法检测芹菜素对大鼠肾内动脉NO合成相关信号分子(PPARδ、p-Akt、Akt、eNOS、p-eNOS)的蛋白表达;姜黄素对老龄鼠脑动脉和内皮细胞ROS产生相关通路(AMPK、UCP2)的蛋白水平。
     结果:
     1.膳食芹菜素降低DOCA-盐高血压大鼠鼠尾血压和平均颈动脉压,改善DOCA-盐高血压大鼠肾内动脉内皮依赖性舒张功能,减轻DOCA-盐高血压大鼠蛋白尿、肾小球硬化程度。
     2.膳食芹菜素降低DOCA-盐高血压大鼠肾内动脉ROS水平、增加NO合成和磷酸化eNOS蛋白表达。
     3.芹菜素呈浓度依赖地内皮依赖性舒张大鼠肾内动脉,去除内皮、应用eNOS抑制剂、PPARδ抑制剂或PI3K抑制剂明显削弱血管的舒张反应。
     4.膳食芹菜素可显著上调DOCA-盐高血压大鼠肾内动脉PPARδ、磷酸化Akt蛋白表达;芹菜素孵育SD大鼠肾内动脉12小时可显著上调大鼠肾内动脉PPARδ、磷酸化Akt蛋白表达,加入PPARδ抑制剂或PI3K抑制剂可消除芹菜素对PPARδ、磷酸化Akt和磷酸化eNOS影响。
     5.膳食姜黄素干预改善老龄大鼠脑基底动脉内皮依赖性血管舒张功能,减少老龄大鼠脑血管ROS产生和增加eNOS磷酸化水平;膳食姜黄素通过UCP2依赖的方式减少老龄小鼠脑血管ROS产生和改善内皮依赖性血管舒张功能。
     6.膳食姜黄素上调老龄大鼠脑血管AMPK和UCP2蛋白表达;姜黄素与老龄大鼠脑血管或动脉内皮细胞孵育12小时后可上调内皮细胞AMPK、UCP2和磷酸化eNOS蛋白表达,改善血管内皮依赖性血管舒张功能或降低内皮细胞ROS和增加NO水平,AMPK抑制剂和UCP2抑制剂可分别显著减弱姜黄素的作用。
     结论:
     1.芹菜素降低DOCA-盐高血压大鼠血压、改善内皮依赖性血管舒张功能、防止肾脏损伤。
     2.芹菜素上调DOCA-盐高血压大鼠血管PPARδ并通过PI3K/Akt-eNOS介导增加NO合成,减轻血管氧化应激。
     3.姜黄素降低老年鼠脑血管内皮ROS的产生、增加NO生成,改善内皮依赖性血管舒张功能,其作用依赖AMPK激活介导的UCP2上调。
Background:
     Hypertension is the most common chronic diseases associated with aging, but also themost important risk factor for heart and vascular disease. Over the past century, around therelationship between salt and blood pressure, it is confirmed that salt is the important riskfactor of hypertensive. However, salt loading or salt restriction leads to a different bloodpressure response in the crowd, that is salt-sensitive. Abnormal renal physiology is animportant factor to induce and maintain high blood pressure, and high blood pressure can be acause of chronic renal damage, also, which both affect each other. Recent studies have foundthat the vascular endothelium oxidative stress involved in high blood pressure, kidney damage,the aging vascular dysfunction and a variety of cardiovascular disease development.Hypertension, especially salt-sensitive hypertension, is closely related to the pathogenesis ofendothelial dysfunction. Epidemiological studies have shown that a variety of dietary factorsaffect blood pressure and vascular function. In the past ten years, reducing sodium intake andincreaseing potassium salt intake, vegetable and fruit dietary can effectively lower bloodpressure and improve blood vessel function. The plant polyphenols widely distributed in avariety of fruits, vegetables and grains, and its impact on health attentioned by the peoplemore and more. Apigenin and curcumin are two important plant polyphenols. Previous studiesfound that apigenin and curcumin with effects of reduceing blood pressure, vasodilation,anti-oxidation, but the exact mechanisms of those are unclear. Recent studies found thatactivation of peroxisome proliferator-activated receptor δ (PPARδ) generating non-geneticeffects through phosphatidylinositol-3-kinase/serine-threonine kinase/endothelial nitric oxidesynthase (PI3K/Akt-eNOS) pathway improve endothelial function. Apigenin activatingPPARγ plays anti-inflammatory role. Studies also have shown that curcumin can adjust theaging mouse endothelial dysfunction related to5'-AMP-activated protein kinase (AMPK)signaling pathway. Therefore, we hypothesized that apigenin can activate PI3K/Akt-eNOS through PPARδ, promote the endothelial synthesis and release of nitric oxide (NO), improveblood vessel function, prevention of salt-sensitive high blood pressure and protect the kidneys.Curcumin can reduce reactive oxygen species (ROS) generation through AMPK-Uncouplingprotein2(UCP2) pathway and improve the aging cerebrovascular dysfunction.
     Objective:
     In order to verify the above assumptions, the present study was divided into three parts.First, we monitored blood pressure and vascular diastolic function of deoxycorticosteroneacetate-salt (DOCA-salt) hypertensive rats, to investigate the effect by apigenin ofanti-salt-sensitive hypertension and improving vascular function. Analysising24-hour urinaryalbumin and glomerulosclerosis of DOCA-salt hypertensive rats, to explore effect by apigeninprotecting against renal damage of salt-sensitive hypertensive. Second, comparing ROS andNO production and PPARδ-PI3K/Akt-eNOS pathway protein expression of arteries fromDOCA-salt hypertensive rats. Third, we provide in vivo and in vitro experimental evidencethat curcumin reduces ROS production and increases NO production, thereby rescuingcerebrovascular endothelium dysfunction through the AMPK/UCP2pathway in agingrodents.
     Materials and Methods:
     1. Non-invasive rat tail blood pressure, carotid artery mean arterial blood pressure ofDOCA-salt hypertensive rats.
     2. HE staining of kidney sections of DOCA-salt hypertensive rats.
     3.24-hour urine urine protein analysising of DOCA-salt hypertensive rats.
     4. Determination renal interlobular artery function after acute stimulation or long-terminterventions by apigenin. Cerebral basilar artery function changes by curcumin acutestimulation or long-term intervention.
     5. Fluorescence imaging of ROS and NO levels of DOCA-salt hypertensive rats renalartery. ROS and NO basilar arteries from aging rats after long-term curcumin intervention.
     6. Western blot detection of NO synthesis signaling proteins expression (PPARδ, Akt,eNOS, phospho-eNOS) in renal artery by apigenin treatment. Protein Level of ROS pathway(AMPK, UCP2) in brain basilar artery and endothelial cells treated by curcumin
     Results:
     1. Dietary apigenin reduced blood pressure, improved artery endothelium-dependent vasodilation, prevented proteinuria and glomerular sclerosis in DOCA-salt hypertensive rats.
     2. Dietary apigenin reduced artery ROS levels, increased NO production andphosphorylation of eNOS protein expression in DOCA-salt hypertensive rats.
     3. Dietary apigenin can significantly improve the DOCA-salt hypertensive rats renalartery endothelium-dependent vasodilation, and apigenin showed a concentration-dependentmanner vasodilation of rat renal artery, which dependented with PPARδ-PI3K/Akt-eNOSpathway.
     4. Impaired cerebrovascular endothelial function and increased ROS in aging rats can beimproved by chronic dietary curcumin through a UCP2-dependent pathway.
     5. Curcumin mediated UCP2up-regulation involves the activation of the AMPK in thecerebrovascular endothelium.
     6. Activation of the AMPK/UCP2pathway by curcumin antagonizes the production ofsuperoxide anions and prevents NO reduction in endothelial cells.
     Conclusions:
     1. Apigenin reduced salt-sensitive hypertension, improved endothelium-dependentvascular function and prevented against renal damage.
     2. Apigenin activated vascular PPARδ and increased NO production throughPI3K/Akt-eNOS pathway.
     3. Curcumin improves aging-related cerebrovascular dysfunction through theAMPK/UCP2pathway.
引文
[1] Geneva W. World health statistics2012[J]. Report No WA,2012,900(1):113-21.
    [2]中国高血压防治指南修订委员会.中国高血压防治指南2010[J].中华高血压杂志,2011,19(8):701-43.
    [3] Persell S D. Prevalence of resistant hypertension in the United States,2003–2008[J].Hypertension,2011,57(6):1076-80.
    [4] Ogihara T, Kikuchi K, Matsuoka H, Fujita T, Higaki J, Horiuchi M, Imai Y,Imaizumi T, Ito S, Iwao H. The Japanese Society of Hypertension Guidelines for theManagement of Hypertension (JSH2009)[J]. Hypertension research: official journalof the Japanese Society of Hypertension,2009,32(1):3.
    [5] Parati G, Stergiou G, Asmar R, Bilo G, De Leeuw P, Imai Y, Kario K, Lurbe E,Manolis A, Mengden T. European Society of Hypertension practice guidelines forhome blood pressure monitoring [J]. Journal of human hypertension,2010,24(12):779-85.
    [6] Wong M C, Tam W W, Cheung C S, Tong E L, Sek A C, Cheung N, Yan B P, YuC-M, Griffiths S M. Antihypertensive Prescriptions Over a10-Year Period in aLarge Chinese Population [J]. American journal of hypertension,2013,
    [7] Ritz E. Salt and hypertension [J]. Nephrology,2010,15(s2):49-52.
    [8] Fujita T. Mineralocorticoid receptors, salt-sensitive hypertension, and metabolicsyndrome [J]. Hypertension,2010,55(4):813-8.
    [9] Blaustein M P, Leenen F H, Chen L, Golovina V A, Hamlyn J M, Pallone T L, VanHuysse J W, Zhang J, Wier W G. How NaCl raises blood pressure: a new paradigmfor the pathogenesis of salt-dependent hypertension [J]. American Journal ofPhysiology-Heart and Circulatory Physiology,2012,302(5): H1031-H49.
    [10] Per l M-M, Moltchanova E, Kaartinen N E, M nnist S, Kajantie E, Osmond C,Barker D J, Valsta L M, Eriksson J G. The association between salt intake and adultsystolic blood pressure is modified by birth weight [J]. The American journal ofclinical nutrition,2011,93(2):422-6.
    [11] Miura K, Okuda N, Turin T C, Takashima N, Nakagawa H, Nakamura K, Yoshita K,Okayama A, Ueshima H. Dietary salt intake and blood pressure in a representativeJapanese population: baseline analyses of NIPPON DATA80[J]. Journal ofepidemiology,2010,20(Supplement_III): S524-S30.
    [12] Dumler F, Cano N. Dietary sodium intake and arterial blood pressure; proceedings ofthe Proceedings of the XIVth International Congress on Nutrition and Metabolism inRenal Disease, Marseilles, France,11-15June2008, F,2009[C]. WB Saunders\Elsevier Science.
    [13]牟建军,刘治全.关注盐和盐敏感性提高我国高血压防治水平[J].中华高血压杂志,2010,18(3):201-2.
    [14] Batuman V, Landy E, Maesaka J K, Wedeen R P. Contribution of lead tohypertension with renal impairment [J]. The New England journal of medicine,1983,309(1):17-21.
    [15] Siragy H M. ESCAPE: From hypertension to renal failure [J]. Current hypertensionreports,2010,12(4):207-9.
    [16] Kalra S, Sahay M, Baruah M, Agrawal N, Kapoor D, Mitra S. Management OfHypertension In Renal Disease: Results From The Imperial Study [J]. The InternetJournal of Family Practice,2010,8(2):
    [17]郎玉洁.高血压病治疗的重要目标是保护脑心肾[J].中外医疗,2012,31(6):75-.
    [18]李伟,胡洪贞.高血压肾损害的危险因素及防治策略[J].肾脏病与透析肾移植杂志,2010,002):172-9.
    [19] Endemann D H, Schiffrin E L. Endothelial dysfunction [J]. Journal of the AmericanSociety of Nephrology,2004,15(8):1983-92.
    [20] Ferro C J, Webb D J. Endothelial dysfunction and hypertension [J]. Drugs,1997,53(1):30-41.
    [21] Perticone F, Maio R, Tripepi G, Zoccali C. Endothelial dysfunction and mild renalinsufficiency in essential hypertension [J]. Circulation,2004,110(7):821-5.
    [22] Chen R L, Balami J S, Esiri M M, Chen L K, Buchan A M. Ischemic stroke in theelderly: an overview of evidence [J]. Nature reviews Neurology,2010,6(5):256-65.
    [23] Shin H K, Jones P B, Garcia-Alloza M, Borrelli L, Greenberg S M, Bacskai B J,Frosch M P, Hyman B T, Moskowitz M A, Ayata C. Age-dependent cerebrovasculardysfunction in a transgenic mouse model of cerebral amyloid angiopathy [J]. Brain:a journal of neurology,2007,130(Pt9):2310-9.
    [24] Vasilevko V, Passos G F, Quiring D, Head E, Kim R C, Fisher M, Cribbs D H.Aging and cerebrovascular dysfunction: contribution of hypertension, cerebralamyloid angiopathy, and immunotherapy [J]. Annals of the New York Academy ofSciences,2010,1207(58-70.
    [25] Fleenor B S, Sindler A L, Marvi N K, Howell K L, Zigler M L, Yoshizawa M, SealsD R. Curcumin ameliorates arterial dysfunction and oxidative stress with aging [J].Experimental gerontology,2013,48(2):269-76.
    [26] Pena Silva R A, Chu Y, Miller J D, Mitchell I J, Penninger J M, Faraci F M, HeistadD D. Impact of ACE2deficiency and oxidative stress on cerebrovascular functionwith aging [J]. Stroke; a journal of cerebral circulation,2012,43(12):3358-63.
    [27] Marx N, Plutzky J. Peroxisome proliferator-activated receptors [J]. Currentatherosclerosis reports,2002,4(1):59-64.
    [28] Youssef J A, Badr M Z. Peroxisome Proliferator-Activated Receptors [M].Peroxisome Proliferator-Activated Receptors. Springer.2013:15-23.
    [29] Yessoufou A, Wahli W. Multifaceted roles of peroxisome proliferator-activatedreceptors (PPARs) at the cellular and whole organism levels [J]. Swiss Med Wkly,2010,140(w13071.
    [30] Lee C-H, Chawla A, Urbiztondo N, Liao D, Boisvert W A, Evans R M.Transcriptional repression of atherogenic inflammation: modulation by PPAR {delta}[J]. Science Signaling,2003,302(5644):453.
    [31] Luquet S, Gaudel C, Holst D, Lopez-Soriano J, Jehl-Pietri C, Fredenrich A, GrimaldiP A. Roles of PPAR delta in lipid absorption and metabolism: a new target for thetreatment of type2diabetes [J]. Biochimica et Biophysica Acta (BBA)-MolecularBasis of Disease,2005,1740(2):313-7.
    [32] Fredenrich A, Grimaldi P. PPAR delta: an uncompletely known nuclear receptor [J].Diabetes&metabolism,2005,31(1):23-7.
    [33] Harman F S, Nicol C J, Marin H E, Ward J M, Gonzalez F J, Peters J M. Peroxisomeproliferator–activated receptor-δ attenuates colon carcinogenesis [J]. Naturemedicine,2004,10(5):481-3.
    [34] Reilly S M, Lee C-H. PPARδ as a therapeutic target in metabolic disease [J]. FEBSletters,2008,582(1):26-31.
    [35] Jiménez R, Sánchez M, Zarzuelo M J, Romero M, Quintela A M, López-SepúlvedaR, Galindo P, Gómez-Guzmán M, Haro J M, Zarzuelo A. Endothelium-dependentvasodilator effects of peroxisome proliferator-activated receptor β agonists via thephosphatidyl-inositol-3kinase-Akt pathway [J]. Journal of Pharmacology andExperimental Therapeutics,2010,332(2):554-61.
    [36] Zhao Z, Luo Z, Wang P, Sun J, Yu H, Cao T, Ni Y, Chen J, Yan Z, Liu D.Rosiglitazone restores endothelial dysfunction in a rat model of metabolic syndromethrough PPARγ-and PPARδ-dependent phosphorylation of Akt and eNOS [J]. PPARresearch,2011,2011(
    [37] Tian X Y, Wong W T, Wang N, Lu Y, San Cheang W, Liu J, Liu L, Liu Y, Lee SS-T, Chen Z Y. PPARδ Activation Protects Endothelial Function in Diabetic Mice[J]. Diabetes,2012,61(12):3285-93.
    [38] Andrews Z B, Horvath T L. Uncoupling protein-2regulates lifespan in mice [J].American journal of physiology Endocrinology and metabolism,2009,296(4):E621-7.
    [39] Brand M D, Esteves T C. Physiological functions of the mitochondrial uncouplingproteins UCP2and UCP3[J]. Cell metabolism,2005,2(2):85-93.
    [40] Mailloux R J, Harper M E. Uncoupling proteins and the control of mitochondrialreactive oxygen species production [J]. Free radical biology&medicine,2011,51(6):1106-15.
    [41] Andrews Z B, Diano S, Horvath T L. Mitochondrial uncoupling proteins in the CNS:in support of function and survival [J]. Nature reviews Neuroscience,2005,6(11):829-40.
    [42] Kim S J, Jung J Y, Kim H W, Park T. Anti-obesity effects of Juniperus chinensisextract are associated with increased AMP-activated protein kinase expression andphosphorylation in the visceral adipose tissue of rats [J]. Biological&pharmaceutical bulletin,2008,31(7):1415-21.
    [43] Pecqueur C, Bui T, Gelly C, Hauchard J, Barbot C, Bouillaud F, Ricquier D, MirouxB, Thompson C B. Uncoupling protein-2controls proliferation by promoting fattyacid oxidation and limiting glycolysis-derived pyruvate utilization [J]. FASEBjournal: official publication of the Federation of American Societies forExperimental Biology,2008,22(1):9-18.
    [44] Ma S, Ma L, Yang D, Luo Z, Hao X, Liu D, Zhu Z. Uncoupling protein2ablationexacerbates high-salt intake-induced vascular dysfunction [J]. Am J Hypertens,2010,23(8):822-8.
    [45] Tian X Y, Wong W T, Xu A, Lu Y, Zhang Y, Wang L, San Cheang W, Wang Y,Yao X, Huang Y. Uncoupling Protein-2Protects Endothelial Function inDiet-Induced Obese MiceNovelty and Significance [J]. Circulation research,2012,110(9):1211-6.
    [46] Moukdar F, Robidoux J, Lyght O, Pi J, Daniel K W, Collins S. Reduced antioxidantcapacity and diet-induced atherosclerosis in uncoupling protein-2-deficient mice [J].Journal of lipid research,2009,50(1):59-70.
    [47] Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress [J].Biological Research,2000,33(2):55-64.
    [48] Yoruk R, Marshall M R. Physicochemical properties and function of plantpolyphenol oxidase: a review1[J]. Journal of Food Biochemistry,2003,27(5):361-422.
    [49] Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols andthe prevention of diseases [J]. Critical reviews in food science and nutrition,2005,45(4):287-306.
    [50] Viola H, Wasowski C, De Stein M L, Wolfman C, Silveira R, Dajas F, Medina J,Paladini A. Apigenin, a component of Matricaria recutita flowers, is a centralbenzodiazepine receptors-ligand with anxiolytic effects [J]. Planta Medica,2007,61(03):213-6.
    [51] Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M.Pharmacological profile of apigenin, a flavonoid isolated from Matricariachamomilla [J]. Biochemical pharmacology,2000,59(11):1387.
    [52] Martin H. Role of PPAR-gamma in inflammation. Prospects for therapeuticintervention by food components [J]. Mutation Research/Fundamental andMolecular Mechanisms of Mutagenesis,2009,669(1):1-7.
    [53] Chung J H, Seo A Y, Chung S W, Kim M K, Leeuwenburgh C, Yu B P, Chung H Y.Molecular mechanism of PPAR in the regulation of age-related inflammation [J].Ageing research reviews,2008,7(2):126-36.
    [54] Yano S, Umeda D, Maeda N, Fujimura Y, Yamada K, Tachibana H. Dietaryapigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice[J]. Journal of agricultural and food chemistry,2006,54(14):5203-7.
    [55] Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E,Muller M J, Oberritter H, Schulze M, Stehle P, Watzl B. Critical review: vegetablesand fruit in the prevention of chronic diseases [J]. European journal of nutrition,2012,51(6):637-63.
    [56] Gupta S C, Patchva S, Koh W, Aggarwal B B. Discovery of curcumin, a componentof golden spice, and its miraculous biological activities [J]. Clinical andexperimental pharmacology&physiology,2012,39(3):283-99.
    [57] L L, P Z, Y L, G Y. Curcumin protects brain from oxidative stress through inducingexpression of UCP2in chronic cerebral hypoperfusion aging-rats; proceedings of the2011International Conference on Molecular Neurodegeneration Shanghai, China, F,2012[C].
    [58] Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F. Dietary curcuminsupplementation counteracts reduction in levels of molecules involved in energyhomeostasis after brain trauma [J]. Neuroscience,2009,161(4):1037-44.
    [59] Thiyagarajan M, Sharma S S. Neuroprotective effect of curcumin in middle cerebralartery occlusion induced focal cerebral ischemia in rats [J]. Life sciences,2004,74(8):969-85.
    [60] Lakshmanan A P, Watanabe K, Thandavarayan R A, Sari F R, Meilei H, Soetikno V,Arumugam S, Giridharan V V, Suzuki K, Kodama M. Curcumin attenuateshyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum ofstreptozotocin-induced diabetic rat [J]. Free radical research,2011,45(7):788-95.
    [61]祝之明代谢手术治疗高血压和2型糖尿病——理想抑或现实?[M].第三军医大学学报.2013.
    [62] Bihorac A, Tezcan H, zener, Oktay A, Akoglu E. Association between saltsensitivity and target organ damage in essential hypertension [J]. American journalof hypertension,2000,13(8):864-72.
    [63] Iwamoto T, Kita S, Zhang J, Blaustein M P, Arai Y, Yoshida S, Wakimoto K,Komuro I, Katsuragi T. Salt-sensitive hypertension is triggered by Ca2+entry viaNa+/Ca2+exchanger type-1in vascular smooth muscle [J]. Nature medicine,2004,10(11):1193-9.
    [64] Manning R, Meng S, Tian N. Renal and vascular oxidative stress and salt‐sensitivity of arterial pressure [J]. Acta physiologica scandinavica,2003,179(3):243-50.
    [65]沈汉超.高血压肾病诊治进展[J].心脑血管病防治,2002,2(2):5-7.
    [66]尤丹瑜,万建新,吴可贵.高血压肾损害[J].中华高血压杂志,2007,
    [67] Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction inhypertension [J]. Hypertension Research,2011,34(6):665-73.
    [68] Wong W T, Wong S L, Tian X Y, Huang Y. Endothelial dysfunction: the commonconsequence in diabetes and hypertension [J]. Journal of cardiovascularpharmacology,2010,55(4):300.
    [69] Obarzanek E, Sacks F M, Vollmer W M, Bray G A, Miller E R, Lin P-H, Karanja NM, Most-Windhauser M M, Moore T J, Swain J F. Effects on blood lipids of a bloodpressure–lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial[J]. The American journal of clinical nutrition,2001,74(1):80-9.
    [70] Smith P J, Blumenthal J A, Babyak M A, Craighead L, Welsh-Bohmer K A,Browndyke J N, Strauman T A, Sherwood A. Effects of the dietary approaches tostop hypertension diet, exercise, and caloric restriction on neurocognition inoverweight adults with high blood pressure [J]. Hypertension,2010,55(6):1331-8.
    [71] Crozier A, Del Rio D, Clifford M N. Bioavailability of dietary flavonoids andphenolic compounds [J]. Molecular aspects of medicine,2010,31(6):446-67.
    [72] Jaganath I B, Crozier A. Dietary flavonoids and phenolic compounds [J]. PlantPhenolics and Human Health: Biochemistry, Nutrition, and Pharmacology,2010,1-49.
    [73] Cassidy A, O'reilly J, Kay C, Sampson L, Franz M, Forman J, Curhan G, Rimm E B.Habitual intake of flavonoid subclasses and incident hypertension in adults [J]. TheAmerican journal of clinical nutrition,2011,93(2):338-47.
    [74] Shen Y, Croft K D, Hodgson J M, Kyle R, Lee I, Ling E, Wang Y, Stocker R, WardN C. Quercetin and its metabolites improve vessel function by inducing eNOSactivity via phosphorylation of AMPK [J]. Biochemical Pharmacology,2012
    [75]隋海霞,徐海滨,荫士安.芹菜素的生物学作用[J].国外医学(卫生学分册),2008.
    [76]历强,马建仓,赵军.芹菜素的药理学研究进展[J].国外医学:中医中药分册,2003,25(3):147-9.
    [77]王海娣,刘艾林,杜冠华.芹菜素药理作用的研究进展[J].中国新药杂志,2008,17(18):1561-5.
    [78] Zhang Y-H, Park Y-S, Kim T-J, Fang L-H, Ahn H-Y, Hong J, Kim Y, Lee C-K, YunY-P. Endothelium-dependent vasorelaxant and antiproliferative effects of apigenin[J]. General Pharmacology: The Vascular System,2000,35(6):341-7.
    [79] Haixia S, Weixing Y, Guiying G. Effect of apigenin on SBP of spontaneoushypertension rats and its mechanism [J]. Journal of Environment and Health,2009,26(2):112-3.
    [80] Klanke B, Cordasic N, Hartner A, Schmieder R E, Veelken R, Hilgers K F. Bloodpressure versus direct mineralocorticoid effects on kidney inflammation and fibrosisin DOCA-salt hypertension*[J]. Nephrology Dialysis Transplantation,2008,23(11):3456-63.
    [81] Rothermund L, Luckert S, Ko mehl P, Paul M, Kreutz R. Renal endothelinETA/ETB receptor imbalance differentiates salt-sensitive from salt-resistantspontaneous hypertension [J]. Hypertension,2001,37(2):275-80.
    [82]陈健初,董绍华,叶兴乾.芹菜黄酮及其在主要制汁过程中的变化[J].浙江农业大学学报,1998,24(3):279-82.
    [83]隋海霞.芹菜素安全性和降血压作用及其机制的实验研究[D];北京:中国疾病预防控制中心,2009.
    [84]隋海霞,严卫星,耿桂英,刘海波,支媛,余强,徐海滨.芹菜素对自发性高血压大鼠血压的影响及其机制初步研究[J].环境与健康杂志,2009,26(2):112-3.
    [85]隋海霞,支媛,刘海波,高芃,徐海滨,严卫星.芹菜素舒张血管作用及其机制研究[J].卫生研究,2011,40(4):416-9.
    [86]邝素娟,邓春玉,张光燕,饶芳,李晓红,单志新,林秋雄,杨敏,余细勇.二烯丙基三硫化物对大鼠离体肾内动脉血管张力的影响[J].中国药理学通报,2011,27(10):1409-13.
    [87] Anderson W P, Kett M M, Evans R G, Alcorn D. Pre-glomerular structural changesin the renal vasculature in hypertension [J]. Blood pressure Supplement,1995,2,74-80.
    [88] Van Hoorn D, Nijveldt R, Boelens P, Hofman Z, Van Leeuwen P, Van Norren K.Effects of preoperative flavonoid supplementation on different organ functions inrats [J]. JPEN Journal of parenteral and enteral nutrition,2006,30(4):302.
    [89] Zatz R, Baylis C. Chronic nitric oxide inhibition model six years on [J].Hypertension,1998,32(6):958-64.
    [90] Duarte J, Jiménez R, O'valle F, Galisteo M, Pérez-Palencia R, Vargas F,Pérez-Vizcaíno F, Zarzuelo A, Tamargo J. Protective effects of the flavonoidquercetin in chronic nitric oxide deficient rats [J]. Journal of hypertension,2002,20(9):1843.
    [91] Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in therelaxation of arterial smooth muscle by acetylcholine [J].1980,
    [92] Ignarro L J. Biosynthesis and metabolism of endothelium-derived nitric oxide [J].Annual review of pharmacology and toxicology,1990,30(1):535-60.
    [93] F rstermann U, Sessa W C. Nitric oxide synthases: regulation and function [J].European heart journal,2012,33(7):829-37.
    [94] F rstermann U. Nitric oxide and oxidative stress in vascular disease [J]. PflügersArchiv-European Journal of Physiology,2010,459(6):923-39.
    [95] Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role ofoxidant stress [J]. Circulation research,2000,87(10):840-4.
    [96] Deanfield J E, Halcox J P, Rabelink T J. Endothelial function and dysfunction [J].Circulation,2007,115(10):1285-95.
    [97] Kota B P, Huang T H-W, Roufogalis B D. An overview on biological mechanisms ofPPARs [J]. Pharmacological Research,2005,51(2):85-94.
    [98] Vosper H, Patel L, Graham T L, Khoudoli G A, Hill A, Macphee C H, Pinto I, SmithS A, Suckling K E, Wolf C R, Palmer C N. The peroxisome proliferator-activatedreceptor delta promotes lipid accumulation in human macrophages [J]. The Journalof biological chemistry,2001,276(47):44258-65.
    [99] Cimini A, Benedetti E, Cristiano L, Sebastiani P, D'amico M, D'angelo B, Di LoretoS. Expression of peroxisome proliferator-activated receptors (PPARs) and retinoicacid receptors (RXRs) in rat cortical neurons [J]. Neuroscience,2005,130(2):325-37.
    [100] Piqueras L, Reynolds A R, Hodivala-Dilke K M, Alfranca A, Redondo J M, Hatae T,Tanabe T, Warner T D, Bishop-Bailey D. Activation of PPARβ/δ induces endothelialcell proliferation and angiogenesis [J]. Arteriosclerosis, Thrombosis, and VascularBiology,2007,27(1):63-9.
    [101] Barak Y, Liao D, He W, Ong E S, Nelson M C, Olefsky J M, Boland R, Evans R M.Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity,and colorectal cancer [J]. Proceedings of the National Academy of Sciences of theUnited States of America,2002,99(1):303-8.
    [102] Lee C H, Chawla A, Urbiztondo N, Liao D, Boisvert W A, Evans R M, Curtiss L K.Transcriptional repression of atherogenic inflammation: modulation by PPARdelta[J]. Science,2003,302(5644):453-7.
    [103] Schiffrin E L, Amiri F, Benkirane K, Iglarz M, Diep Q N. Peroxisomeproliferator-activated receptors vascular and cardiac effects in hypertension [J].Hypertension,2003,42(4):664-8.
    [104] Benkirane K, Amiri F, Diep Q N, El Mabrouk M, Schiffrin E L. PPAR-gammainhibits ANG II-induced cell growth via SHIP2and4E-BP1[J]. American journal ofphysiology Heart and circulatory physiology,2006,290(1): H390-7.
    [105] Lee K-S, Park J-H, Lee S, Lim H-J, Jang Y, Park H-Y. Troglitazone inhibitsendothelial cell proliferation through suppression of casein kinase2activity [J].Biochemical and biophysical research communications,2006,346(1):83-8.
    [106] Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N, Saito T,Masuda Y, Kadowaki T, Komuro I. Peroxisome proliferator-activated receptor γplays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo [J].Circulation,2002,105(10):1240-6.
    [107] Moraes L A, Swales K E, Wray J A, Damazo A, Gibbins J M, Warner T D,Bishop-Bailey D. Nongenomic signaling of the retinoid X receptor through bindingand inhibiting Gq in human platelets [J]. Blood,2007,109(9):3741-4.
    [108] Iglarz M, Touyz R M, Viel E C, Paradis P, Amiri F, Diep Q N, Schiffrin E L.Peroxisome proliferator-activated receptor-α and receptor-γ activators preventcardiac fibrosis in mineralocorticoid-dependent hypertension [J]. Hypertension,2003,42(4):737-43.
    [109] Khan O, Riazi S, Hu X, Song J, Wade J B, Ecelbarger C A. Regulation of the renalthiazide-sensitive Na-Cl cotransporter, blood pressure, and natriuresis in obeseZucker rats treated with rosiglitazone [J]. American Journal of Physiology-RenalPhysiology,2005,289(2): F442-F50.
    [110] Sheng L, Ye P, Liu Y-X, Han C-G, Zhang Z-Y. Peroxisome proliferator-activatedreceptor β/δ activation improves angiotensin II-induced cardiac hypertrophy in vitro[J]. Clinical and experimental hypertension,2008,30(2):109-19.
    [111] Jiang B, Liang P, Zhang B, Song J, Huang X, Xiao X. Role of PPAR-beta inhydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells [J].Atherosclerosis,2009,204(2):353-8.
    [112] Lim H-J, Lee S, Park J-H, Lee K-S, Choi H-E, Chung K-S, Lee H-H, Park H-Y.PPARδ agonist L-165041inhibits rat vascular smooth muscle cell proliferation andmigration via inhibition of cell cycle [J]. Atherosclerosis,2009,202(2):446-54.
    [113] Han J-K, Lee H-S, Yang H-M, Hur J, Jun S-I, Kim J-Y, Cho C-H, Koh G-Y, Peters JM, Park K-W. Peroxisome Proliferator–Activated Receptor-δ Agonist EnhancesVasculogenesis by Regulating Endothelial Progenitor Cells Through Genomic andNongenomic Activations of the Phosphatidylinositol3-Kinase/Akt Pathway [J].Circulation,2008,118(10):1021-33.
    [114] Burgermeister E, Seger R. MAPK-Kinases as Nucleo-Cytoplasmic Shuttles forPPARγ [J]. Cell Cycle,2007,6(13):1539-48.
    [115] Cheskis B J, Greger J G, Nagpal S, Freedman L P. Signaling by estrogens [J].Journal of cellular physiology,2007,213(3):610-7.
    [116] Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids [J].Nature Clinical Practice Rheumatology,2008,4(10):525-33.
    [117] Chen F, Wang M, O'connor J P, He M, Tripathi T, Harrison L E. Phosphorylation ofPPARγ via active ERK1/2leads to its physical association with p65and inhibitionof NF‐κβ [J]. Journal of cellular biochemistry,2003,90(4):732-44.
    [118] Ali F Y, Davidson S J, Moraes L A, Traves S L, Paul-Clark M, Bishop-Bailey D,Warner T D, Mitchell J A. Role of nuclear receptor signaling in platelets:antithrombotic effects of PPARβ [J]. The FASEB Journal,2006,20(2):326-8.
    [119] Liu L, Liu J, Wong W T, Tian X Y, Lau C W, Wang Y X, Xu G, Pu Y, Zhu Z, Xu A,Lam K S, Chen Z Y, Ng C F, Yao X, Huang Y. Dipeptidyl peptidase4inhibitorsitagliptin protects endothelial function in hypertension through a glucagon-likepeptide1-dependent mechanism [J]. Hypertension,2012,60(3):833-41.
    [120] Li L, Luo Z, Yu H, Feng X, Wang P, Chen J, Pu Y, Zhao Y, He H, Zhong J.Telmisartan Improves Insulin Resistance of Skeletal Muscle Through PeroxisomeProliferator–Activated Receptor-δ Activation [J]. Diabetes,2013,62(3):762-74.
    [121] Buga G M, Gold M E, Fukuto J M, Ignarro L J. Shear stress-induced release of nitricoxide from endothelial cells grown on beads [J]. Hypertension,1991,17(2):187-93.
    [122] Raji L. Nitric oxide and the kidney [J]. Monograph-American Heart Association,1993,87(5): V26-V9.
    [123] García N H, Stoos B A, Carretero O A, Garvin J L. Mechanism of the nitricoxide-induced blockade of collecting duct water permeability [J]. Hypertension,1996,27(3):679-83.
    [124] Granger J, Novak J, Schnackenberg C, Williams S, Reinhart G A. Role of renalnerves in mediating the hypertensive effects of nitric oxide synthesis inhibition [J].Hypertension,1996,27(3):613-8.
    [125]周泉生,阮长耿.一氧化氮及其合成酶异常与疾病[J].生理科学进展,1995,26(2):169-71.
    [126] Lüscher T. Imbalance of Endothelium-derived Relaxing and Contracting Factors ANew Concept in Hypertension?[J]. American journal of hypertension,1990,3(4):317-30.
    [127] Dudzinski D M, Igarashi J, Greif D, Michel T. The regulation and pharmacology ofendothelial nitric oxide synthase [J]. Annu Rev Pharmacol Toxicol,2006,46(235-76.
    [128] Pluta R. Dysfunction of nitric oxide synthases as a cause and therapeutic target indelayed cerebral vasospasm after SAH [J]. Neurological research,2006,28(7):730-7.
    [129] Landmesser U, Hornig B, Drexler H. Endothelial function [J]. Circulation,2004,109(21suppl1): II-27-II-33.
    [130]于治利,关立克.一氧化氮与血管内皮细胞功能障碍[J].吉林医学,2011,2,85.
    [131] Kelly D, Campbell J I, King T P, Grant G, Jansson E A, Coutts A G, Pettersson S,Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulatingnuclear-cytoplasmic shuttling of PPAR-γ and RelA [J]. Nature immunology,2003,5(1):104-12.
    [132] Kliewer S, Forman B, Blumberg B, Ong E, Borgmeyer U, Mangelsdorf D, UmesonoK, Evans R. Differential expression and activation of a family of murine peroxisomeproliferator-activated receptors [J]. Proceedings of the National Academy ofSciences,1994,91(15):7355-9.
    [133] Piqueras L, Sanz M J, Perretti M, Morcillo E, Norling L, Mitchell J A, Li Y,Bishop-Bailey D. Activation of PPARβ/δ inhibits leukocyte recruitment, celladhesion molecule expression, and chemokine release [J]. Journal of leukocytebiology,2009,86(1):115-22.
    [134] Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A M. Activationof nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].Nature,1999,399(6736):601-5.
    [135] Fulton D, Gratton J-P, Mccabe T J, Fontana J, Fujio Y, Walsh K, Franke T F,Papapetropoulos A, Sessa W C. Regulation of endothelium-derived nitric oxideproduction by the protein kinase Akt [J]. Nature,1999,399(6736):597-601.
    [136] Baines C, Wang L, Cohen M, Downey J. Myocardial protection by insulin isdependent on phospatidylinositol3-kinase but not protein kinase C or KATPchannels in the isolated rabbit heart [J]. Basic research in cardiology,1999,94(3):188-98.
    [137] Spencer T A, Chai H, Fu W, Ramaswami G, Cox M W, Conklin B S, Lin P H,Lumsden A B, Yao Q, Chen C. Estrogen blocks homocysteine-induced endothelialdysfunction in porcine coronary arteries [J]. Journal of Surgical Research,2004,118(1):83-90.
    [138] Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxidesynthase [J]. Metabolism: clinical and experimental,2000,49(2):147-50.
    [139] Zeng G, Nystrom F H, Ravichandran L V, Cong L-N, Kirby M, Mostowski H, QuonM J. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathwaysrelated to production of nitric oxide in human vascular endothelial cells [J].Circulation,2000,101(13):1539-45.
    [140] Montagnani M, Chen H, Barr V A, Quon M J. Insulin-stimulated activation of eNOSis independent of Ca2+but requires phosphorylation by Akt at Ser1179[J]. Journalof Biological Chemistry,2001,276(32):30392-8.
    [141] Quon M J. Molecular and physiologic actions of insulin related to production ofnitric oxide in vascular endothelium [J]. Current diabetes reports,2003,3(4):279-88.
    [142] Lesniewski L A, Zigler M C, Durrant J R, Donato A J, Seals D R. Sustainedactivation of AMPK ameliorates age-associated vascular endothelial dysfunction viaa nitric oxide-independent mechanism [J]. Mechanisms of ageing and development,2012,133(5):368-71.
    [143] R.G. Tunstall, R.A. Sharma, S. Perkins, S. Sale, R. Singh, P.B. Farmer, W.P.Steward, A.J. Gescher. Cyclooxygenase-2expression and oxidative DNA adducts inmurine intestinal adenomas: Modification by dietary curcumin and implications forclinical trials,2006,42(3),415-21.
    [144] Bouayed J, Bohn T. Exogenous antioxidants-Double-edged swords in cellularredox state: Health beneficial effects at physiologic doses versus deleterious effectsat high doses [J]. Oxidative medicine and cellular longevity,2010,3(4):228-37.
    [145] Winder W W, Holmes B F, Rubink D S, Jensen E B, Chen M, Holloszy J O.Activation of AMP-activated protein kinase increases mitochondrial enzymes inskeletal muscle [J]. J Appl Physiol,2000,88(6):2219-26.
    [146] Reznick R M, Zong H, Li J, Morino K, Moore I K, Yu H J, Liu Z X, Dong J,Mustard K J, Hawley S A, Befroy D, Pypaert M, Hardie D G, Young L H, ShulmanG I. Aging-associated reductions in AMP-activated protein kinase activity andmitochondrial biogenesis [J]. Cell metabolism,2007,5(2):151-6.
    [147] Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls theaging process via an integrated signaling network [J]. Ageing research reviews,2012,11(2):230-41.
    [148] Anderson R M, Weindruch R. Metabolic reprogramming, caloric restriction andaging [J]. Trends in endocrinology and metabolism: TEM,2010,21(3):134-41.
    [149] Canto C, Auwerx J. Caloric restriction, SIRT1and longevity [J]. Trends inendocrinology and metabolism: TEM,2009,20(7):325-31.
    [150] Fontana L, Partridge L, Longo V D. Extending healthy life span--from yeast tohumans [J]. Science,2010,328(5976):321-6.
    [151] Greer E L, Brunet A. Different dietary restriction regimens extend lifespan by bothindependent and overlapping genetic pathways in C. elegans [J]. Aging cell,2009,8(2):113-27.
    [152] Fridell Y W, Sanchez-Blanco A, Silvia B A, Helfand S L. Targeted expression of thehuman uncoupling protein2(hUCP2) to adult neurons extends life span in the fly [J].Cell metabolism,2005,1(2):145-52.
    [153] Chan S H, Wu C A, Wu K L, Ho Y H, Chang A Y, Chan J Y. Transcriptionalupregulation of mitochondrial uncoupling protein2protects against oxidativestress-associated neurogenic hypertension [J]. Circ Res,2009,105(9):886-96.
    [154] Ghosh D, Scheepens A. Vascular action of polyphenols [J]. Molecular nutrition&food research,2009,53(3):322-31.
    [1]中国高血压防治指南修订委员会.中国高血压防治指南2010[J].中华高血压杂志,2011,19(8):701-43.
    [2]华琦,任海荣.高盐和高血压[J].中国实用内科杂志,2012,32(1):41-4.
    [3] Stamler J. The INTERSALT Study: background, methods, findings, and implications[J]. The American journal of clinical nutrition,1997,65(2):626S-42S.
    [4] Singh A K, Amlal H, Haas P J, Dringenberg U, Fussell S, Barone S L, Engelhardt R,Zuo J, Seidler U, Soleimani M. Fructose-induced hypertension: essential role ofchloride and fructose absorbing transporters PAT1and Glut5[J]. Kidney Int,2008,74(4):438-47.
    [5] Liu Z. Dietary sodium and the incidence of hypertension in the Chinese population: areview of nationwide surveys [J]. American journal of hypertension,2009,22(9):929-33.
    [6] Chun T Y, Bankir L, Eckert G J, Bichet D G, Saha C, Zaidi S A, Wagner M A, Pratt JH. Ethnic differences in renal responses to furosemide [J]. Hypertension,2008,52(2):241-8.
    [7] Weinberger M H, Fineberg N S, Fineberg S E, Weinberger M. Salt sensitivity, pulsepressure, and death in normal and hypertensive humans [J]. Hypertension,2001,37(2Pt2):429-32.
    [8] Rodriguez-Iturbe B, Vaziri N D. Salt-sensitive hypertension--update on novel findings[J]. Nephrology, dialysis, transplantation: official publication of the EuropeanDialysis and Transplant Association-European Renal Association,2007,22(4):992-5.
    [9] Kuro-O M, Hanaoka K, Hiroi Y, Noguchi T, Fujimori Y, Takewaki S, Hayasaka M,Katoh H, Miyagishi A, Nagai R, Et Al. Salt-sensitive hypertension in transgenic miceoverexpressing Na(+)-proton exchanger [J]. Circulation research,1995,76(1):148-53.
    [10] Boedtkjer E, Damkier H H, Aalkjaer C. NHE1knockout reduces blood pressure andarterial media/lumen ratio with no effect on resting pH(i) in the vascular wall [J]. TheJournal of physiology,2012,590(Pt8):1895-906.
    [11] Harris R C. Abnormalities in renal dopamine signaling and hypertension: the role ofGRK4[J]. Current opinion in nephrology and hypertension,2012,21(1):61-5.
    [12] Coruzzi P, Parati G, Brambilla L, Brambilla V, Gualerzi M, Novarini A, Castiglioni P,Di Rienzo M. Effects of salt sensitivity on neural cardiovascular regulation inessential hypertension [J]. Hypertension,2005,46(6):1321-6.
    [13] Rabin M, Poli De Figueiredo C E, Wagner M B, Antonello I C F. Salt taste sensitivitythreshold and exercise-induced hypertension [J]. Appetite,2009,52(3):609-13.
    [14] Zumkley H, Vetter H, Mandelkow T, Spieker C. Taste sensitivity for sodium chloridein hypotensive, normotensive and hypertensive subjects [J]. Nephron,2008,47(Suppl.1):132-4.
    [15] Isezuo S A, Saidu Y, Anas S, Tambuwal B U, Bilbis L S. Salt taste perception andrelationship with blood pressure in type2diabetics [J]. Journal of humanhypertension,2008,22(6):432-4.
    [16] Appel L J, Brands M W, Daniels S R, Karanja N, Elmer P J, Sacks F M, AmericanHeart A. Dietary approaches to prevent and treat hypertension: a scientific statementfrom the American Heart Association [J]. Hypertension,2006,47(2):296-308.
    [17] Sacks F M, Svetkey L P, Vollmer W M, Appel L J, Bray G A, Harsha D, Obarzanek E,Conlin P R, Miller E R,3rd, Simons-Morton D G, Karanja N, Lin P H, Group D a-S CR. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches toStop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group [J].The New England journal of medicine,2001,344(1):3-10.
    [18] Effects of weight loss and sodium reduction intervention on blood pressure andhypertension incidence in overweight people with high-normal blood pressure. TheTrials of Hypertension Prevention, phase II. The Trials of Hypertension PreventionCollaborative Research Group [J]. Archives of internal medicine,1997,157(6):657-67.
    [19] Weir M R, Hall P S, Behrens M T, Flack J M. Salt and blood pressure responses tocalcium antagonism in hypertensive patients [J]. Hypertension,1997,30(3Pt1):422-7.
    [20] Appel L J, Espeland M A, Easter L, Wilson A C, Folmar S, Lacy C R. Effects ofreduced sodium intake on hypertension control in older individuals: results from theTrial of Nonpharmacologic Interventions in the Elderly (TONE)[J]. Archives ofinternal medicine,2001,161(5):685-93.
    [21] Langford H G, Blaufox M D, Oberman A, Hawkins C M, Curb J D, Cutter G R,Wassertheil-Smoller S, Pressel S, Babcock C, Abernethy J D, Et Al. Dietary therapyslows the return of hypertension after stopping prolonged medication [J]. JAMA: thejournal of the American Medical Association,1985,253(5):657-64.
    [22] Whelton P K, Appel L J, Espeland M A, Applegate W B, Ettinger W H, Jr., Kostis J B,Kumanyika S, Lacy C R, Johnson K C, Folmar S, Cutler J A. Sodium reduction andweight loss in the treatment of hypertension in older persons: a randomized controlledtrial of nonpharmacologic interventions in the elderly (TONE). TONE CollaborativeResearch Group [J]. JAMA: the journal of the American Medical Association,1998,279(11):839-46.
    [23] He J, Ogden L G, Vupputuri S, Bazzano L A, Loria C, Whelton P K. Dietary sodiumintake and subsequent risk of cardiovascular disease in overweight adults [J]. JAMA:the journal of the American Medical Association,1999,282(21):2027-34.
    [24] Tuomilehto J, Jousilahti P, Rastenyte D, Moltchanov V, Tanskanen A, Pietinen P,Nissinen A. Urinary sodium excretion and cardiovascular mortality in Finland: aprospective study [J]. Lancet,2001,357(9259):848-51.
    [25] He J, Ogden L G, Bazzano L A, Vupputuri S, Loria C, Whelton P K. Dietary sodiumintake and incidence of congestive heart failure in overweight US men and women:first National Health and Nutrition Examination Survey Epidemiologic Follow-upStudy [J]. Archives of internal medicine,2002,162(14):1619-24.
    [26] Mattes R D, Donnelly D. Relative contributions of dietary sodium sources [J]. Journalof the American College of Nutrition,1991,10(4):383-93.
    [27] Luft F C, Rankin L I, Bloch R, Weyman A E, Willis L R, Murray R H, Grim C E,Weinberger M H. Cardiovascular and humoral responses to extremes of sodiumintake in normal black and white men [J]. Circulation,1979,60(3):697-706.
    [28] Morris R C, Jr., Sebastian A, Forman A, Tanaka M, Schmidlin O. Normotensive saltsensitivity: effects of race and dietary potassium [J]. Hypertension,1999,33(1):18-23.
    [29] Cappuccio F P, Macgregor G A. Does potassium supplementation lower bloodpressure? A meta-analysis of published trials [J]. Journal of hypertension,1991,9(5):465-73.
    [30] Whelton P K, He J, Cutler J A, Brancati F L, Appel L J, Follmann D, Klag M J.Effects of oral potassium on blood pressure. Meta-analysis of randomized controlledclinical trials [J]. JAMA: the journal of the American Medical Association,1997,277(20):1624-32.
    [31] Geleijnse J M, Kok F J, Grobbee D E. Blood pressure response to changes in sodiumand potassium intake: a metaregression analysis of randomised trials [J]. Journal ofhuman hypertension,2003,17(7):471-80.
    [32] Klatsky A L, Friedman G D, Siegelaub A B, Gerard M J. Alcohol consumption andblood pressure Kaiser-Permanente Multiphasic Health Examination data [J]. The NewEngland journal of medicine,1977,296(21):1194-200.
    [33] Xin X, He J, Frontini M G, Ogden L G, Motsamai O I, Whelton P K. Effects ofalcohol reduction on blood pressure: a meta-analysis of randomized controlled trials[J]. Hypertension,2001,38(5):1112-7.
    [34] Sacks F M, Rosner B, Kass E H. Blood pressure in vegetarians [J]. American journalof epidemiology,1974,100(5):390-8.
    [35] Armstrong B, Van Merwyk A J, Coates H. Blood pressure in Seventh-day Adventistvegetarians [J]. American journal of epidemiology,1977,105(5):444-9.
    [36] Appel L J, Moore T J, Obarzanek E, Vollmer W M, Svetkey L P, Sacks F M, Bray GA, Vogt T M, Cutler J A, Windhauser M M, Lin P H, Karanja N. A clinical trial of theeffects of dietary patterns on blood pressure. DASH Collaborative Research Group [J].The New England journal of medicine,1997,336(16):1117-24.
    [37] Appel L J, Sacks F M, Carey V J, Obarzanek E, Swain J F, Miller E R,3rd, Conlin PR, Erlinger T P, Rosner B A, Laranjo N M, Charleston J, Mccarron P, Bishop L M,Omniheart Collaborative Research G. Effects of protein, monounsaturated fat, andcarbohydrate intake on blood pressure and serum lipids: results of the OmniHeartrandomized trial [J]. JAMA: the journal of the American Medical Association,2005,294(19):2455-64.