山葡萄花色苷生物合成相关结构基因克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山葡萄(Vitis amurensis Rupr.)是我国重要的野生果树资源。花色苷是山葡萄果实中主要的多酚类次生代谢产物,与山葡萄的抗病性、色泽、风味等密切相关。花色苷不仅影响植物源食品的感官和营养价值,还具有多种医药方面的生理活性。本文进行了山葡萄转色期果皮cDNA文库的构建,对山葡萄花色苷生物合成相关结构基因进行了克隆和序列分析,对山葡萄果实不同成熟期,不同组织与器官中花色苷合成的相关基因表达进行了初步研究。主要研究结果如下:
     通过三种提取方法提取山葡萄果皮和叶片中的总RNA,其中改良CTAB法能分离出高质量的RNA,可用于下一步的分子生物学研究。以转色期(50%着色)山葡萄果皮为材料,提取总RNA合成cDNA,连接到质粒载体pDNR-LIB上,采用电穿孔法将重组质粒转化到DH5a中,成功构建了山葡萄果皮cDNA文库。文库质量鉴定表明,原始文库滴度为1.12×106 pfu·mL-1,扩增后的文库滴度为2.82×109 pfu·mL-1,重组率接近100%,插入片段大小范围在0.5-2 kb之间,平均约为0.80 kb,表明应用SMARTTM技术已成功构建了山葡萄转色期果皮cDNA文库。
     山葡萄转色期果皮cDNA文库测序获得974条有效EST序列。GenBank登录号:GW666520-GW667493。974条EST拼接后代表了710个UnigeneS。BLAST注释结果表明,具有已知或推测功能基因270个,未知功能基因258个,未比对上的基因182个(可能是新基因)。根据BLASTX注释与GO分类,199条EST序列具有细胞组件功能,313条EST序列在分子功能上得到注释,341条EST序列在生物学途径上得到注释。
     采用RT-PCR、SMARTTM RACE技术从山葡萄成熟期果皮中克隆到了类黄酮-3'-羟化酶(VAmF3'H)、类黄酮-3',5'-羟化酶(VAmF3'5'H)、黄烷酮醇4-还原酶(VAmDFR)、无色花色素双加氧酶(VAmLDOX)、类黄酮3-O-葡萄糖基转移酶(VAm3GT)、O-甲基转移酶(VAmOMT)、谷胱甘肽转移酶(VAmGST4)和类黄酮5-O-葡萄糖基转移酶(VAmOGT)等8个基因的cDNA全长序列。GenBank登录号为:FJ645766、FJ645767、FJ645768、FJ645769、FJ169463、GU237132、FJ645770和GU237133。利用生物信息学分析,推测8个基因分别编码509、508、337、355、456、235、213和448个氨基酸的多肽,分子量为56.14、56.70、37.50、40.19、50.19、26.35、24.24和49.84 kDa。与其它物种相关基因的氨基酸序列进行了多重比较,各基因与欧亚种葡萄(Vitis vinifera L.)相关基因的相似性均超过90%。在此基础上构建了这8个基因与其它物种相应基因的分子进化树,分析了与其它物种相关基因的亲缘关系。各基因信号肽预测结果表明,8个基因都不具有信号肽结构,对各基因分别进行了疏水性分析,初步预测了其二级结构。
     对山葡萄幼叶、成熟叶、茎、果肉和果皮中花色苷生物合成结构基因的表达进行了初步研究。半定量RT-PCR分析结果表明,VAmF3'H和VAmF3'5'H在花后各个时期的果皮中均有表达,转色期上调表达;VAmDFR、VAmLDOX和VAmOGT在花后各个时期的果皮中均有表达,各个时期的表达强度差异不明显;VAm3GT和VAmGST4在果实转色期前基本不表达,转色期为上调表达;VAmOMT在花后两周有少量表达,随后表达量下降,转色期开始上调表达。VAmF3'H、VAmF3'5'H、VAmDFR、VAmLDOX和VAmOGT在各个组织与器官中均有表达,但VAmF3'5'H在成熟叶中的表达量很少;VAm3GT、VAmOMT和VAmGST4在叶片中都不表达,在茎、果肉、果皮中都有表达,VAmOMT在果肉中表达丰度低。Northern杂交结果表明,VAm3GT在果实转色期前基本不表达,转色期上调表达;VAmOGT在果实成熟过程中均有表达。
     用DNA重组技术构建了PQE30-Xa-VAm3GT和PQE30-Xa-VAmOGT原核表达载体,转入大肠杆菌M15表达6×His融合蛋白。结果表明,重组蛋白进行了大量表达,通过Ni-Sepharose FF纯化后,两种蛋白的分子量为50 kDa和49.5 kDa左右,重组蛋白的酶学功能和特性正在进行研究。
Vitis amurensis is an important wild fruit resource. Anthocyanins are the major polyphenol secondary metabolites in V. amurensis, and which are closely related to disease resistance, color, flavor and other indicators. Anthocyanin not only affects the sensory and nutritional value of plant foods, but also has a variety of physiological activity of medicine. In this paper, we constructed V amurensis veraison skin cDNA library, cloned and sequenced the structural genes of V. amurensis anthocyanin biosynthesis. Anthocyanin biosynthesis related gene expression in different V. amurensis tissues, organs and various period of berry were preliminary studied. The major findings are as follows:
     RNA was isolated from V. amurensis skins and leaves using three methods of extraction. Highly-grade RNA was isolated by using modified CTAB method and suitable to the demands of further molecular biological research. The veraison skins (50% colored) of V. amurensis was used as experimental material, from which the total RNA was extracted. The cDNA was synthesized and the ds cDNA fragment was ligated into the pDNR-LIB vector. The recombinant plasmid was transformed into E.coli DH5a by electroporation. The library qualification evaluation showed:the titer of primary cDNA library was 1.12×106 pfu·mL-1, the titer of amplified library was 2.82×109 pfu·mL-1, the percentage of recombination was about 100%, the fragment size of inserted was 0.5-2 kb. The average insert size was 0.80 kb. The result showed that the cDNA library of V. amurensis veraison skin was constructed successfully with SMARTTM technology.
     A total of 974 high quality ESTs were obtained from cDNA library of V. amurensis veraison skins. The GenBank accession numbers are GW666520-GW667493. The 974 ESTs were assembled into 710 unigenes. The results of BLAST annotation showed:270 known or putative functional gene,258 unknown gene,182 no hits (maybe new genes). Based on the BlastX annotation and GO analysis,199 ESTs have the cellular component function,313 ESTs were associated with molecular functions, and 341 ESTs with biological process.
     The full-length cDNA sequences of VAmF3'H, VAmF3'5'H, VAmDFR, VAmLDOX, VAm3GT, VAmOMT, VAmGST4 and VAmOGT genes in V. amurensis were cloned by the technology of RT-PCR and SMARTTM RACE. The GenBank accession number is FJ645766, FJ645767, FJ645768, FJ645769, FJ169463, GU237132, FJ645770, and GU237133. Using bioinformatics analysis, speculated that 8 genes encode 509,508,337,355,456,235,213 and 448 amino acids, with molecular mass of 56.14,56.70,37.50,40.19,50.19,26.35,24.24, and 49.84 kDa. With multiple comparisons to the amino acid sequence of others species related genes, the similarity of each gene and related genes of V. vinifera is more than 90%. On this basis, molecular evolutionary tree of these eight genes and the corresponding genes of other species was constructed, the genetic relationship with related genes of other species was analyzed. Each gene signal peptide prediction results show that the eight genes do not have a signal peptide structure, the various genes were carried out hydrophobicity analysis, preliminary forecast of their secondary structure.
     Expression of anthocyanin biosynthetic structure genes inⅤ. amurensis young leaves, mature leaves, stems, pulp and skin were preliminary studied. The results of semi-quantitative RT-PCR showed that the expression of VAmF3'H and VAmF3'5'H happened in various period of the skins after flowering and up-regulated expression in veraison. VAmDFR, VAmLDOX and VAmOGT are expressed in each period of skins after flowering, whereas the expression intensity of each period was not significantly different. VAm3GT and VAmGST4 almost have no expression before veraison, and up-regulated expression in veraison period. The expression quantity of VAmOMT is small in two weeks after flowering, then the expression declined and increased at veraison. VAmF3'H, VAmF3'5'H, VAmDFR, VAmLDOX and VAmOGT were expressed in various tissues and organs. However, VAmF3'5'H is expressed in mature leaves at a low level. VAm3GT, VAmOMT and VAmGST4 are expressed in stems, pulp and skins, not in leaves. VAmOMT is expressed in low abundance in the pulp. Northern blot results showed that VAm3GT almost have no expression before veraison, up-regulated expressed at veraison. VAmOGT is expressed at berry maturating.
     PQE30-Xa-VAm3GT and PQE30-Xa-VAmOGT prokaryotic expression vector was constructed by DNA recombination technology, which was transformed into E.coli 15 expressing 6×His fusion protein. The results showed that the recombination protein expresses at a high level. The molecular mass of two protein purified by Ni-Sepharose FF is 50 kDa and 49.5 kDa. Recombinant protein enzymatic functions and features are being studied.
引文
[1]Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell,1995,7(7):1071-1083
    [2]Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry,2000, 55 (6):481-504
    [3]Wrolstad RE. Anthocyanin pigments:bioactivity and coloring properties. J Food Scie,2004, 69 (5):419-425
    [4]Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape(Vitis vinifera L.). Plant Mol Biol,1994,24 (5):743-755
    [5]Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol,2001,12 (2):155-160
    [6]方忠祥,倪元颖.花青素生理功能研究进展.广州食品工业科技,2001,17(3):60-62
    [7]庞志申.花色苷研究概况.北京农业科学,2000,18(5):37-42
    [8]Annamaryju D, Sarma YS, Rameshwar S. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry,1997,45 (4):671-674
    [9]吴江,程建徽,杨夫臣.植物花色素苷生物合成的转录调控.细胞生物学杂志,2006,28(3):453-456
    [10]Tian Q, Giusti MM, Stoner GD, Schwartz SJ. Screening for anthocyanins using highperformance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. J Chromatogr A,2005,1091 (1-2):72-82
    [11]Gao L, Mazza G. Quantification and distribution of simple and acylated anthocyanins and other phenolics in blueberries. Food sci,1994,59(5):1057-1059
    [12]Terahara N, Shimizu T, Yoshiaki K. Six diacylated anthocyanins from the storage roots of purple sweet potato, Ipomoea batatas. Biosci Biotechnol Biochem,1999,63 (8):1420-1424
    [13]徐璐,郑建仙.欧洲越桔花色苷的研究概况.中国食品添加剂,2005(4):43-46
    [14]Castellarin SD, Gaspero GD, Marconi R, Nonis A, Peterlunge E, Paillard S, Adam-Blondon A-F, Testolin R. Colour variation in red grapevines(Vitis vinifera L.):genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics,2006,24 (7):12-19
    [15]Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M. Expression of the flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci,2006,170 (1):61-69
    [16]Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol,1996,111 (4):1059-1066
    [17]Arozarena I, Ayestaran B, Cantalejo MJ, Navarro M, Vera M, Abril I, Casp A. Anthocyanin composition of Tempranillo, Garnacha and Cabernet Sauvignon grapes from high-and low-quality vineyards over two years. Euro Food Res Technol,2002,214 (4):303-309
    [18]Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C. Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci,2006,170 (2):372-383
    [19]Fong RA, Kepner RE, Webb AD. Acetic-acid-acylated anthocyanin pigments in the grape skins of a number of varieties of Vitis vinifera. Am J Enol Vitic,1971,22 (3):150-155
    [20]Cravero MC, Guidoni S, Schneider A, Di Stefano R. Morphological and biochemical characterisation of coloured berry-muscat grapevine cultivars. Vitis,1994,33 (2):75-80
    [21]邓军哲,屈慧鸽.葡萄花色素的研究概况.葡萄栽培与酿酒,1996,(2):25-27
    [22]段长青,贺普超,康靖全.中国葡萄野生种花色素双糖苷的研究.西北农业大学学报,1997,25(5):23-28
    [23]王秀君.山葡萄果实与酒中酚类和香气物质的指纹图谱研究[硕士学位论文].哈尔滨:东北林业大学,2008:13-20
    [24]高爱红,童华荣.天然食用色素-花青素研究进展.保鲜与加工,2001,(3):25-27
    [25]管蓁.葡萄果皮中花色素苷单体二甲花翠素3-O-葡萄糖苷的分离纯化[硕士学位论文].杨凌:西北农林科技大学,2007:3-11
    [26]任玉林,李华,邴贵德,金钦汉,逯家辉.天然食用色素-花色苷.食品科学,1995,16(7):22-27
    [27]郭金耀,杨晓玲.葡萄皮色素的提取及其性能研究.山西农业大学学报,1994,14(4):415-418
    [28]张红雨,陈德展.酚类抗氧化剂清除自由基活性的理论表征与应用.生物物理学报,2000,16(1):1-9
    [29]Satuegracia MT, Heinonen M, Frankel EN. Anthocyanins as antioxidants on human low density lipoprotein and lecithin liposome systems. J Agric Food Chem,1997,45 (9):3362-3367
    [30]Wang H, Cao GH, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem,1997,45 (2):304-309
    [31]Tsuda T, Ohshima K, Kawakishi S, Osawa T. Oxidation products of cyanidin 3-O-β-D-glucoside with a free radical initiator. Lipids,1996,31 (12):1259-1263
    [32]Sang WC, Eun JC, Tae YH, Kyoung HC. Antioxidative activity of acylated anthocyanin isolated from fruit and vegetables. J Food Sci Nutr,1997,2 (3):191-196
    [33]张泽生,李博轩,王冀.葡萄皮中花色苷的体外抗氧化研究.食品研究与开发,2007,28(2):148-150
    [34]李颖畅,孟宪军,孙靖靖,于娜.蓝莓花色苷的降血脂和抗氧化作用.食品与发酵工业,2008,34(10):44-48
    [35]Chen PN, Chu SC. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett,2006,235 (2):248-259
    [36]Yi WG, Casimir C, Akoh J, Fischer, Krewer G. Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis. Food Res Int,2006,39 (5): 628-638
    [37]Wang J, Mazza G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agr Food Chem,2002,50 (15):4183-4189
    [38]Miyata M, Takano H, Takahashi K, Sasak YF, Yamazoe Y. Suppression of 2-amino-l-methyl-6-phenylimidazo [4,5-b] pyridine-induced DNA damage in rat colon after grapefruit juice intake. Cancer Lett,2002,183 (1):17-22
    [39]孙志广,赵万洲,陆茵,唐玲芳,张珍珍,阮君山,闫新琦,薛普凤,张世玮.葡萄籽原花青素对环磷酰胺诱发小鼠骨髓多染红细胞微核形成的抑制作用及其机理探讨.时珍国医国药,2000,11(5):386-389
    [40]Kowalczyk E, Krzesinski P, Kura M, Blaszczyk J. Anthocyanins in medicine. Pol J Pharmacol,2003,55 (5):699-702
    [41]Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JL, Dewitt DL. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod,1999,62 (2):294-296
    [42]韩永斌,朱洪梅,顾振新,范龚健.紫甘薯花色苷色素的抑菌作用研究.微生物学通报,2008,35(6):913-917
    [43]Antomelli F, Grifoni D, Grossoin P, Mori B, Tani C, Zipoli G, Bussotti F. Oak (Quercus rubur L.) seedlings responses to a realistic increase in UV-B radiation under open space conditions. Chemosphere,1998,36 (4-5):841-845
    [44]Woodall GS, Stewart GR. Do anthocyanins play a role in UV protection of the red juvenile leaves of Syzygium?J Exp Bot,1998,49 (325):1447-1450
    [45]Beeson RC. Restricting overhead irrigation to dawn limits growth in container-grown woody ornamentals. HortScience,1992,27 (9):996-999
    [46]Holton TA, Brugliera F, Tanaka Y. Cloning and expression of flavonol synthase from Petunia hybrida. Plant J,1993,4 (6):1003-1010
    [47]Britsch L, Ruhnau B, Forkmann G. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3β-hydroxylase from Petunia hybrid. J Biol Chem,1992,267 (8): 5380-5387
    [48]Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase Y, Tanaka Y. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosythesis from gentian. Plant Physiol,2003,132 (3):1652-1663
    [49]Boss PK, Davies C, Robinson SP. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol,1996,32 (3):565-569
    [50]Koes R, Verweij W, Quattrocchio F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci,2005,10 (5):236-242
    [51]Goto-Yamamoto N, Wan GH, Masaki K, Kobayashi S. Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Sci,2002,162 (6):867-872
    [52]Zhang H, Wang L, Deroles S, Bennett R, Davies K. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol,2006,6 (29): 1-14
    [53]Tanaka Y, Katsumoto Y, Brugliera F, Mason J. Genetic engineering in floriculture. Plant Cell, Tissue Organ Cult,2005,80 (1):1-24
    [54]刘闯萍,王军.葡萄花色苷的生物合成.植物生理学通讯,2008,44(2):363-377
    [55]Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol,2001,126 (2):485-493
    [56]Cunha A. Purification, characterization and induction of L-phenylalanine ammonia-lyase in Phaseolus vulgaris. Eur J Biochem,1988,178(1):243-248
    [57]欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及调控.植物生理学通讯,1988,24(3):9-16
    [58]周爱琴,祝军,生吉萍,申琳,生兆江.苹果花青素形成与PAL活性及蛋白质含量的关系.中国农业大学学报,1997,2(3):97-99
    [59]Lister CE, Lancaster JE, Walker JRL. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric,1996,71 (3): 313-320
    [60]Losi R, Dietrich A, Hahlbrock K, Schulz W. A phenylalanine ammonia-lyase gene from parsely:structure, regulation and identification of elicitor and light responsive cis-acting elements, EMBO J,1989,8 (6):1641-1648
    [61]Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsely(Petroselinum cripum Nym). Eur J Biochem,1994,225 (1):491-499
    [62]Nagai N, Kitauchi F, Shimosaka M, Okazaki M. Clonig and sequencing of a full length cDNA coding for phenylalanine ammonia-lyase from tobacco cell culture. Plant Physiol,1994, 104 (1):1091-1092
    [63]Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem, 1989,185(1):19-25
    [64]Tanaka Y, Matsuoka M, Yamamoto N, Ohashi Y, Kano-Murakami Y, Ozeki Y. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut injured roots of sweet popato. Plant Physiol,1989,90 (4):1403-1407
    [65]Frank RL, Vodkin LQ. Sequence and structure of a phenylalanine ammonia-lyase gene from Glycine max. DNA Seq,1991,1(5):335-346
    [66]Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ. cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics,2005,5 (1): 40-58
    [67]Sablowski RW, Moyano E, Culianez FA, Schuch W, Martin C, Bevan M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J,1994,13 (1):128-137
    [68]Kreuzaler F, Ragg H, Fautz E, Kuhn DN, Hahlbrock K. UV-induction of chalcone synthase mRNA in cell suspension cultures of Petrosklinum hortense. Proc Natl Acad Sci USA,1983, 80 (1):2591-2593
    [69]Hrazdina G, Zobela M, Hcch HC. Biochemical immunological and immunocytochemical evidence for the association of chalcone synthase with endoplasmic reticulum membranes. Proc Natl Acad Sci USA,1987,84 (24):8966-8970
    [70]Saslowsky D, Winkel-Shirley B. Localization of flavonoid enzymes in Arabidopsis roots. Plant J,2001,27(1):37-48
    [71]Win-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol,2002,5 (3):218-223
    [72]Durbin ML, McCaig B, Clegg MT. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Biol,2000,42 (1):79-92
    [73]Schmid J. Developmental and environmental regulation of a bean chalcone synthase promoter in transgenic tobacco. The Plant Cell,1990,2 (7):619-631
    [74]Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci,2004,167 (2):247-252
    [75]Van Tunen AJ, Hartmen SA, Mur LA, Mol JNM. Regulation of chalcone flavone isomerase (CHI) gene expression in Petunia hybrida:the use of alternative promoters in corolla, anther and pollen. Plant Mol Biol,1989,12 (5):539-551
    [76]Kobayashi S, Ishimaru M, Ding CK, Yakushiji H, Goto N. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci,2001,160 (3):543-550
    [77]Dixon RA, Steele CL. Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends Plant Sci,1999,4 (10):394-400
    [78]Martin C, Preseott A, Mackay S, Bartlett J, Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J,1991,1 (1):37-49
    [79]许本波.甘蓝型油菜类黄酮途径CHI、F3H和F3'H基因家族的克隆及在黄、黑籽之间的差异表达[博士学位论文].重庆:西南大学,2006:9-21
    [80]Bogs J, Ebadi A, McDavid D, Robinson SP. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol,2006,140 (1): 279-291
    [81]Brugliera F, Barri-Rewell G, Holton TA, Mason JG. Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Htl locus of Petunia hybrida. Plant J,1999,19 (4):441-451
    [82]Birch RG. Plant transformation:problerm and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol,1997,48:297-326
    [83]Buchanan BB, Gruissem W, Jones RL著.瞿礼嘉,顾红雅,白书农,赵进东,陈章良主译.植物生物化学与分子生物学,北京:科学出版社,2004:1057-1082
    [84]Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JT, Elsnefarcy CY, Stevenson TW, Cornish EC. Cloning and expression of cytochrome P450 genes controlling flower color. Nature,1993,366 (6452):276-279
    [85]Riaz S, Dangl GS, Edwards KJ, Meredithr CP. A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet,2004,108 (5):864-872
    [86]林泉.色素基因的表达和调控.见:许智宏,刘春明主编.植物发育的分子机理.北京:科学出版社,1998:107-109
    [87]Oreilly C, Shepherd NS, Pereira A,Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, Saedler H. Molecular cloning of the al locus in Zea mays using the transposable elementa En and Mul. EMBO J,1985,4(4):877-882
    [88]吴少华,张大生.花青素生成相关基因dfr研究进展.福建林学院学报,2002,22(2):189-192
    [89]Henkel J, Forkmann G, Min BW, Dedio J, Forkmann G, Cadic A. Anthocyanin biosythesis in distinct genotypes of China aster (Callistephus chinesis). Acta Hortic,2000,508 (7): 213-214
    [90]Bongue-Bartelsman M, ONeill SD, Tong Y, Yoder Jl. Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene,1994,138 (1-2):153-157
    [91]Inagaki Y, JohZuka-Hisatomi Y, Mori T, Takahashi S, HayakawaY, Peyachoknagul S, Ozeki Y, Iida S. Genomic organization of the genes encoding dihydroflavonol 4-reduetase for flower pigmentation in the Japanese and common morning glories. Gene,1999,226 (2):181-188
    [92]Huits HS, Gerats AG, Kreike MM, Mol JN, Koes RE. Genetic control of dihydroflavonol 4-reductas gene expression in Petunia hybrida. Plant J,1994,6 (3):295-310
    [93]Shimada N, Sasaki R, Sato S, Kaneko T, Tabata S, Aoki T, Ayabe S. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. J Exp Bot,2005,56 (419):2573-2585
    [94]Johnson ET, YI H, Shin BC, Oh B, Cheong HS, Choi G, Yi HK, Shin B, et al. Cymbidium hybrid a dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J,1999,19 (1):81-85
    [95]Rosati C, Cadic A, Duron M, Renou JP, Simoneau P. Molecular cloning and expression analysis of diydroflavonol 4-reductase gene in flower organs of Forsythia × intemedia. Plant Mol Biol,1997,35 (3):303-311
    [96]王惠聪,黄旭明,胡桂兵,黄辉白.荔枝果皮花青苷合成与相关酶的关系研究.中国农业科学,2004,37(12):2028-2032
    [97]Hasegawa H, Fukasawa-Akada T, Okuno T, Niizeki M, Suzuki M. Anthocyanin accumulation and related gene expression in Janpanese parsley (Oenanthe stolonifera, DC.) induced by low temperature. J Plant Physiol,2001,158 (1):71-78
    [98]Gollop R, Even S, Colova-Tsolova V, Perl A. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. J Exp Bot,2002,53 (373):1397-1409
    [99]Petit P, Granier T, d'Estaintot BL, Manigand C, Bathany K, Schmitter JM, Lauvergeat V, Hamdi S, Gallois B. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol,2007,368 (5):1345-1357
    [100]Menssen A, Hohmann S, Martin W, Schnable PS, Peterson PA, Saedler H, Gierl A. The En /Spm transposable element of Zea mays contains splice sites at the temini generating a novel intron from a dSpm element in the A2 gene. EMBO J,1990,9(10):3051-3057
    [101]Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol,2004,134 (3):979-994
    [102]Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin PJ, Ashton AR. The Arabidopsis TDS4 gene encides leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J,2003,35 (5):624-636
    [103]Gong Z, Yamazaki M, Sugiyama M, TanakaY, Sito K.Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol,1997,35 (6):915-927
    [104]Rosati C, Duron M, Ingouff M, Simoneau P, Cadic A. Molecular characterization of the anthocyanidin synthase gene in Forsythia×intermedia reveals organ-specific expression during flower development. Plant Sci,1999,149 (1):73-79
    [105]Jaakola L, Maatta K, Pirttila AM, Torronen R, Karenlampi S, Hohtola A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol,2002,130 (2):729-739
    [106]Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis:characterization of a supergene family. Trends Plant Sci,2000,5 (9):380-386
    [107]Jones P, Vogt T. Glycosyltransferases in secondary plant metabolism:tranquilizers and stimulant controllers. Planta,2001,213 (2):164-174
    [108]王军,于淼.葡萄次生代谢UDP-糖基转移酶研究进展.园艺学报,2010,37(1):141-150
    [109]Schiefelbein JW, Furtek DB, Dooner HK, Nelson-Jr OE. Two mutations in a maize bronze-1 allele caused by transposable elements of the Ac-Ds family alter the quantity and quality of the gene product. Genetics,1988,120 (3):767-777
    [110]Marrs KA, Alfenito MR, Lloyd AM, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature,1995,375 (6):397-400
    [111]Ullmann P, Ury A, Rimmele D, Benveniste P, Bouvier-Nave P. UDP-glucose sterol β-D-glucosyltransferase, a plasma membrane-bound enzyme of plants:enzymatic properties and lipid dependence. Biochimie,1993,75 (8):713-723
    [112]Warnecke D C, Heinz E. Purification of a membrane-bound UDP-glucose:sterol β-D-glucosyltransferase based on its solubility in diethyl ether. Plant Physiol,1994,105 (4): 1067-1073
    [113]Ju ZG, Liu CL. Activity of chalcone synthase and UDPGal:flavonoid-3-O-glycosytransferase in relation to anthocyanin synthesis in apple. Sci Hortic,1995,63 (3-4): 175-185
    [114]Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta,2005,222 (5):832-847
    [115]Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Yamaguchi M, Saito K. Two flavonoid glucosyltransferases from Petunia hybrida:molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol,2002,48 (4): 401-411
    [116]Jonsson LMV, Aarsman EGG, Schra MAW, Bennink GJH. Methylation of anthocyanins by cell-free extracts of flower buds of Petunia hybrida. Phytochemistry,1982,21 (10): 2457-2459
    [117]Jonsson LMV, Donker-Koopman WE, Uitslager P, Schram AW. Subcellular localization of anthocyanin methyltransferase in flowers of Petunia hybrida. Plant Physiol,1983,72 (2): 287-290
    [118]Suelves M, Puigdomenech P. Specific mRNA accumulation of a gene coding for an O-methyltransferase in almond(Prunus amygdalus, Batsch) flower tissues. Plant Sci,1998,134 (1):79-88
    [119]Gauthier A, Ibrahim RK, Gulick PJ. Characterization of two cDNA clones which encode O-methyltransferases for the methylation of both flavonoid and phenylpropanoid compounds. Arch Biochem Biophys,1998,351 (2):243-249
    [120]Ibrahim RK, Bruneau A, Bantignies B. Plant O-methyltransferase:molecular analysis, common signature and classification. Plant Mol Biol,1998,36 (1):1-10
    [121]Kim BG, Lee HJ, Park Y, Lim Y, Ahn JH. Characterization of an O-methyltransferase from soybean. Plant Physiol Biochem,2006,44 (4):236-241
    [122]Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. The Plant Cell,1998,10 (7):1135-1149
    [123]Zhang HB, Wang L, Deroles S, Bennett R, Davies K. New insight into the structures and formation of anthocynic vacuolar inclusions in flower petals. BMC Plant Biol,2006,10 (6): 1471-1486
    [124]Li ZS, Alfenito M, Rea P A.Walbot V, Dixon RA. Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry,1997,45 (4):689-693
    [125]Wagner U, Edwards R, Dixon DP, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol,2002,49 (5):515-532
    [126]Edwards R, Dixon DP, Walbot V. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends Plant Sci,2000,5 (5):193-198
    [127]El Kereamy A, Chervin C, Souquet JM, Moutounet M, Monje MC, Nepveu F, Mondies H, Ford CM, van Heeswijck R, Roustan JP. Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripning. Plant Sci,2002,163 (3):449-454
    [128]Lee kS, lee JC, Wang YS, Hur IB. Effects of natural type abscisic acid on anthocyanin accumulation and maturity in Kyoho grapes. J Korean Soc Hort Sci,1998,38 (6):717-721
    [129]Karin S, Jun-ichiro N, Mami Y, Kazuki S. Recent advabces in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep,2003,20 (3):288-303
    [130]Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J-P, Merillon J-M, Hamdi S. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol,2006,140 (2):499-511
    [131]Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta,2002,215 (6):924-933
    [132]Castellarin SD, Matthews MA, Gaspero GD, Gambetta GA. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta,2007,227 (1):101-112
    [133]Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol, 2007,143 (3):1347-1361
    [134]孙明霞,王宝增,范海,赵可夫.叶片中的花色素苷及其对植物适应环境的意义.植物生理学通讯,2003,39(6):688-694
    [135]Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control lightresponsive and tissue-specific activation of phenylp ropanoid biosynthesis genes. Plant Mol Biol,2005,57 (2):155-171
    [136]许志茹,李玉花.利用cDNA微阵列分离津田芜菁花青素生物合成相关基因.遗传,2006,28(9):1101-1106
    [137]Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol,2008,165 (8):886-894
    [138]Shin J, Park E, Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependentmanner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis thaliana. Plant J,2007,49 (6):981-994
    [139]Mori K, Sugaya S, Gemma H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic,2005,105 (3):319-330
    [140]Mol J, Jenkins G, Schafer E, Weiss D. Signal perception transduction and gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci,1996,15 (5-6):525-557
    [141]Castellarin SD, Pfeiffer A, Silvilotti P, Degan M, Peterlunger E, Gaspero GD. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ,2007,30 (11):1381-1399
    [142]Saure MC. External control of anthocyanin formation in apple. Sci Hortic,1990,42 (3): 81-218
    [143]姜卫兵,徐莉莉,翁忙玲,韩健.环境因子及外源化学物质对植物花色素苷的影响.生态环境学报,2009,18(4):1546-1552
    [144]El-Kereamy A, Chervin C, Souquet JM, Moutounet M, Monje MC, Nepveu F, Mondies H, Ford CM, van Heeswijck R, Roustan JP. Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. Plant Sci,2002,163 (3):449-454
    [145]El-Kereamya A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M, Raynal J, Ford C, Latche' A, Pech J-C, Bouzayen M. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plant,2003, 119(2):175-182
    [146]Fambrini M, Pugliesi C, Vernieri P, et al. Characterization of a sunflower (Helianthus annuus L.) mutant, deficient in carotenoid synthesis and abscisic acid content, induced by in vitro tissue culture. Theor Appl Genet,1993,87 (1-2):65-69
    [147]葛玉香,沈育杰.山葡萄种质资源与利用研究现状.中外葡萄与葡萄酒,2000,(4):16-20
    [148]沈育杰,赵淑兰等.山葡萄种质资源主要经济性状鉴定与评价.河北林业科技,2004,(5):43-44
    [149]唐传核,杨晓泉.葡萄及葡萄酒生理活性物质的研究概况.中国食品添加剂,2003,(1):44-48
    [150]李景明.葡萄采后白藜芦醇的诱导与酿造工艺对葡萄酒中白黎芦醇的影响[博士学位论文].北京:中国农业大学,2003:12-24
    [151]Samia D, Synda C, Ahmed M, Michael H. Improvement of an RNA purification method for grapevine (Vitis vinifera L.) suitable for cDNA library construction. Acta Physiol Plant,2009, 31 (4):871-875
    [152]王玉成.柽柳抗逆分子机理研究与相关基因的克隆[博士学位论文].哈尔滨:东北林业大学,2005:14-24
    [153]Chang S, Puryear S, Caimey J. A simple and efficient method for isolating from pine trees. Plant Mol Biol Rep,1993,11 (2):113-116
    [154]Gambino G, Perrone I, Gribaudo I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal,2008,19 (6):520-525
    [155]晏慧君,黄兴奇,程在全cDNA文库构建策略及其分析研究进展,云南农业大学学报,2006,2(1):1-6
    [156]Galaud JP, Carriere M, Pauly N, Canut H, Chalon P, Caput D, Pont-ezica RF. Construction of two ordered cDNA libraries enriched in genes encoding plasmalemma and tonoplast proteins from a high-efficiency expression library. Plant J,1999,17 (1):111-118
    [157]于凤池.EST技术及其应用综述.中国农学通报,2005,21(2):54-58
    [158]Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, StiekemaW. Analysis of 19Mb of contiguous sequences from chromosome 4 of Arabidopsis thaliana. Nature,1998,391 (1):485-488
    [159]Yamazaki S, Sato K, Suhara K, Sakaguchi M, Mihara K, Omura T. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem,1993,114 (5):652-657
    [160]Murakami K, Mihara K, Omura T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem,1994,116 (1): 164-175
    [161]Chapple C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol,1998,49 (1):311-343
    [162]Kraus PF, Kutchan TM Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase a C-O phenolcoupling cytochrome P450 from the higher plant Berberis stolonifera. Proc Natl Acad Sci USA,1995,92 (6):2071-207
    [163]刘海峰,杨成君,赵权,李波,王军.山葡萄中类黄酮3’-羟化酶基因(F3'H) cDNA的克隆和分析.植物生理学通讯,2009,45(12):1186-1190
    [164]Martens S, Teeri T, Forkmann G. Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett,2002,531 (3):453-458
    [165]Jonson ET, Ryu S, Yi H, et al. Alteration in a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase.Plant J,2001,25 (3):325-333
    [166]Yoshihara N, Imayama T, Fukuchi-Mizutani M, Okuhara H, Tanaka Y, Ino I, Yabuya T. cDNA cloning and characterization of UDP-glucose:anthocyanidin 3-O-glucosyltransferase in Iris hollandica. Plant Sci,2005,169 (3):496-501
    [167]刘海峰,杨成君,于淼,王军.山葡萄UDP-葡萄糖:类黄酮-3-O-葡萄糖基转移酶基因(3GT) cDNA的克隆和分析植物生理学通讯,2009,45(8):748-752
    [168]Zhang W, Conn S, Franco C. Characterisation of anthocyanin transport and storage in Vitis vinifera L. cv. Gamay Freaux cell suspension cultures (abstract). J Biotechnol,2007,131 (2): S196-S210
    [169]Janvary L, Hoffmann T, Pfeiffer J, Hausmann L, Topeer R, Fischer TC, Schwab W. A Double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L. Agric Food Chem,2009,57 (4):3512-3518