基于微纳结构的光纤消逝场传感器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从满足微型高灵敏度生化分析仪在环境监测及食品卫生安全检测等方面的实际需求出发,结合局域表面等离子体共振与光纤消逝场传感技术,提出一种基于金属微纳结构的光纤消逝场传感器。
     论文的主要工作是从理论分析和实验检测两个方面展开的:(1)在理论分析方面,阐明了传感机理并且分析了金属微纳结构的表面等离子体特性。(2)在实验上利用基于金属微纳结构修饰的光纤消逝场传感器实现对多种待测样品的传感检测。
     首先,明确了光纤消逝场传感的基本原理并建立了传感理论模型,分析并优化了影响传感灵敏度的几个关键参数。其次,对金属微纳结构的表面等离子体特性进行了研究,利用时域有限差分方法对金属纳米粒子的形状、大小等尺寸参数对消光特性的影响进行了分析讨论,并且研究了纳米粒子之间的耦合以及纳米粒子与基底间的耦合作用。同时,提出了Ag/SiO2/Ag新月复合纳米柱结构作为LSPR传感的活性基底,仿真分析了不同偏振方向的激励对消光特性的影响,研究了尖端热点效应和中间介质层的厚度对共振峰的影响。此外,为了进一步提高金属纳米结构的传感性能提出一种具有30度尖角的Ag/SiO2/Ag三角星形复合纳米柱结构,这种纳米结构对环境折射率的传感灵敏度较高,呈现出大的局域场增强效果和较好的等离子体共振可调谐性。根据实际加工工艺的限制,分析了包含不同尖角抹去程度的三角星形复合纳米柱结构对消光谱和环境折射率灵敏度的影响。
     在实验上,采用微细加工技术制作了高精度的微通道传感芯片,利用湿法腐蚀工艺制备了含有两个锥形过渡区的组合锥形传感光纤,并完成了光纤消逝场传感实验平台的搭建。利用银纳米溶胶颗粒修饰的光纤消逝场传感器对100nmol/mL的亚甲基蓝溶液的传感灵敏度达到0.402dB/(umol·mL-1),相比于无修饰的光纤消逝场传感器对其的检测灵敏度提高了约3倍。
     最后为了完善传感的整体性能,提出了银核金壳复合纳米结构来增强消逝场能量,通过调整银核和金壳尺寸,可以实现对整个核壳结构的吸收性能的调控,并利用表面等离子体杂化理论模型对其进行解释。实验上利用晶种生长法制备了银核金壳复合纳米球结构,利用核壳结构修饰的消逝场增强型光纤传感器实现了对微量三聚氰胺的高灵敏度传感检测,灵敏度为2.869dB/(ug·mL-1),检测极限为1ug/mL。
     研究结果表明,基于微纳结构的光纤消逝场传感器具有体积小,响应速度快,抗电磁干扰强等优点,能够实现对微量待测物质快速、实时、高灵敏度检测,在生化传感领域具有广泛的应用前景。
Biochemical sensors for the diagnosis of diseases, food, and environmentaldetection of biological agents have been increasingly in demand over the past fewdecades. Combined evanescent field optical fiber sensing with localized surfaceplasmon resonance technologies, this work presents an evanescent field enhancementoptical fiber sensor based on metal micro/nano-structures.
     This thesis is mainly carried out from these two parts:(1) as for the theoreticalsection, the sensing mechanism and the optical properties of the metalmicro/nano-structures have been both analyzed and optimized;(2) in the experimentalpart, a variety of analytes with fractional content have been tested by the evanescentfield optical fiber sensor decorated with metal nanostructures.
     Firstly, the sensing principle of the evanescent optical fiber is defined and theimpacts of several key parameters on the sensor sensitivity are also analyzed. Thesurface plasmon properties of the metal nanoparticles depend on the geometry,material, and dielectric environments, etc. and have been carefully studied. Besides,the interactions which occur between nanoparticle and the sensing optical fibersubstrate and among particles have been studied using the FDTD method. Secondly,combining both the sharp tips and the metal/dielectric/metal multilayer structurestogether, an Ag/SiO2/Ag sandwich nanocrescent has been proposed. The extinctionefficiency and LSPR property below different incident polarizations are studied byvarying the thickness of the SiO2layer. Furthermore, for better sensing ability, a novelsandwich delta nanostar that features an Ag/SiO2/Ag sandwich delta star nanoplatewith three sharp angles of30degree is introduced. The structure is shown to producea high local field enhancement as well as wide plasmon resonance tunabilities.Moreover, the influence of the vertex truncation on the refractive index sensitivity andthe extinction spectra has also been analyzed based on the existing fabricationcondition.
     In this work, the evanescent field optical fiber sensor modified with silvernanoparticles based on a MEMS micro-channel chip has been successfully fabricatedand experiment with different concentrations of the detecting analytes is performed.The concentration of the methylene blue solution varying per100nmol/mL can causethe absorbance change0.402dB, which is about three times higher than the same sensing without any decoration.
     Finally, the Ag-Au core-shell composite nanostructure is adopted for enhancingevanescent field energy. And by adjusting the size parameters can achieve the tuningof absorption properties, which is explained by the hybridization model theory for theplasmon response of complex nanostructures. Experimentally, the evanescent fieldenhanced optical fiber sensor based on the core-shell composite nanostructures isprepared and applied to the melamine detection. The sensing sensitivity is2.869dB/(ug·mL-1) with the detection limit of1ug/mL.
     From above studies, it shows that the evanescent field optical sensor decoratedwith metal nanostructure is of low cost, high sensitivity and convenience, which willpotentially operate on rapid, real-time and continuous detection in biochemical analytedetecting applications.
引文
[1] Philip H Paul. George Kychakoff. Fiber-optic evanescent field absorption sensor[J]. Appl.Phys. Lett,1987,51(1):12~14.
    [2] A Kishan, M. S. John, C S Lim, A Asundi. A Fiber optic biosensor to monitor mutansstreptococci in human saliva[J]. Biosensors and Bioelectronics,2003,18:1371~1378.
    [3] Watanabe T, Okazaki S, Nakagawa H, et al. A fiber-optic hydrogen gas sensor with lowpropagation loss[J]. Sensors and Actuators B: Chemical,2010,145(2):781~787.
    [4] Anna. Og. Dikovska, P. A. Atanasov, A. Ts. Andreev, B. S. Zafirova, E. I. Karakoleva, T. R.Stoyanchov, ZnO thin film on side polished optical fiber for gas sensing applications[J]. AppliedSurface Science,2007,254:108~109.
    [5] B D Gupta, H Dodeja, A K YTomar. Fiber-optic evanescent field absorption sensor based on aU-shaped probe[J]. Optical and Quantum Electronics,1996,28:1629~1639.
    [6] Thompson V S, Maragos C M. Fiber-optic immunosensor for the detection of fumonisin B-1[J].Journal of Agricultural Food Chemistry,1996,4:1041~1046.
    [7]邓立新,冯莹,唐波.光纤免疫生物传感器的探针设计[J].传感器技术学报,2004,17(3):520~525.
    [8] Rajneesh K. Verma, Anuj K. Sharma, B.D. Gupta. Surface plasmon resonance based taperedfiber optic sensor with different taper profiles, Optics Communications[J].2008,281:1486~1491.
    [9] Spiker JO, Kang KA. Preliminary study of real-time fiber optic based protein C biosensor[J].Biotechnol Bioeng,1999,66(3):158~163.
    [10] Anderson G,Lingerflet B M, Taitt C R. Eight analytes detection using a four-channel opticalbiosensor[J]. Sensor Letter,2004,2:1~7.
    [11] P. Russell. Photonic crystal fibers[J]. Science,2003,299:358~362.
    [12]罗吉,庄须叶,倪祖高,姚军.光纤消逝场传感器传感结构的分析与应用[J].微纳电子技术,2011,48(6):376~382.
    [13] Leung A, Shankar P M, Mutharasan R. Real-time monitoring of bovine serum albumin atfemtogram/mL levels on antibody-immobilized tapered fibers[J]. Sensors and Actuators B:Chemical,2007,123(2):888~895.
    [14] Ming Hung Chiu. D-type fiber biosensor based on surface-plasmon resonance technology andheterodyne interferometry[J]. Optics letters,2005,30(3):233~235.
    [15]庄须叶,吴一辉,王淑荣.新结构D形光纤消逝场传感器[J].光学精密工程,2008,16(10).
    [16] Vlastimil Matejec, Miroslav Chomat. Optical fiber with novel geometry for evanescent wavesensing[J]. Sensors and Actuators B: Chemical,1995, l29:416~422.
    [17] Haiwen Cai, Fenghong Chu, Ronghui Qu, Zujie Fang. U-Shaped Plastic Optical FiberDissolved Oxygen Sensor[J]. Proc. of SPIE Vol.,2008,7004:70042B.
    [18] Angela Leung, P. Mohana Shankar, Raj Mutharasan, Model protein detection usingantibody-immobilized tapered fiber opticbiosensors (TFOBS) in a flow cell at1310nm and1550nm[J]. Sensors and Actuators B,2008,129:716~725.
    [19] Rajneesh K. Verma, Anuj K. Sharma, B.D. Gupta. Surface plasmon resonance based taperedfiber optic sensor with different taper profiles[J]. Optics Communications,2008,281:1486~1491.
    [20] HOO Y L, J N W, HO H L, et al. Gas diffusion measurement using hollow-core photonicbandgap fiber[J]. Sensor and Actuators B: chemical,2005,105:183~186.
    [21] Russell P St J, Knight. J. C, Birks. T. A, et al. Recent progress in photonic crystal fibers[J].Proc OFC,2000,3:98~100.
    [22]苏红新,王坤,崔建华,郭庆林.光子晶体光纤传感器的研究进展[J].仪表技术与传感器.2008,02
    [23] Jian Sun, Chi-Chiu Chan, Yi-Fan Zhang, Analysis of hollow-core photonic bandgap fibers forevanescent wave biosensing[J]. Journal of Biomedical Optics,2008,13(5):054048.
    [24] Yan, He, Liu Jie, et al. Novel index-guided photonic crystal fiber surface-enhanced Ramanscattering probe[J]. Optics Express,2008,16:8300~8305.
    [25] Jan Renger, Stefan Grafstrom, Lukas M.Eng, Evanescent wave scattering and local electricfield enhancement at ellipsoidal silver particles in the vicinity of a glass surface[J].J.Opt.Soc.Am.A,2004,21(7):1362~1367.
    [26] Haynes,C.L. and Van Duyne,R.P.. Nanosphere lithography: a versatile nanofabrication toolfor studies of size-dependent nanoparticle optics[J]. Journal of Physieal Chemistry B,2001,105:5599~5611.
    [27] Shaoli Zhu, Chunlei Du, Yongqi Fu, Biochemistry nanosensor-based hybrid metallicnanostructures array[J]. Sensors and Actuators B,2009,137:345~349.
    [28] Ma Wenying, Yang Huan, Yao Jun, Liu Yijuan, Li Fei, Tang Dongsheng, Organic vaporsensing methods based on silver triangular nano-prisms[J]. ACTA PHOTONICA SINICA,2010,39(9):1557~1561.
    [29] Shaoli Zhu, ChunLei Du,Yongqi Fu, Fabrication and characterization of rhombic silvernanoparticles for biosensing, Optical Materials31(2009)769–774.
    [30] Wiley, B. J., Im, S. H., Li, Z. Y., McLellan, J., Siekkinen, A., Xia, Y.. Maneuvering thesurface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. TheJournal of Physical Chemistry B,2006,110(32):15666~15675.
    [31] Adam D. McFarland and Richard P. Van Duyne, Single Silver Nanoparticles as Real-TimeOptical Sensors with Zeptomole Sensitivity[J]. Nano Lett.,2003,3(8):1057~1062.
    [32] Amanda J. Haes101Richard P. Van Duyne. A unified view of propagating and localizedsurface plasmon resonance biosensors[J]. Anal Bioanal Chem,2004,379:920~930.
    [33] Shuwen Zeng, Ken-Tye Yong, Indrajit Roy, Xuan-Quyen Dinh, Xia Yu, Feng Luan, AReview on Functionalized Gold Nanoparticles for Biosensing Applications[J]. Plasmonics,2011,6:491~506.
    [34] Ken-Tye Yong, Yudhisthira Sahoo, Mark T. Swihart,Paul M. Schneeberger, Paras N. Prasad,Templated Synthesis of Gold Nanorods (NRs): The Effects of Cosurfactants and Electrolytes onthe Shape and Optical Properties[J]. Top Catal,2008,47:49~60.
    [35] Weihai Ni, Huanjan Chen, et al. Optical fiber-excited surface plasmon resonancespectroscopy of single and ensemble gold nanorods[J]. J. Phys.Chem. C,2008,112(22):8105~8109.
    [36] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, Garnett W. Bryant, and F. J. Garc′a deAbajo, Optical Properties of Gold Nanorings[J]. Phys. Rev. Lett.,2003,90:057401-1~4.
    [37] Leif J. Sherry, Shih-Hui Chang, George C. Schatz, and Richard P. Van Duyne, LocalizedSurface Plasmon Resonance Spectroscopy of Single Silver Nanocubes[J]. Nano Lett.,2005,5:2034~2038.
    [38] B. Sepulveda, P. C. Angelome, L. M. Lechuga, L. M. Liz-Marzan, LSPR-basednanobiosensors[J]. NanoToday,2009,4:244~251.
    [39] H.J.Chen, X.S.Kou, Z.Yang, W.H.Ni, J.F.Wang. Shape-and Size-Dependent Refractive IndexSensitivity of Gold Nanoparticles[J]. Langmuir,2008,24:5233~5237.
    [40] Byoungho Lee, Sookyoung Roh, Junghyun Park,Current status of micro-and nano-structuredoptical fiber sensors[J]. Optical Fiber Technology,2009,15:209~221.
    [41] A. Otto. Excitation of Nonradiative Surface Plasmon Wave in Silver by the Method ofFrustrated Total Reflection[J]. Z.physik,1968:398~410.
    [42] E. krectchmann. The determination of the optical constant of metals by exciation of surfaceplasmons[J]. Z. physick,1971,241:313~324.
    [43] Chiu Ming-Hung, Hsu S N, Yang H. D-type fiber optic fiber sensor used as a refractometerbased on total-internal reflection heterodyne interferometry[J]. Sensors and Actuators B,2004,101:322~327.
    [44] Chiu Ming-Hung. D-type fiber biosensor based on surface-plasmon resonance technologyand heterodyne interferometry[J]. Optics Letters,2005,30(3):233~235.
    [45] Wang Shinn-Fwu, Chiu Ming-Hung, Chang Rong-Seng, New idea for a D-type optical fibersensor based on Kretschmann’s configuration[J]. Optical Engineering,2005,44(3):030502-1~2.
    [46] Chiu Ming-Hung. Optimum sensitivities of D-type optical fiber sensor at a specific incidentangle[J]. Sensors and Actuators B,2007,123:1120~1124.
    [47]孔乐,朱大鸣,阴泽杰,李承祥,杜先彬.基于Evanescent Wave吸收的光纤传感器灵敏度计算分析[J].核电子学与探测技术.2006,26(5):652~655.
    [48] Chiu Ming-Hung, Chih-Hsien Shih. Searching for optimal sensitivity of single-mode D-typeoptical fiber sensor in the phase measurement[J]. Sensor and Actuators B,2008,131:596~601.
    [49] Mitsui K., Handa.Y., Kajikawa K.. Optical fiber affinity biosensor based on localized surfacePlasmon[J]. Applied Physics Letters,2004,85:4231~4233.
    [50] Chien Hsing Chen, Tzu Chien Tsao, Wan Yun Li, et al. Novel U-shape goldnanoparticles-modified optical fiber for localized plasmon resonance chemical sensing[J].Microsyst Technol,2010,16:1207~1214.
    [51] Lei Su, T. H. Lee, and S. R. Elliott. Evanescent-wave excitation of surface-enhanced Ramanscattering substrates by an optical-fiber taper[J]. Optics letter,2009,34(17):2685~2688.
    [52]贾少杰,徐抒平,郑先亮,赵冰,徐蔚青,激光诱导沉积银膜制备光纤SERS传感器[J].高等学校化学学报,2006,27:523~526.
    [53]徐蔚青,徐抒平,胡冰,王魁香,赵冰,谢玉涛,樊玉国, SERS活性光纤光谱微探针研究[J].高等学校化学学报,2004,25: l44~147.
    [54] B·Culshaw (英)等著.光纤传感器[M],武汉:华中理工大学出版社,1997,200~204.
    [55]王廷云,陈振宜,沈育青.单模光纤渐逝波传输分析[J],光电子激光,2003,14(2):136~139.
    [56]赵建林.高等光学[M].北京:国防工业出版社,2002.
    [57] Xiaohong Deng, Yihui Wu, Feng Li, Lianqun Zhou, Xuan Ming. Parameters analysisfew-modes optical fiber evanescent absorption sensor[J]. SPIE,6032:603208.
    [58] D Gloge. Weakly guiding fibers[J]. Applied Optics,1971,10(10):2252~2258.
    [59]王玉田,郑龙江,张颖,孟宗,王书涛,蔡璐璐,毕卫红.光纤传感技术及应用[M].北京:北京航空航天大学出版社,2009,10~11.
    [60]廖延彪.光纤光学:原理与应用[M].北京:清华大学出版社,2010,20~34.
    [61] S Simhony, I Schnitzer, A Katzir, E M Kosower. Evanescent wave infrared spectroscopy ofliquids using silver halide optical fibers[J]. J. Appl. Phys.,1988,64(7):3732~3734.
    [62] K. A. Willets and R. P. Van Duyne. Localized surface plasmon resonance spectroscopy andsensing[J]. Annu. Rev. Phys. Chem.,2007,58:267~297.
    [63] Max Born,Emil Wolf. Principles of optics: electromagnetic theory of propagation,interference and diffraction of light[M]. Cambridge university press,1999.
    [64] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne. Surface Enhanced RamanSpectroscopy[J]. Annu. Rev. Anal. Chem.,2008,1:601~626.
    [65]葛德彪.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.
    [66] K. S. Kunz, R. J. Luebbers. The finite difference time domain method for electromagnetism
    [M]. CRC Press.1993.
    [67] Allen Taflove and Susan C. Hagness. Computational Electrodynamics: the Finite-DifferenceTime-Domain Method [M]. Boston: Arthech House,2000.
    [68] K.S.Yee.Numerical Solution of Initial Boundary Value Problems Involving Maxwell’sEquations in isotropic media[J]. IEEE Trans Antennas Propagat,1966,14(3):302~307.
    [69] D. Mackowski, M. Mishchenko. Calculation of the T matrix and the scattering matrix forensembles of spheres[J]. J.Opt.Soc.Am.A.1996,13(11):2266~2278.
    [70] B. T. Draine, P. J. Flatau. Discrete dipole approximation for scattering calculations[J]. J.Opt.Soc. Am.A.,1994,11(4):1491~1499.
    [71] E. D. Palik. Handbook of optical constants of solids[M]. San Diego: Academic Press,1998.
    [72] Ji Luo, Xuye Zhuang, Jun Yao. Enlarging the evanescent field scope by nanoparticlescattering for nanoparticle sensing of optical fiber sensors[J]. Journal of Nanoengineering andNanosystems,2012,226(1):39~43.
    [73] Zhang J Z, Noguez C. Plasmonic optical properties and applications of metalnanostructures[J]. Plasmonics,2008,3(4):127~150.
    [74] Noguez, C.. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and PhysicalEnvironment [J]. Journal of Physical Chemistry C,2007,111:3806~3819.
    [75] W. Y. Ma, J. Yao, H. Yang, J. Y. Liu, F. Li, J. P. Hilton and Q. Lin. Effects of vertex truncationof polyhedral nanostructures on localized surface plasmon resonance [J]. Optics Express,2009,17(17):14967~14976.
    [76] J. P. Kottmann, O. J.F. Martin, D. R. Smith, and S. Schultz, Dramatic localizedelectromagnetic enhancement in plasmon resonant nanowires [J]. Chem. Phys. Lett.,2001,341:1~6.
    [77]张立德.纳米材料[M],北京:化学工业出版社,2000.
    [78] K. H. Su, Q. H. Wei, and X. Zhang, Tunable and augmented plasmon resonances ofAu/SiO2/Au nanodisks [J]. Appl. Phys. Lett.,2006,88(063118):1~3.
    [79] S.P. Mulvaney, L. He, M.J. Natan, et al. Three-layer substrates for surface-enhanced Ramanscattering: preparation and preliminary evaluation [J]. J. Raman Spectrosc.,2003,34:163.
    [80] Y. Yang, A. M. Bittner, K. Kern. A new SERS-active sandwich structure [J]. J. Solid StateElectrochem,2007,11:150.
    [81] Lu, Y.; Liu, G. L.; Kim, J.; Mejia, Y. X.; Lee, L. P. Nanophotonic crescent moon structureswith sharp edge for ultrasensitive biomolecular detection by local electromagnetic fieldenhancement effect[J]. Nano Lett.,2005,5:119~124.
    [82] Liu, G. L.; Lu, Y.; Kim, J.; Doll, J. C.; Lee, L. P. Magnetic nanocrescents as controllablesurface-enhanced raman scattering nanoprobes for biomolecular imaging[J]. Adv. Mater.,2005,17:2683~2688.
    [83] Kim, J.; Liu, G. L.; Lu, Y.; Lee, L. P. Intra-particle plasmonic coupling of tip and cavityresonance modes in metallic apertured nanocavities[J]. Opt. Express,2005,13:8332~8338.
    [84] Jiang, H.; Markowski, J.; Sabarinathan, J. Near-infrared optical response of thin filmpH-sensitive hydrogel coated on a gold nanocrescent array[J]. Opt. Express,2009,17:21802~21807.
    [85] Rochholz, H., Bocchio N., Kreiter, M. Tuning resonances on crescent-shaped noble-metalnanoparticles[J]. New Journal of Physics,2007,9:53.
    [86] Shumaker-Parry J S, Rochholz H, Kreiter M. Fabrication of crescent-shaped opticalantennas[J]. Advanced Materials,2005,17(17):2131~2134.
    [87] Vogel N, Fischer J, Mohammadi R, et al. Plasmon hybridization in stacked double crescentsarrays fabricated by colloidal lithography[J]. Nano letters,2011,11(2):446~454.
    [88] Fischer J, Vogel N, Mohammadi R, et al. Plasmon hybridization and strong near-fieldenhancements in opposing nanocrescent dimers with tunable resonances[J]. Nanoscale,2011,3(11):4788~4797.
    [89] Li K, Clime L, Cui B, et al. Surface enhanced Raman scattering on long-range orderednoble-metal nanocrescent arrays[J]. Nanotechnology,2008,19(14):145305.
    [90] Ross, B. M.; Lee, L. P. Plasmon tuning and local field enhancement maximization of thenanocrescent. Nanotechnology[J].2008,19:275201.
    [91] Avrutsky, I., Salakhutdinov, I., Elser, J., Podolskiy, V. Highly confined optical modes innanoscale metal-dielectric multilayers[J]. Phys. Rev. B.,2007,75:241402(R).
    [92] Ji Luo, Xuye Zhuang, Wei Xiong, Jun Yao. Numerical study on optical properties ofAg/SiO2/Ag sandwich nanocrescents substrate[J]. Journal of Modern Optics,2012,59:1316~1321.
    [93] W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L.X. Huang and J. Yao, A numericalinvestigation of the effect of vertex geometry on localized surface plasmon resonance ofnanostructures[J]. Optics Express,2010,18(2):843~853.
    [94] John David Jackson, Classical Electrodynamics [M], New York:3Ed, John Wiley&Sons,Inc.,1999:237~283.
    [95] Y. Xia, N. J. Halas, and G. Editors. Shape-Controlled Synthesis and Surface PlasmonicProperties of Metallic Nanostructures [J]. MRS BULLETIN,2005,30:338~348.
    [96] W. Y. Ma, J. Yao, H. Yang, J. Y. Liu, F. Li, J. P. Hilton and Q. Lin. Effects of vertex truncationof polyhedral nanostructures on localized surface plasmon resonance[J]. Optics Express,2009,17(17):14967~14976.
    [97] Ji Luo, Jun Yao, Yonggang Lu, Wenying Ma, Xuye Zhuang. A silver nanoparticle modifiedevanescent field optical fiber sensor for methylene blue detection[J]. Sensors,2013,13:3986~3997.
    [98] F P Payne, Z M Hale. Deviation from Beer's law in multimode optical fibre evanescent fieldsensors[J]. International Journal of Optoelectronics,1993,8:743~748.
    [99] S K Khijwania, B D Gupta. Fiber optic evanescent field absorption sensor with highsensitivity and linear dynamic range[J]. Optics Communicatins,1998,152(4-6):259~262.
    [100] Panácek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles: synthesis,characterization, and their antibacterial activity[J]. The Journal of Physical Chemistry B,2006,110(33):16248~16253.
    [101] Yakutik I M, Shevchenko G P. Self-organization of silver nanoparticles forming on chemicalreduction to give monodisperse spheres[J]. Surface science,2004,566:414~418.
    [102] Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of5-40nm diametergold nanoparticles[J]. Langmuir,2001,17(22):6782~6786.
    [103] Michael S, Fleming, Tarun K, et a1. Nanosphere_micr0sphere assembly:Methods forcore-shell materials preparation[J]. Chem. M ater,2001,13:2210~2216.
    [104]贺鹏,赵安赤.聚合物改性中纳米复合新技术[J].高分子通报,2001,(1):74~76.
    [105]曹珍元.纳米材料的化工应用与开发[J].化工新型材料,2000,28(11):3~5.
    [106]洪伟良,刘剑洪,田德余,罗仲宽,有机-无机纳米复合材料的制备方法[J].化学研究应用,2000,12(2):132.
    [107] Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonances[J].Chemical Physics Letters,1998,288(2):243~247.
    [108] Shi W, Sahoo Y, Swihart M T, et al. Gold nanoshells on polystyrene cores for control ofsurface plasmon resonance[J]. Langmuir,2005,21(4):1610~1617.
    [109] Chen Z M, Gang T, Yan X, et al. Ordered Silica Microspheres Unsymmetrically Coated withAg Nanoparticles, and Ag-Nanoparticle-Doped Polymer Voids Fabricated by MicrocontactPrinting and Chemical Reduction[J]. Advanced Materials,2006,18(7):924~929.
    [110] Jiang Z, Liu C. Seed-mediated growth technique for the preparation of a silver nanoshell ona silica sphere[J]. The Journal of Physical Chemistry B,2003,107(45):12411~12415.
    [111] Wang W, Asher S A. Photochemical incorporation of silver quantum dots in monodispersesilica colloids for photonic crystal applications[J]. Journal of the American Chemical Society,2001,123(50):12528~12535.
    [112] Choma J, Dziura A, Jamio a D, et al. Preparation and properties of silica–gold core–shellparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,373(1):167~171.
    [113] Del Angel P, Dominguez J M, Del Angel G, et al. Aggregation state of Pt-Au/C bimetalliccatalysts prepared by surface redox reactions[J]. Langmuir,2000,16(18):7210~7217.
    [114] Zhang J, Lima F H B, Shao M H, et al. Platinum monolayer on nonnoble metal-noble metalcore-shell nanoparticle electrocatalysts for O2reduction[J]. The Journal of physical chemistry B,2005,109(48):22701~22704.
    [115] Rai A, Chaudhary M, Ahmad A, et al. Synthesis of triangular Au core–Ag shellnanoparticles[J]. Materials research bulletin,2007,42(7):1212~1220.
    [116] Ma Y, Li W, Cho E C, et al. Au@Ag core shell nanocubes with finely tuned andwell-controlled sizes, shell thicknesses, and optical properties[J]. ACS nano,2010,4(11):6725~6734.
    [117] Uwe Kreibig, Michael Voller, Optical properties of metal clusters [M], Berlin: Springer,1995.
    [118] G. Mie. Contributions to the optics of turbid media, particularly of colloidal metal solutions[J], Annalen der Physik,1908,25:377~445.
    [119] J. M. STEELE, N. K. GRADY, P. NORDLANDER and N. J. HALAS. Plasmon hybridiz incomplex nanostructures[J]. Surface Plasmon Nanophotonics,183~196.
    [120] E.Prodan, C. Radloff, N. J. Halas, P. Nordlander: A hybridization model for the plasmonresponse of complex nanostructures[J],2003, Science,302(5644):419~422.
    [121] Brandl D W, Oubre C, Nordlander P. Plasmon hybridization in nanoshell dimers[J]. TheJournal of chemical physics,2005,123(2):024701.
    [122] Liz-Marzán L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shellparticles[J]. Langmuir,1996,12(18):4329~4335.
    [123] Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemicalreduction of gold salts to gold nanoparticles[J]. Chemistry of Materials,2001,13(7):2313~2322.
    [124] Brown K R, Walter D G, Natan M J. Seeding of colloidal Au nanoparticle solutions:Improved control of particle size and shape[J]. Chemistry of Materials,2000,12(2):306~313.
    [125] Anthony Kai-ching Hau, Tze Hoi Kwan, Philip Kam-tao Li. Melamine Toxicity and theKidney[J]. J Am Soc Nephrol,2009,20:245~250.
    [126] Luo, J., Yao, J., Wang, W. M., Zhuang, X. Y., Ma, W. Y., Lin, Q.. Melamine sensing basedon evanescent field enhanced optical fiber sensor[J]. Proc. SPIE8914, International Symposiumon Photoelectronic Detection and Imaging,2013,891412-1~9.
    [127] Kim, Byungchul, Perkins, Lewis B, Bushway, Rodney J, Nesbit, Stephanie, Fan, Titan,Sheridan, Robert, Greene, Virginia. Determination of Melamine in Pet Food by EnzymeImmunoassay, High-Performance Liquid Chromatography with Diode Array Detection, andUltra-Performance Liquid Chromatography with Tandem Mass Spectrometry[J]. Journal of AOACInternational,2008,91(2):408~413.