IDE压电元件及其在仿生翼中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电驱动元件目前已经广泛应用于智能材料结构之中,但是由于其驱动位移比较小,平面内各向同性等缺点,难以满足实际需要。为了促进智能材料结构的实用化,必须对其进一步研究。
     交叉指形电极IDE(Interdigitated Electrodes)压电元件是一种采用新型电极技术的压电驱动元件。元件充分利用了纵向伸缩压电效应和较大的压电常数,不但使元件驱动应变的提高成为可能,而且元件具有了平面内的正交异性。作为驱动元件,能够在特定方向上施加力或变形,适合在扑翼飞行器中的应用。
     扑翼飞行器作为一种具有复杂的运动方式,集多种前沿技术为一体的微型机器人系统,无论在军事还是在民用领域都有广阔的应用前景。围绕IDE压电元件和扑翼飞行器仿生翼的控制,展开了相应的研究。
     本文的主要研究成果和创新点包括:
     1.建立了利用纵向长度伸缩压电效应的压电元件的本构关系方程;基于拉格朗日函数和哈密尔顿原理,推导了压电元件的动力学有限元方程;
     2.利用有限元法对AFCs/MFC元件的力学和电学性能进行分析,给出了应力、应变和电场分布图,得到了组分材料和结构参数对元件应力、应变和静电场分布的影响关系,在此基础上给出了AFCs/MFC元件的优化设计;另外,建立了单一材料IDE压电元件的均匀场模型和有限元模型,对其进行了力学性能分析,得到其应力和应变分布状态,找出了一些规律;
     3.制备了单一材料IDE压电元件,用有限元谐响应分析法和阻抗试验法研究了其谐振频率和温度稳定性,检测了元件在机械自由状态下的变形性能,研究了极化工艺对元件自由变形性能的影响,给出了最优极化工艺条件;
     4.系统分析了扑翼飞行器设计中的尺度律问题和昆虫翅膀产生高升力的机理;建立了扑翼飞行器和仿生翼的运动方程,推导了扑翼飞行器和仿生翼的速度与加速度方程,对仿生翼气动力进行了理论分析和仿真研究;
     5.设计了拍动结构和集成MFC元件的仿生翼,并对集成MFC元件的仿生翼进行了初步的试验研究,给出了进一步研究的方向。
Piezoelectric actuators had been used widely in the intelligent materials & structures. However, some disadvantages, especially the low induced displacement and isotropic laminate layers, deeply limit their applications requiring off-axis or twisting motions. They should be researched further for adapting to the development of the intelligent materials & structures.
     IDE(Interdigitated Electrodes) actuators are denominated by electrical connections configuration which are made through a separate Interdigitated Electrode (IDE) layer having alternating finger-to-finger polarity. The Interdigitated Electrodes effectively align the electric field and polarization with the long axis of the piezoelectric actuators, enabling the use of the primary piezoelectric effect: longitudinal length extension vibration mode and piezoelectric strain constant d33, to enhance the directionality of the electromechanical response. IDE actuators are suit for the flapping wing by the advantageous features, namely, directional actuation and high strain energy density.
     Flapping wing is a complicated intelligent robot with new locomotion method, which would find its extensive application for military and civilian purpose. IDE actuators and flapping wing are researched in the paper. The major contributions and original researches in the dissertation are summarized as follows.
     1. A series of piezoelectric unit’s equations about longitudinal length extension vibration mode are established. According to the dynamic FEM(finite element method) equations for piezoelectric actuator, which are established by means of Lagrange function and Hamilton principle, a series of finite models are established.
     2. The performance of mechanics and electrics is analyzed in detail. FEM is employed to numerically research the influence of composite materials and dimensions of each phase on the AFCs/MFC actuator’s induced strain, stress and electrostatic field. The distribution of stain, stress and electrostatic field inside the AFCs/MFC structures is given by FEM. Then the optimization is presented. Response of the IDE piezoelectric ceramics actuator is predicted through the advancement of Uniform Fields and FEM. These models predict the mechanical and electrical properties effectively. Several rules are summed.
     3. IDE piezoelectric ceramics actuators are made from PZT-51. Harmonic analysis of IDE piezoelectric ceramics actuators are made using the software ANSYS in detail. In addition, resonance frequency is extracted using impedance analysis instrument. To research the influences of polarizing technique (time, temperature and voltage) on actuators, induce strains of IDE piezoelectric ceramics actuators is studied by a lot of experiments, from which the optimal polarizing technique is gotten.
     4. The Scaling effect and unsteady aerodynamic force generation by flapping wings of insects and small birds is analyzed. Motion equations for flapping wing and bionic wing are established. Then a set of velocity and acceleration equations for flapping wing and bionic wing are derived. The aerodynamic forces which produced by two flapping wings are calculated.
     5. The flapping models and bionic wings are designed, which are integrated with MFC units. Primary research experiments of the integrated wings have been done, which offer the directions for further study.
引文
[1]陶宝祺,熊克,袁慎芳等.智能材料结构[M].北京:国防工业出版社,1997:4.
    [2]姚康德,成国祥主编.智能材料[M].北京:化学工业出版社,2002:1.
    [3]姜德生,Richard O.Claus著.智能材料器件结构与应用[M].武汉:武汉工业大学出版社, 2000:3.
    [4]干福熹主编.信息材料[M].天津:天津大学出版社,2000:12.
    [5]沈星.应用于智能材料结构的RAINBOW元件及其与SMA的集成研究[D].南京:南京航空航天大学,2003.
    [6]陈勇,熊克,王鑫伟等.飞行器智能结构系统研究进展与关键问题[J].航空学报,2004, 25(1):21-25.
    [7]万建国.压电复合材料及其在智能材料结构中的应用研究[D].南京:南京航空航天大学,1997.
    [8]骆英.正交异性压电复合材料功能元件的研究[D].南京:南京航空航天大学,2000.
    [9] Xing Shen. Research on Composite PZT for Large-displacement Actuators[J]. Journal of Wuhan University of Technology-material Science Edition, 2007, 22(4):710-713.
    [10]沈星,刘永刚,裘进浩等. RAINBOW压电陶瓷与形状记忆合金的集成[J].金属热处理,2006, 31(8):15-19.
    [11] Xing Shen,Jae-Hung Han and In Lee. Study of a reduced and internally biased oxide wafer PZT actuator and its integration with shape memory alloy[J]. Smart Materials and Structures, 2006, 15 (4): N89–N93.
    [12] Joseph M L. Smart Skins-a Development Roadmap[R]. Proceedings of SPIE:1170, 1989:19-47.
    [13] Chopra I. Development of an Intelligent Rotor[C]. Active Materials and Adaptive Structures, Bristol, U.K. 1992:271-275.
    [14] Saunders W R,Robertshaw H H,Rogers C A et al. Structual Acoustic Contral of a Shape Memory Alloy Composite Beam[J]. Intellegence Material and Structture, 1991, 2(4):508-527.
    [15] James L. Gaspar,Richard S. Pappa. Membrane Vibration Tests Using Surface-Bonded Piezoelectric Patch Actuation[R]. NASA/TM-2003-2 12 150.
    [16] Henry A. Sodano,Gyuhae Park,Daniel J. Inman et al. Vibration testing and control of an inflatable torus using multiple sensors/actuators[R]. AIAA: 2003-1644.
    [17] Akhilesh K. Jha, Daniel J. Inman. Vibration Control of a Gossamer Toroidal Structure Using Smart Material Actuators and Sensors[R]. Proceedings of SPIE: 5056, 2003: 475-486.
    [18] Eric Ruggiero. Gyuhae Park,Daniel J Inman. Smart Materials in Inflatable Structure Applications[R]. AIAA: 2002-1563.
    [19] Bent A.A. Piezoelectric Fiber Composites for Structural Actuation[D]. Massachusetts Institute of Technology, 1994.
    [20] Bent A.A. Active Fiber Composites for Structural Actuation[D]. Massachusetts Institute of Technology, 1997.
    [21] Wickramasinghe V.K.,Hagood N.W. Performance characterization of active fiber composite actuators for helicopter rotor blade applications[R].Proceedings of SPIE:4699, 2002, 273-284.
    [22] Gardiner P T. Activities of the Smart Structures Research Institute[R]. Proceedings of SPIE: 1588, 1991:314-324.
    [23] Peter Wierach,Johannes Riemenschneider,Stefan Keye et al. Development of an Active Twist Rotor Blade with Distributed Actuation and Orthotropic Material[R]. Proceedings of SPIE: 5764, 2005:183-191.
    [24] Andreas J. Schonechker,Sylvia E.Gebhardt,Thomas Rodig et al. Piezocomposite transducers for smart structures applications[R]. Proceedings of SPIE: 5764, 2005:34-41.
    [25] Sehol Otkr,Wada B K. Adaptive Structures in Japan[J]. Intellegence Material and Structture,1993, 4(4):437-451.
    [26] Yoshida I,Kurose H,Fuhui S et al. Parameter Identification on Active Contral of a Structure Model[J]. Smart Materials and Structures, 1995, 4:A82-A90.
    [27] Toshinori Takagi. Concept of Smart Material and its Activities in Japan[C]. First European Conference of Smart Structures and Materials, Glasgow, 1992:367-371.
    [28] Jinhao Qiu,Junji Tani,Daisuke Osanai et al. High-speed Rresponse of SMA Actuators[J]. International Journal of Applied Electromagnetics and Mechanics, 2000, 12:87-100.
    [29] Jinhao Qiu,Junji Tani,Toshiyuki Hayase et al. Suppression of T-S Wave Using Wall Motion Actuator[J]. JSME International Journal, 2002, 45:29-34.
    [30] Jinhao Qiu,Junji Tani,Yoshimasa Kobayashi et al. Fabrication of Piezoelectric Ceramic Fibers by Extrusion of Pb(Zr,Ti)O3 Powder and Pb(Zr,Ti)O3 sol Mixture[J]. Smart Materials and Structures, 2003, 12:3319-3377.
    [31] Moh Syaifuddin,Hoon C Park,Sang K Lee et al. An Improved Flapping Wing System Actuated by the LIPCA[R]. Proceedings of SPIE: 6173-010, 2006.
    [32] Dae-Kwan Kim,Jae-Hung Han. Smart Flapping Wing Using Macrofiber Composite Actuators[R]. Proceedingss of SPIE: 6173-013, 2007.
    [33] Hong-Il Kim,Dae-Kwan Kim,Jae-Hung Han et al. Study of Flapping Actuator Modules Using IPMC[R]. Proceedings of SPIE: 6524-037, 2007.
    [34] Sitikantha Roy,Dineshkumar Harursampath. Analytical Modeling of Twist Actuators for Pretwisted Anisotropic Strips[R]. AIAA: 2004-1523.
    [35] S. Gopalakrishnan,D. Roy Mahapatra. Optimal Spectral Control of Multiple Waves in Smart Composite Beams with Distributed Sensor-Actuator Configuration[R]. Proceedings of SPIE: 4234, 2001:52-63.
    [36]袁慎芳.进行损伤评估的智能材料结构的研究[D].南京:南京航空航天大学,1996.
    [37]熊克.形状记忆合金增强复合材料自适应力学研究[D].南京:南京航空航天大学,1997.
    [38]黄睿,袁慎芳,蒋云等.碳密封涂覆光纤在编织复合材料中的应用[J].复合材料学报, 2002, 19(2):99-102.
    [39]李向华,袁慎芳,王鑫伟等.编入光纤后的3-D编织复合材料结构的力学建模[J].复合材料学报,2004, 21(4):134-139.
    [40]黄尚廉.重庆大学在智能结构领域的研究进展[C].中国航空学会95智能(机敏)材料与结构研讨会论文集,南京,1995:1-8.
    [41]王征,吴健生.智能结构中的形状记忆合金性状研究[C]. 96中国材料研讨会.北京, 1996.
    [42]刘玉东,王刚,崔立山等.形状记忆合金阻尼特性及其复合材料主动振动控制的研究[C]. 96中国材料研讨会.北京,1996.
    [43]杜彦良,聂景旭.主动控制裂纹扩展的一种新型复合材料构件的研究[J].复合材料学报,1993,3:105-110.
    [44]赵寿根,程伟. 1-3型压电复合材料及其研究进展[J].力学进展,2002,32(1):57-68.
    [45]赵寿根,程伟. 1-3型压电纤维复合材料的细观力学模型及其力电宏观参数研究[J].应用力学学报,2005,22(2):335-241.
    [46]赵寿根,程伟,管德等. 1-3型压电纤维主动叠层板扭转特性的研究[J].航空学报, 2006,27(4):624-629.
    [47]杜善义,冷劲松.光纤智能化复合材料及其监控系统的研究[J].力学进展,1992,4:496-501.
    [48]蔡璐璐,杨红,艳吴飞等.一种新型的光纤光栅波长解调系统[J].仪器仪表学报,2006,27(6):1099-1100.
    [49]官建国,袁润章,谢洪泉等.电流变液的电性能及其电导机理的研究[C]. 96中国材料研讨会.北京,1996.
    [50]赵晓鹏,李炎,罗春荣等.用ER流体制成的活塞式阻尼结构研究[C]. 96中国材料研讨会.北京,1996.
    [51]王晓明,沈亚鹏.关于机敏材料和机敏结构的力学分析[J].力学进展,1995,2 :209-222.
    [52]尹洪峰,任耘.复合材料及其应用[M].西安:陕西科学技术出版社,2003.
    [53] S. Gebhardt, A. Sch?necker, R. Steinhausen et al. Quasistatic and Dynamic Properties of 1–3 Composites Made by Soft Molding[J]. Journal of the European Ceramic Society, 2003, 23(1): 153-159.
    [54] Ronit Kar-Gupta, Venkatesh T.A. Electromechanical Response of 1-3 Piezoelectric Composites: An Analytical Model[J]. Acta Materialia, 2007, 55(3): 1093-1108.
    [55] Chang-Bun Yoon, Sung-Mi Lee, Seung-Ho Lee et al. Transverse 1-3 Piezoelectric Ceramic/Polymer Composite with Multi-layered PZT Ceramic Blocks[J]. Sensors and Actuators A: Physical, 2007, 134(2): 480-485.
    [56] Christian N. Della, Dongwei Shu. The Performance of 1–3 Piezoelectric Composites with a Porous Non-piezoelectric Matrix[J]. Acta Materialia, 2008, 56(4):754-761.
    [57] Ke Xiong,Weigong Zhang,Ying Luo et al. Research on 1-3 Orthogonal Anisotropic Piezoelectric Composite Material Sensors[J]. Journal of Southeast University. 2002, 18(2):136-140.
    [58]水永安.压电复合材料的理论模型[J].物理学进展,1998, 16(3-4):353-362.
    [59]徐玲芳,陈文,周静等. 1-3型压电复合材料的制备及性能研究[J].武汉理工大学学报, 2006, 28(6):1-3.
    [60]张红艳,沈亚鹏,尹冠生等.具有初应力的1-3型压电复合材料的横向共振分析[J].应用数学和力学,2007, 28(7):780-787.
    [61]党长久,李明轩. 1-3型压电复合材料[J].应用声学,1995, 14(1):2-7.
    [62] Dan J. Clingman,Boeing Phantom Works. High-power Piezo-drive Amplifier for Large Stack and PFC Applications[R].Proceedings of SPIE: 4334, 2001: 345-353.
    [63] Bent A.A., Pizzochero A.E. Recent Advances in Active Fiber Composites for Structural Control[R]. Proceedings of SPIE:3991,2000:244-254.
    [64] Rossetti G.A., Bent A.A. Recent Advances in Active Fiber Composites Technology[C]. IEEE: 0-7803-5940-2, 2001:753-756.
    [65] Hagood N.W., Bent A.A. Development of Piezoelectric Fiber Composites for Structural Actuation[R]. AIAA: 1993-1717.
    [66] Wickramasinghe V.K., Hagood N.W. Durability Characterization of Active Fiber Composite Actuators for Helicopter Rotor Blade Applications[R]. AIAA: 2003-1511.
    [67] Bent A.A. Active Fiber Composite Material Systems for Structural Control Applications[R]. Proceedings of SPIE: 3674, 1999:166-177.
    [68] Bent A.A.,Hagood N.W.,Rodgers J.P. Anisotropic Actuation with Piezoelectric Fiber Composites[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(3):338-349.
    [69] Kornmann X, Huber C, Elsener H.R. Piezoelectric Ceramic Fibers for Active Fiber Composites: A Comparative Study[R].Proceedings of SPIE: 5056, 2003:330-337.
    [70]潘平彬.基于ANSYS的压电复合材料性能分析与研究[D].南京:南京航空航天大学,2004.
    [71] Hagood N.W, Kindel R and Ghandi K. Improving Transverse Actuation of Piezoceramics Using InterDigitated Surface Electrodes[R].Proceedings of SPIE: 1917, 1993: 341-352.
    [72] James W. High, W. Keats Wilkie. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators[R]. NASA/TM-2003-212427.
    [73] M. Salim Azzouz, Jeffrey S.B., Jeng Jong Ro. Finite Element Modeling of MFC/AFC Actuators[R]. Proceedings of SPIE: 4326, 2001:376-387.
    [74] Schultz Marc R, Hyer Michael W. A Morphing Concept Based on Unsymmetric Composite Laminates and MFC Piezoceramic Actuators[R]. AIAA: 2004-1806.
    [75]刘永刚,沈星,赵东标等.压电纤维复合材料的静电场分析[J].人工晶体学报,2007, 36(3):596-600.
    [76] Yonggang Liu, Xing Shen, Dongbiao Zhao. Research on Interdigitated Electrodes Piezoelectric Fiber Composites by FEM[R]. Proceedings of SPIE: 6423, 2007:64235X.
    [77]李山青,刘正兴,杨耀文等.压电材料在智能结构形状和振动控制中的应用[J].力学进展,1999, 29(1):66-76.
    [78] H.S. Tzou,C.I. TSENG. Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach[J]. Journal of Sound and Vibration, 1990, 138(1):17-34.
    [79]代锋.功能梯度材料板、壳力─电─热多场耦合主动控制仿真[D].南京:南京航空航天大学,2006.
    [80] Bent A.A.,Hagood N.W. Piezoelectric Fiber Composites with Interdigitated Electrodes[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(11): 903-919.
    [81] Dan J. Clingman, Mike Gamble. High Power Piezo Drive Amplifier for Large Stack and PFC Applications[R].Proceedings of SPIE: 4334, 2001:345-353.
    [82] Richard Gentilman, Kelley McNeal, Gerald Schmidt. Enhanced Pperformance Active Fiber Composites[R].Proceedings of SPIE: 5054, 2003:350-359.
    [83]苏献双. BaTiO3/PMMA压电复合材料及其极化的研究[D].成都:四川大学,2005.
    [84] Weis-Fogh T.Quick. Estimates of Flight Fitness in Hovering Animals,Including Novel Mechanisms for Lift Production[J].The Journal of Experimental Biology, 1973, 59:169-230.
    [85] Dickinson M H, Lehmann F-O, Sane S.P. Wing Rotation and the Aerodynamic Basis of Insect Flight[J].Science, 1999, 284:1954-1960.
    [86] Ellington C.P, Van den Berg C, Willmott A.P. Leading Edge Vortices in Insect Flight[J]. Nature, 1996, 384:626-630.
    [87]王姝歆.微型仿生飞行机器人机理及其仿生翅运动系统研究[D].南京,东南大学,2004.
    [88]周建华.微型拍翅式飞行机器人翅运动及控制系统研究[D].南京,东南大学,2005.
    [89] Fearing R.S, Chiang K.H, Dickinson M.H, et al. Wing Transmission for a Micromechanical Flying Insect[C]. IEEE International Conference on Robotics and Automation, San Francisco, 2000, 2:1509-1516.
    [90] Pornsin-Sirirak T.N, Lee S.W, Nassef H, et al. MEMS Wing Technology for a Batery-Powered Ornithopter[C]. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, 2000, 2:799-803.
    [91] Michelson R, Helmick D, Reece S, et al, Reciprocating Chemical Muscle (RCM) for Micro Air Vehicle "Entomopter" Flight[J/OL]. http://avdil.gtri.gatech.edu/RCM/RCM/Entomopter.
    [92] Stanford S, Kornbluh R, Low T, et al. Flapping Wing Flight Using Artificial Muscles[J/OL], http://www.bees.jpl.nasa.govBEES2000BEES-MAV.pdf, 2000.
    [93] Shimoyama I, Kubo Y, Kaneda T, et al. Simple Micro flight Mechanism on Silicon Wafer[C], IEEE Workshop on Micro Electro Mechanical Systems, Oiso, Japan, 1994:148-154.
    [94] Arai K.I, Sugawara W, Honda T. Magnetic Flying Machines[C]. The 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, 1995, 1:316-319.
    [95]程暮林,陈滨.昆虫的振翅飞行原理研究进展[C],北京大学君政学者论文集,2001.
    [96]翁梓华,黄太平.扑翼飞行的高升力机理[J],机电技术,2003,S1:119-121.
    [97]孙茂,吴江浩.微型飞行器的仿生流体力学——昆虫前飞时的气动力和能耗[J].航空学报,2002, 23(5):385-393.
    [98]曾锐,昂海松.仿鸟复合振动的扑翼气动分析[Jl.南京航空航天大学学报,2003, 35(1):6-12.
    [99]彭跃林.微小扑翼飞行器机翼及机构模型的设计与实验研究[D].西安,西北工业大学,2003.
    [100]宋海龙.微型扑翼飞行器传动系统设计及新型扑翼形式概念研究[D].西安,西北工业大学,2005.
    [101]周凯.微扑翼飞行器动力学仿真及驱动机构优化设计[D].西安,西北工业大学,2007.
    [102]夏宇阳.仿生扑翼飞行器的翅型设计及其试验研究[D].南京,东南大学,2004.
    [103]张孝松.基于蜻蜓翅翼的仿生微扑翼飞行器机翼的有限元分析[D].哈尔滨,哈尔滨工业大学,2006.
    [104]江敬强.仿生微扑翼飞行器扑翼机构的设计及其动态模拟和分析[D].成都,西南交通大学,2007.
    [105]张永立,赵创新,徐进良等.扑翼轨迹对空气动力的影响[J].科学通报. 2006, 51(6):634-640.
    [106] Thien-Tong Nguyen, Doyoung Byun. Two-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency[J]. Journal of Bionic Engineering, 2008, 5(1):1-11.
    [107]刘岚,方宗德,侯宇等.微扑翼飞行器的尺度律研究与仿生设计[[J].中国机械工程.2005, 16(18):1613-1617.
    [108]侯宇,方宗德,刘岚等.仿生微扑翼飞行器机构动态分析与工程设计方法[J].航空学报,2005,26(2):173-178.
    [109] Wei Shyy, Mats Berg, Daniel Ljungqvist. Flapping and Flexible Wings for Biological and Micro Air Vehicles[J]. Progress in Aerospace Sciences, 1999, 35:455-505.
    [110] Steven Hoa, Hany Nassefa, Nick Pornsinsirirakb. Unsteady Aerodynamics and Flow Controlfor Flapping Wing Flyers[J]. Progress in Aerospace Sciences, 2003, 39:635-681.
    [111]熊有伦,丁汉,刘恩沧等.机器人学[M].北京:机械工业出版社,北京,1993.
    [112]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [113]宋伟刚.机器人学[M].北京:科学出版社,2007.
    [114] Z. Jane Wang. Two Dimensional Mechanism for Insect Hovering[J]. Physical Review Letters,2000, 85: 2216-2219.
    [115]张春林.机械原理[M].北京:高等教育出版社.