基于光纤光栅传感的水工混凝土结构健康监控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国幅员广阔,自然灾害非常频繁,经过多年建设,我国相继建立了数量众多的各类水工混凝土结构物,在防洪、排涝、灌溉、供水、环保等方面起到重要的作用,成为我国基础设施的重要组成部分,为我国国民经济建设和社会安定起到了巨大作用。与此同时,水利工程结构由于自然环境、材料老化和结构内外荷载等长期耦合作用下,将不可避免地使结构和系统的损伤积累并导致抗力衰减,如果缺乏实时预警监测系统,结构一旦失效,对于下游城市将造成毁灭性的灾难,同时还会对主要交通干线等国家基础设施造成重大灾害。
     当前由于光纤光栅传感器其突出的优点而成为大型结构健康监控的首选传感器,在大型桥梁、管道等结构健康监测方面应用广泛,但是在水利工程结构健康监测系统中应用还较少。本文基于水工混凝土结构特点,综合运用了结构基本理论,系统论,结构试验技术,损伤识别与评定方法,结构可靠度理论等多种基本理论和方法,分析了健康监控系统传统模式的利弊,并对新型光栅光线传感器应用于水工结构健康监测进行了深入研究,主要研究内容如下:
     (1)概述水工混凝土结构健康监测的现状和重大现实意义,分析了传统监测手段的缺陷和不足,阐述新型水工结构健康监测系统的优势和特点。
     (2)基于优化布点原则,开展应变、渗流以及变形等的光纤光栅传感集成实验研究,并与传统电测方法进行对比试验研究;
     (3)通过系统的理论分析,阐明了水工结构健康监测中各个系统的组成和机理,分析了系统优化布置,损伤识别以及安全评定与预警的方法;
     (4)通过结构和各类传感器的系统集成研究,建立相应结构监测机制,以完成基于光纤光栅传感的水工结构健康自动监控系统理论构架。
     (5)基于水工结构健康监控系统构架设计原则与工程实际,初步构建了基于光纤光栅传感子系统的水工混凝土结构健康监控系统理论模型。
     (6)对文章的主要工作进行总结和汇总,指出了新型水工结构健康监控系统研究过程中的存在的问题,同时对水工结构健康智能监测系统的发展和未来研究工作进行了展望。
Natural disasters are very frequent in our country, After many years of country building, our country have established huge numbers of all kinds of hydraulic concrete structures, In flood control, drainage and irrigation, water supply, environmental protection and so on, it play an important role, and it become infrastructure important constituent in China, for our national economic construction and social stability played a huge role. At the same time water conservancy engineering structure because of natural disasters, environment, material aging and load erosion effects of long-term, effects of fatigue functions, At the same time water conservancy engineering structure because of natural disasters, environment, material aging and load erosion effects of long-term, effects of fatigue effect such as inevitably produce structure and system damage accumulation and resistance attenuation, and if lack of real-time warning monitoring system, once the crash, the downstream of the lives and property of the people and the major traffic trunk lines and other infrastructure will cause a devastating disaster.
     The current due to new fiber Bragg grating sensor its outstanding advantages and become the first choice of large structural health monitoring sensor, in large Bridges, pipeline in structural health monitoring applications, but in water conservancy engineering structural health monitoring system is seldom used. Based on the hydraulic concrete structure characteristics, the integrated use of the basic theory of the structure, system, structure and experiment technology, damage identification and evaluation method, structural reliability theory and so on many kinds of basic theory and method, this paper analyzes the traditional health monitoring system is the pros and cons of the model, and the new grating sensor used in light of hydraulic structures health monitoring is studied, the main research contents are as follows:
     (1) Overview hydraulic concrete structural health monitoring and the present situation of the important practical significance, analyzes the defects of traditional monitoring method and the insufficiency, expounds the new hydraulic structural health monitoring system's advantages and characteristics;
     (2) Based on optimization putting principles, and carry out the seepage deformation of strain, and the optical fiber grating sensors integrated experimental research and traditional electrical measurement methods for contrast test research;
     (3) Through the theoretical analysis of the system, and illustrates the hydraulic structure health monitoring system and mechanism of all, this paper analyzed the system optimization decorate, damage identification and safety evaluation and the warning of method;
     (4) Through the structure and all kinds of sensor system integration research and set up a corresponding structure monitoring mechanism, to complete the optical fiber grating sensors based on the structural health monitoring system of automatic hydraulic theoretical structure.
     (5) Hydraulic structure based on new health monitoring system architecture design application monitoring system, reference actual engineering practice, sets up a new sensor subsystem based on the hydraulic concrete structural health monitoring system theory model;
     (6) The existing problems of the new type hydraulic structures and the health of the intelligent monitoring system development and future were also put forward, of the article summarized the main work and stated, and points out that the new hydraulic structure health monitoring system in the process of research.
引文
[1]董聪,陈肇元.结构智能健康诊断的理论与方法[J].中国铁道科学,2002,23(1):11-24.
    [2]Wang J, Qiao P. Improved Damage Detection for Bean type, Structures using a Uniform Load Structure[J]. Structural Health monitoring,2007,6(2):99-110
    [3]Housner G W, Bergman L A, Caughey T K, et al. Structural control:past, resent, and future[J]. Journal of EngineeringMechanics,1997,123(9):897-971
    [4]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90
    [5]Sohn H, Farrar C R. Damage diagnosis using time series analysis of vibration signals[J]. Smart Materials and Structures.2001.10(3):446-451
    [6]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展[J].土木工程学报.2003,36(5):105-110.
    [7]周奎,王琦等,土木工程结构健康监测的研究进展综述[J].工业建筑2009,39(3):96-102
    [8]谢强,薛松涛.土木工程结构健康监测的研究现状与发展[C].中国科学基金,2001(5):285-288
    [9]杨晓明.土木工程结构的性能监测系统与损伤识别方法研究[D].天津大学,2006
    [10]李占超,侯会静.大坝安全监控指标理论及方法分析[J].水力发电2010.536(5)64-67
    [11]吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
    [12]张俊涛.小浪底大坝安全监测系统分析与评价[D],河海大学,硕士,2007
    [13]周智,武湛君,赵雪峰,欧进萍.混凝土结构的光纤光栅智能监测技术[J].功能材料.2007.9
    [14]余立军,王飞娅.常用结构健康监测传感仪器对比分析[J].山西建筑.2010,32(11)
    [15]毛为民,王为胜,沈省三.高性能差动电阻式传感器自动化测量系统的研制[J].传感技术学报2002(6):153-157.
    [16]毛为民,王为胜,沈省三.振弦式传感器及自动化网络测量系统在桥梁妥全监测系统中的应用[J].传感技术学报,2002(1):73-76
    [17]张兴斌,纪强,张莉.振弦式应变传感器特性研究[J].传感世界,2003(8):19-21
    [18]周美军,韩卫华,刘永辉等.光纤光栅传感技术在土木工程中的应用现状[J].四川建筑,2006,26(2):116-117
    [19]张丹,施斌,吴智深,等BOTDR分布式光纤传感器及其在结构健康监测中的应用[J].土木工程学报,2003,36(11):83-87
    [20]陈根祥主编.光波技术基础[M].北京:中国铁道出版社,2000.
    [21]王惠文主编.光纤传感技术与应用[M].北京:国防工业出版社,2001.
    [22]李宏男等.结构健康监测[M].大连:大连理工大学出版社,2004.
    [23]欧进萍,周智.光纤光栅传感器及其在大型结构工程健康监测领域的应用[C]光纤传感器的发展与产业化国际论坛,平湖,2005.
    [24]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D]:(博士学位论文).哈尔滨工业大学,2002.
    [25]蔡德所.光纤传感技术在大坝工程中的应用[M].北京:中国水利水电出版社,2002.
    [26]欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用[M].北京:科学出版社,2003.
    [27]曹怀志,李民.光纤B ragg光栅传感器在大坝安全监测中的应用及前景[J]大坝与安全 2005.6
    [28]Culshaw B. Smart Structures and Materials[M]. Artech House Publishers,1996.
    [29]任亮.光纤光栅传感技术在结构健康监测中的应用[D],大连理工大学2008.3
    [30]Hill K O et al. Photosensitivity in Optical Fiber Waveguides:Application to Reflection Filter Fabrication[J]. Applied Physics Letters,1978,32(10):647-649.
    [31]Meltz Getal. Formation of Bragg gratings in optical fibers by a transversal holographic method[J]. Optics Letters,1989,15(14):823-825.
    [32]祖伟,马修水,李桂华.光纤光栅传感器原理与应用及其发展趋势[J].安徽电子信息职业技术学院学报2008,35(7):84-86
    [33]李宏男,阎石,林皋.智能结构控制发展综述[J].地震工程与工程振动,1999,9(2):29-36
    [34]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子激光.2002,13(4):420-430.
    [35]李志全,蔡璐璐,高庆等.基于光纤Bragg光栅位移测量的研究[J].应用光学.2004,25(6):26-30.
    [36]孙安,乔学光,贾振安等.耐高压光纤Bragg光栅压力传感技术研究[J].光子学报,2004,33(7):823-825.
    [37]靳伟,阮双探.光纤传感技术新进展[M].北京:科技出版社,2005.
    [38]童峥嵘.光纤光栅传感网络及解调技术的研究.(博士学位论文)[D].天津:南开大学,2003.
    [39]于秀娟,余有龙.钛合金片封装光纤光栅传感器的应变和温度传感特性研究.光纤光栅传感器及其在大型结构工程健康监测领域的应用[C].光纤传感器的发展与产业化国际论坛,平湖,2005.
    [40]赵雪峰,周智,欧进萍等.钢片封装光纤光栅监测混凝土应变试验研究[J].光电子·激光,2003,14(2):171—174.
    [41]关柏鸥,刘志国,开桂云等.光纤光栅温度传感器[J].传感技术学报,1999 2:89-93.
    [42]巩宪锋.光纤光栅传感器及其应用的关键技术研究[D].(博十学位论文).北京:北京科技大学,2004.
    [43]孙丽,李宏男,任亮等.光纤光栅温度传感器在地源热泵中的应用[J].大连理工大学学报,2006.6.
    [44]栗桂冬,张金铎,金欢阳.传感器及其应用[M].西安.西安电子科技大学出版社,2002.
    [45]何道清.传感器与传感器技术[M].北京:科学出版社,2005.
    [46]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [47]Cusano A, Cutolo A, Nasser J, et al. Dynamic strain measurements by fiber Bragg grating sensor[J]. Sensors and Actuators,2004,110(1-3):276-281
    [48]Moyo P, Brownjohn J M W, Suresh R, et al. Development of fiber Bragg grating sensors for monitoring civil infrastructure[J]. Engineering Structures,2005,27(12):1128-1834
    [49]Ferdinand P, Magne S. Applications of Bragg Grating Sensors in Europe.2005.
    [50]J.E.Udd. Monitoring Trucks, Cars, and Joggers on the Horsetail Falls Bridge Using FiberGrating Strain Sensors[C],2005. Proceedings of SPIE, Vol 4185:872-883
    [51]Ferdinand P, Magne S. Applications of Bragg[M]. Grating Sensors in Europe.2005.
    [52]Fiber Grating Systems for Traffic Monitoring[C].2001. Proceedings of SPIE Vol. 4337(2001):510-517
    [53]E J Friebele, C G Askins, B Bosse. Optical fiber sensors for spacecraft[M]. Applications. Smart Mater.Struct.,2005
    [54]Peter L.Fuhr, Dryver R.Huston, Timothy P. Ambrose. Embedded Sensors Results from the Winooski One Hydroelectric Dam[C].2005. ISPIE Vol.2191:446-457
    [55]姜德生,南秋明,梁磊.光纤光栅传感技术在锚索监测中的应用研究[J].承德石油高等专科学校学报,2004.6(3):1-4
    [56]李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析[J].力学学报.2005,37(4):435-441
    [57]Zhou G D, Li H N, Ren L, Influencing parameters analysis of strain transfer in optic fiber Bragg grating sensors[C]. In:Meyendorf N, ed. Proceedings of the SPIE:Conference on Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring Ⅱ, San Diego,2006-03-01-02. Bellingham, SPIE-INT Society Optical Engineering,81790,2006
    [58]Li D S, Li H N, Ren L, et al. Strain transferring analysis of fiber Bragg grating sensors[J]. Optical Engineering,2006,45(2):400-402
    [59]孙丽,李宏男,任亮.光纤光栅传感器监测混凝土固化收缩实验研究[J].建筑材料学报,2006,9(2):148-153
    [60]刘西拉.重大土木与水利工程安全性及耐久性的基础研究[J].土木工程学报,2001,34(6):1-7
    [61]Chan T H T, Yu L, Tam H Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation[J]. Engineering Structures,2006,28(5):648-659
    [62]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅监测技术[J].土木工程学报,2004,37(1):45-49
    [63]稽雪蘅.光纤光栅传感技术与试验研究[M],2008
    [64]李宏男,高东伟,伊廷华 土木工程结构健康监测系统的研究状况与进展[J],力学进展,2008.38(2)151-166
    [65]Sohn H, Farrar C R. Damage diagnosis using time series analysis of vibration signals[J], Smart Materials and Structures.2001.10(3):446-451
    [66]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展[J].土木工程学报,2003,36(5):105-110.