基于溶胶—凝胶法的功能因子缓释技术研究及其在纺织品芳香保健功能整理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶胶-凝胶技术作为一种材料制备与改性技术,因具有高化学均匀性、制备工艺简单、制备材料纯度高以及易成形和改性等特点,现已成为纺织品功能整理的一个新的发展方向。硅溶胶作为溶胶-凝胶技术中使用最为广泛的一种胶体材料,因具有成膜性好、成膜牢度高、成膜易改性、成膜耐高温和耐化学试剂性佳及本身无毒且具有生物惰性等特点,现已作为一种优良的生态环保性材料广泛应用于纺织品的功能整理。利用硅溶胶的成膜性可以包覆任何功能性活性因子,并且可通过对溶胶进行物理或化学改性,改变成膜的结构和微孔尺寸大小及分布,调控功能活性因子的固定化程度,从而达到控制释放的目的,因此,可用来制备具有长效功能的纺织品,如芳香保健功能纺织品。
     由鉴于此,本文的研究目的是利用溶胶-凝胶技术,以正硅酸乙酯(TEOS)为硅前驱体,以Y-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)为改性剂,以乙醇为共溶剂,以盐酸为反应催化剂,以聚乙烯醇(PVA)为成膜促进剂,制备稳定、透明、均匀及成膜性良好且对整理织物物理机械性能影响小的生态环保型纳米硅溶胶载体。以具有镇静、安神之功效的熏衣草精油作为芳香保健功能活性因子,通过硅溶胶载体于织物表面的成膜性包覆芳香保健功能活性因子——熏衣草精油,制备具有长效芳香保健功能的纺织品,以期为纺织品芳香保健功能整理开辟一种新的工艺简单且更加环保的整理技术。因此,本文的主要研究内容和结果如下。
     首先,本文采用单因素试验,研究了加水量、共溶剂乙醇用量、催化剂盐酸用量、成膜促进剂PVA的用量、改性剂GPTMS的用量以及反应温度和时间对制备硅溶胶载体性质(粘度、凝胶时间和粒径)的影响,采用五因素四水平[L16(45)]的正交试验设计方案,优化了制备工艺,并通过SPM分析了改性剂对硅溶胶载体膜形态结构的影响。结果显示,反应物配比(以摩尔比表示)为n[TEOS]:n[H2O]:n[EtOH]:n[HCl]:n[GPTMS]=1:50:8:8×10-3:1, PVA浓度为0.2%,反应温度为25℃,反应时间为3h,能够制备出稳定、透明、均匀及成膜性良好且对整理织物物理机械性能影响小的纳米硅溶胶载体。SPM分析表明,改性硅溶胶载体较未改性硅溶胶载体,其成膜厚度更低,成膜更加均匀。
     其次,根据上述制备工艺,制备出包覆熏衣草精油的硅凝胶和改性硅凝胶,研究了两者在95%乙醇溶液中的释放性能且对释放曲线进行了动力学模型拟合,并通过TG、FTIR分析表征了两种功能凝胶。结果显示,不论是改性硅凝胶,还是未改性硅凝胶,作为一种包覆材料,对功能活性因子——熏衣草精油,都具有较好的缓释性,后者的缓释性较前者略好。改性剂GPTMS的添加降低了硅凝胶载体的缓释性,但没有改变硅凝胶包覆物的释放机理。硅凝胶包覆物的释放动力学模型较好地符合Higuchi动力学模型,这表明硅凝胶载体中活性因子的释放是通过凝胶网络扩散和凝胶孔道来实现的。TG分析进一步证实了改性剂的添加降低了硅凝胶的缓释功能。FTIR分析表明,包覆过程仅是一种物理行为,并不影响装载物的性质。
     再次,基于上述的研究结果,制备了装填熏衣草精油的硅溶胶整理液,用其整理棉织物,制备出具有长效芳香保健功能的纺织品,并研究了整理方法、焙烘条件、熏衣草精油/Si02质量比以及改性剂等因素对整理织物留香时间的影响,此外,也考察了改性剂对整理织物的耐水洗性及物理机械性能的影响,并利用TG、DSC、FTIR、SEM和SPM等分析手段表征了整理织物。结果显示,浸轧法整理织物的留香期较浸渍法长。焙烘条件对整理织物的留香时间具有较大影响,同时也对整理织物的芳香性具有一定的影响,合理的焙烘条件为焙烘温度120℃,焙烘时间1min。不同熏衣草精油/Si02质量比同样对整理织物的留香时间具有较大影响,较佳的质量比为1:2。改性剂的添加降低了整理织物的芳香缓释性,但改善了耐水洗性,同时降低了对整理织物物理机械性能的影响。与未处理样相比,整理织物的热分解性基本没有变化,而玻璃化转变温度升高,其中改性硅溶胶包覆物处理样较未改性的略低。SEM显示,整理织物表面形成了一层连续薄膜。SPM分析表明,改性硅溶胶包覆物处理样表面所成凝胶网状结构较疏松,而未改性硅溶胶包覆物处理样表面所成凝胶网状结构较紧密。
     最后,研究了酸催化的硅溶胶载体对处理棉织物的断裂强力、撕破强力、手感、芯吸效应、透湿性、放湿性等性能的影响。结果显示,硅溶胶处理棉织物,一定条件下可提高处理织物的断裂强力,尤其在较高的焙烘温度或较长的焙烘时间下,当然,温度应严格控制在棉纤维所能承受的温度范围内。不同工艺条件下,硅溶胶处理棉织物的撕破强力、芯吸效应、透湿性都有不同程度的下降,尤其在较高的焙烘温度、较长的焙烘时间或较高的硅溶胶浓度下,影响更明显,加入改性剂GPTMS可降低硅溶胶处理所带来的负面影响,且效果随用量的增加而增加。整理织物的手感都有不同程度的下降,尤其在较高的焙烘温度、较长的焙烘时间或较高的硅溶胶浓度下,影响更明显,加入改性剂GPTMS可降低对它的负面影响,且效果随用量的增加而增加。整理织物的放湿性都有不同程度的下降,尤其在较低的焙烘温度、较短的焙烘时间或较低的硅溶胶浓度下,影响更明显,改性剂GPTMS的加入效果并不明显。ATR-FTIR分析表明,硅溶胶载体处理对棉纤维的微观结构没有明显影响。
As a kind of preparing and modifying technique of material, sol-gel technique has already become a new developing trend of functional finishing of textile due to its characteristics of highly chemical homogeneity, easily processing, high purity, easily shaping & modifying, nontoxicity and inertness to organism, etc. As a kind of colloidal material most widely used, it has been widely applied to functional finishing of textile as excellent eco-friendly finishing material. Any functional factors can be embedded into silica gel by forming film of sol, and to aim to control its release, we can change the structure of film and size & size distribution of its microhole to tailor the immobility of factors, by which textile with long-term functionality can thus be fabricated, such as long-term fragrant and healthcare textile.
     In regard to this, the purposes of this paper are to prepare eco-friendly stable transparent homogeneous silica sol with good film-forming characteristic and little influence on the properties of treated fabric by sol-gel process using tetraethoxysilane (TEOS) as precursor, (y-glycidyloxypropyl)-trimethoxysilane (GPTMS) as modifier, ethanol as co-solvent, hydrochloric acid as catalyzer, poly (vinyl alcohol) (PVA) as film-forming accelerant and to fabricate long-term fragrant and healthcare textile by embedding lavender essence having calming and nerves-soothing effects into silica sol and forming film on the surface of fabric, and to try to develop a new finishing technique with simpler and more eco-friendly process for fragrant and healthcare functional finishing of textile. Thus, the main research contents and results of this paper are as follows:
     Firstly, in this paper, we investigated the influences of dosages of water, co-solvent (ethanol), catalyzer (hydrochloric acid), film-forming accelerant (PVA) & modifier (GPTMS) and reaction temperature & time on the properties of the obtained silica sol (viscosity, gelation time and size of colloidal particle) by single factor experimentation, and optimized the processes using orthogonal design [L)6(45)] and analyzed the influence of modifier on the morphology of silica film. The results show that stable transparent homogeneous silica sol with good film-forming characteristic and little influence on the properties of treated fabric can be obtained under the conditions that molar ratios of TEOS to H2O to Ethanol to HCl to GPTMS is 1:50:8: 8×10-3:1, concentration of PVA is 0.2% and reaction temperature & time are respectively 25℃and 3 h. The analysis of SPM indicates that modified silica film is thinner and more homogeneous than silica film not modified.
     Secondly, we prepared lavender-embedded silica and modified silica gel based on the processes above, and investigated the releasing properties of the two gels in 95% ethanol solution and made a kinetic model fitting, and also characterized the two gels by TG and FTIR. The results show that both silica gel and modified silica gel have slow-releasing effect on lavender essence inside and silica gel not modified is comparatively better. Adding modifier (GPTMS) will reduce the slow-releasing effect of silica gel, but will not change its releasing mechanism. The release mechanism of lavender-embedded silica gel accords with Higuchi model, which suggests that the release of functional factors inside is realized by diffusing through gel network and cavity. The analysis of TG testifies that the slow-releasing effect of modified silica gel reduced due to the addition of GPTMS, and the analysis of FTIR indicates that the embedding process is only physical mechanism, not influence the properties of substances loaded.
     Thirdly, long-term fragrant and healthcare textile was fabricated using the finishing solution containing lavender essence incorporated with silica sol or modified silica sol, and the influences of finishing method, baking conditions, mass ratio of lavender to SiO2 and modifier on fragrance retention time of the treated fabric were investigated, furthermore, the influence of modifier on washing fastness and mechanical properties of the treated fabric was also investigated, and the treated fabric was characterized by TG, DSC, FTIR, SEM and SPM. The results show that fragrance retention time of the fabric treated by dip-pad method is longer than that by immersion method. Baking conditions have remarkable influence on both fragrance retention time and aromaticity, the reasonable baking conditions are 120℃of baking temperature and 1 min of baking time. The mass ratio of lavender to SiO2 also has obvious influence on fragrance retention time and the optimized ratio is 1:2. Adding modifier reduced the slow-releasing effect of the treated fabric, but improved washing fastness and reduced the negative influence on the properties of the treated fabric. The heat-decomposing property of the treated fabric changed little compared with the untreated one. Glass transit temperature (Tg) of the treated fabric enhanced, and Tg of the fabric treated with modified silica sol is a little lower than that with silica sol not modified. SEM shows that the continuous silica film was formed on the surface of the treated fiber. The analysis of SPM indicates that the formed gel network from modified silica sol is looser than that from silica sol not modified.
     Lastly, the influences of treatment of acid-catalyzed silica sol derived from TEOS on the tensile strength, tear strength, hand, wicking effect and water vapor transmission & moisture desorption properties of the treated cotton fabric were investigated. The results show that treatment of silica sol on cotton fabric is favorable to the improvement of its tensile strength under certain conditions, especially at higher curing temperature or for longer curing time, certainly, the temperature must be strictly controlled in the range in which the fiber will not be damaged. The tear strength, wicking effect and water vapor transmission property of the treated cotton fabric all decreased at different levels, especially at higher curing temperature, or for longer curing time, or with higher silica content, whereas the addition of GPTMS can reduce the negative effect of the treatment on theirs, especially in a lower molar ratio of TEOS to GPTMS. The hand of the treated cotton fabric decreased, especially at higher curing temperature, or for longer curing time, or with higher silica content, whereas the addition of GPTMS can weaken the negative effect of the treatment on hand, especially in a lower molar ratio of TEOS to GPTMS. The moisture desorption property of the treated cotton fabric decreased, especially at lower curing temperature, or for shorter curing time, or with lower silica content, and the addition of GPTMS has not remarkable effect. The analysis of ATR-FTIR shows that the treatment of silica sol has not distinct influence on the microstructure of the treated fiber.
引文
[1]黄剑峰.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [2]Brinker C J, Scherer G W. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing[M]. Academic Press Inc., Boston,1990.
    [3]孙继红,范文浩,吴东等.溶胶-凝胶化学及其应用[J].材料导报,2000,14(4):25-29.
    [4]杨南如,余桂郁.溶胶-凝胶法简介[J].硅酸盐学报,1992,11(2):56-63.
    [5]Klein L C. Sol-Gel Technology for Thin Films, Fibers Preforms, Electronic and Specialty Shapes[M]. Noyes ParkRidge, New York,1988.
    [6]Ebelmen J J. Untersuchungen u ber die Verbindungen der Borsaure und Kieselsaure mit Aether[J]. Annalen der Chemie und Pharmacie,1846,57(3):331.
    [7]Geffcken W, Berger E. Changing the reflective capacity of optical glass[P]. DE: 736411,1939-05-06.
    [8]Dislich H, Hussmann E. Amorphous and crystalline dip coatings obtained from organometallic solutions:Procedures, chemical processes and products[J]. Thin Solid Films,1981,77 (1-3):129-140.
    [9]Dislich H. New routes to multicomponent oxide glasses[J]. Angew. Chem. Int. Ed. Eng.,1971,10(6):363-370.
    [10]Yoldas B E. Alumina gels that form porous transparent Al2O3[J]. J. Mater. Sci., 1975,10(11):1856-1860.
    [11]Yoldas B E. Preparation of glasses and ceramics from metal-organic compounds[J]. J. Mater. Sci.,1977,12(6):1203-1208.
    [12]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐学报,1993,21(5):443-449.
    [13]洪新华,李保国.溶胶-凝胶方法的原理与应用[J].天津师范大学学报,2001,21(1):5-8.
    [14]Khimich N N. Synthesis of silica gels and organic-inorganic hybrids on their base[J]. Glass Phys. Chem.,2004,30(5):430-442.
    [15]肖长城.硅溶胶的制备及其在化学工业中的应用[J].兰化科技,1989,7(1):34-38.
    [16]余桂郁,杨南如.溶胶-凝胶法工艺过程[J].硅酸盐学报,1993,21(6):60-66.
    [17]Dislich H, Hinz P. History and principles of the sol-gel process and some new multicomponent oxide coating[J]. J. Non-Cryst. Solids,1982,48(1):11-16.
    [18]Strawbridge I, James P F. Thin silica film prepared by dip coating[J]. J. Non-Cryst. Solids,1986,82(2):366-372.
    [19]Jones W M, Fischbach D B. Novel processing of silica hydrosols and gels[J]. J. Non-Cryst. Solids,1988,101(1):123-126.
    [20]Zarzycki J. Past and present of sol-gel science and technology[J]. J. Sol-Gel Sci. Technol.,1997(8):17-22.
    [21]Hench L L, West J K. The sol-gel process[J]. Chem. Rev.,1990,90(1):33-72.
    [22]Schwerin B. Making pure soluble silicic acid[P].US:1132394,1915-03-16.
    [23]Bird P G. Colloidal solutions of inorganic oxides such as silica[P].US:2244325, 1941-06-03.
    [24]Iler R K. The Chemistry of Silica:Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica[M].John Wiley & Sons, New York,1979,331.
    [25]唐永良,硅溶胶制备方法述评[J].浙江化工,2003,34(5):4-6.
    [26]殷馨,戴媛静.硅溶胶的性质、制法及应用[J].化学推进剂与高分子材料,2005,3(6):27-32,41.
    [27]王自新,赵冰.硅溶胶制备与应用[J].化学推进剂与高分子材料,2003,19(5):34-39.
    [28]Balthis J H. Silica sols from finely divided silicon[P].US:2614994,1952-10-21.
    [29]Balthis J H. Silica sols from finely divided silicon[P].US:2614995,1952-10-21.
    [30]田立朋,王力.单质硅粉溶解法制备硅溶胶正交实验研究[J].化学工程师,2006(11):12-14.
    [31]姜德源,刘继红.硅粉溶解法制备硅溶胶的新工艺[J].哈尔滨师范大学自然科学学报,1998,14(1):56-59.
    [32]张扬正.大粒径、低粘度硅溶胶制造方法[P].CN:86104144A,1987.
    [33]Iler R K. Producing colloidal silica by electrodialysis of a silicate[P]. US: 3668088,1972-06-06.
    [34]刘红梅,衣宝廉.电解电渗析法制备硅溶胶过程中各操作条件对胶粒性质的影响[J].北京联合大学学报,1996,10(4):33-38.
    [35]刘红梅,衣宝廉.电解电渗析法制备硅溶胶[J].化工学报,1996,47(3):340-345.
    [36]何斌,王相田.纳米二氧化硅水溶胶的制备技术研究及应用[J].硅铝化合物,2000(3):14-18.
    [37]Loftman K A, Thereault J R. Aqueous colloidal dispersions of pyrogenic silica[P]. US:2984629,1961-05-16.
    [38]Diether J. Stabilized dispersions of pyrogenic silica[P]. GB:1326574, 1973-08-15.
    [39]Payne C C. Aqueous silica compositions for polishing silicon wafers[P]. US: 4588421,1986-05-13.
    [40]Cochrane H. Aqueous colloidal dispersion of fumed silica without a stabilizer[P]. US:5116535,1992-05-26.
    [41]Miller D G, Moll W F. Aqueous colloidal dispersion of fumed silica, acid and stabilizer[P]. US:5246624,1993-09-21.
    [42]李辉,郭玉忠,王剑华等.分散法硅溶胶的稳定性研究[J].广西轻工业,2007,23(10):29-30.
    [43]Pilotek S, Schmidt H K. Wettability of microstructured hydrophobic sol-gel coating[J]. J. Sol-Gel Sci. Technol.,2003,26(3):789-792.
    [44]潘鹤林,陈平,方图南等.新型硅溶胶的研制[J].现代化工,1997,17(1):25-28.
    [45]Simposon E A. Preparation of Silica Sols[P]. US:2900348,1959-08-18.
    [46]Alexander C B. Process for Producing Built-up Silica Particles[P]. US:2601235, 1952-06-24.
    [47]Stober W, Fink A, Bohn E. Controlled growth of mono dispersed silica spheres in the micro size range[J]. J. Colloid Interface Sci.,1968,26(l):62-69.
    [48]芦贻春,李再耕.pH值对硅溶胶凝胶化过程的影响[J].耐火材料,1995,29(6):326-328.
    [49]李伟,王霞瑜,张平等.快速溶胶-凝胶法制备气凝胶的研究[J].湘潭大学自然科学学报,2002,24(1):64-67.
    [50]许念强,顾建祥,罗康等.二氧化硅粒径对酸性硅溶胶稳定性的影响[J].华东理工大学学报,2003,29(6):642-645.
    [51]邱春阳,张克铮.二氧化硅溶胶稳定性的研究[J].辽宁石油化工大学学报,2005,25(2):1-4.
    [52]李智,姚熹,张良莹.sol-gel法制备多孔纳米Si02薄膜[J].电子元件与材料,2005,24(2):32-34,37.
    [53]张宁,熊裕华.溶胶-凝胶法制备纳米二氧化硅[J].南昌大学学报(理科版), 2003,27(3):267-269.
    [54]沈军,王珏,甘礼华等.溶胶-凝胶法制备Si02气凝胶及其特性研究[J].无机材料学报,1995,10(1):69-75.
    [55]王娟,张昌瑞,冯坚.纳米多孔二氧化硅薄膜的制备及其光学性质研究[J].高技术通讯,2005,15(6):55-57.
    [56]Pham T, Jackson J B, Hal as N J, et al. Preparation and characterization of gold nanoshells coated with self-assembled monolayers[J]. Langmuir,2002, 18(12):4915-4920.
    [57]Liu Y, Chen H, Zhang L, et al. Preparation and characterization of porous silica films by a modified base-catalyzed sol-gel process containing PVA:Ⅰ.the precursor solution synthesis[J]. J. Sol-Gel Sci. Technol.,2002,25(2):95-100.
    [58]Lin H Y, Chen Y W. Preparation of spherical hexagonal mesoporous silica[J]. J. Porous Mater.,2005,12(2):95-105.
    [59]Wanfg J, Wu G M. Scratch-resistant improvement of sol-gel derived nano-porous silica films[J]. J. Sol-Gel Sci. Technol.,2000,18(3):219-224.
    [60]Murashkevich A N, Vashina V G, Zharskii I M. Synthesis of active porous silica gel matrices and investigation of their properties[J]. J. Sol-Gel Sci. Technol.,2001, 20(1):7-12.
    [61]Gallardo J, Galliano P, Duran A. Thermal evolution of hybrid sol-gel silica coatings:A structural analysis[J]. J. Sol-Gel Sci. Technol.,2000,19(1-3):393-397.
    [62]Conan D A, Herwig K W, Stephenj L. Adsorption and diffusion behavior of ethane and ethylene in sol-gel derived microporous silica[J]. Adsorption,2005, 11(5-6):494-499.
    [63]Khimich N N. Synthesis of silica gels and organic-inorganic hybrids on their base[J]. Glass Phys. Chem.,2004,30(5):430-442.
    [64]Guglielmi M, Carturan G. Precursors for sol-gel preparations[J]. J. Non-Cryst. Solids,1988,100(1-3):16-30.
    [65]Mehrotra R C. Synthesis and reactions of metal alkoxides[J]. J. Non-Cryst. Solids, 1988,100(1-3):1-15.
    [66]Francoise E D, Julien D, Elimane E, et al. Relations between the texture of silica aerogels and their preparation[J]. J. Non-Cryst. Solids,1995,186(2):9-17.
    [67]Kamitani K, Uo M, Inoue H, et al. Synthesis and spectroscopy of TPP derivative-doped silica gels prepared by the sol-gel process[J]. J. Luminescence, 1995,64(1-6):291-294.
    [68]Hajime T, Tsuneyuki S, Morio O. Control of mesoporous structure of silica aerogel prepared from TMOS[J]. J Colloid Interface Sci.,1997,188(1):162-167.
    [69]Joachim G,, Paul R C, Lawrence W H. Elastic properties of silica aerogels from a new rapid supercritical extraction process[J]. J. Non-Cryst. Solids,1998, 225(1):282-286.
    [70]Santos A M M, Wander L V. Properties of porous silica glasses prepared via sol-gel process[J]. J. Non-Cryst. Solids,2000,273(1-3):145-149.
    [71]Kim G D, Lee D A, Moon J W, et al. Synthesis and applications of TEOS/PDMS hybrid material by sol-gel process[J]. Appl. Organomet. Chem.,1999, 13(5):361-372.
    [72]Innocenzi P, Abdirashid M O, Guglielmi M. Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane[J]. J. Sol-Gel Sci. Technol.,1994,3(1):47-55.
    [73]Deng Q, Moore R B, Mauritz K A. Nafion(?)/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions:characterization of fundamental properties[J]. J. Appl. Polym. Sci.,1998,68(5):747-763.
    [74]Takamura N, Gunji T, Hatano H, et al. Preparation and properties of polysilsesquoxanes:polysilsesquoxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl and vinyltrimethoxysilane[J]. J. Polym. Sci. Pt. A-Poly. Chem.,1999,37(7):1017-1026.
    [75]Wynne K J, Ho T, Johnston E E, et al. Surface science and stability of networks prepared from hydroxyl-terminated polydimethylsiloxane and methyltriethoxysilane[J]. Appl. Organomet. Chem.,1998,12(10-11):763-770
    [76]Park O H, Pinot J, Bae B S. Photoluminescence of sol-gel hybrid films doped with erbium tris (8-hydroxyqunolilne)[C]. Abstract of papers, Ⅶ Internantional Workshop on Sol-Gel Science and Technology, Sydney,2003,342.
    [77]Han J T, Lee D H, Ryu C Y, et al. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding[J]. J. Am. Chem. Soc.,2004,126(15):4796-4797.
    [78]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,136-137.
    [79]Boris M, Helfried H, Horst B. Functionalisation of textiles by inorganic sol-gel coatings[J]. J. Mater. Chem.,2005,15(41):4385-4398.
    [80]Ulrich S, Nicola H, Anne L. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides[J]. Chem. Mater.,1995, 7(11):2010-2027.
    [81]Karl-Heinz H, Sabine A-S, Klaus R. Functionalized coating materials based on inorganic-organic polymers[J]. Thin Solid Films,1999,351(1-2):198-203.
    [82]Schottner G. Hybrid sol-gel-derived polymers:applications of multifunctional materials[J]. Chem. Mater.,2001,13(10):3422-3435.
    [83]Francis L F. Sol-Gel Methods for Oxide Coatings, Intermetallic and Ceramic Coatings[M]. M. Dekker, New York,1999,31.
    [84]Textor T, Bahners T H, Schollmeyer E. Surface Modification of Textile Fabrics by Coating Based on the Sol-Gel Process[J]. Melliand Textilberichte,1999, 80(10):229-230.
    [85]Lee M S, Jo N J. Coating of Methyltriethoxysilane-Modified Colloidal Silica on Polymer Substrates for Abrasion Rcsistance[J]. J. Sol-Gel Sci. Technol.,2002, 24(2):175-180.
    [86]Textor T, Bahners T H, Schollmeyer E. Inorganic-organic Hybrid Polymers to Protect Technical Textiles[J]. Technical Textiles,2002,45(8):103-105.
    [87]Schramm C, Binder W H, Tessadri R. Durable Press Finishing of Cotton Fabric with 1,2,3,4-Butanetetracarboxylic Acid and TEOS/GPTMS[J]. J. Sol-Gel Sci. Technol.,2004,29(3):155-165.
    [88]Schramm C, Rinderer B. Treatment of cotton fabrics with non-formaldehyde durable press finishing agents and hydrolyzed silicon alkoxides[J]. Cellul. Chem. Technol.,2006(3-4):231-236.
    [89]Bottcher H. Sol-gel coating on textiles[J]. Textilveredlung,2001,36(3):16-21.
    [90]Textor T, Bahners T H, Schollmeyer E. Coating Wool and Silk by Sol-Gel Technique[C]. The 10th International Wool Textile Research Conference.2003, Fl-12:1-5.
    [91]叶早萍,阎克路.溶胶-凝胶技术在羊毛防毡缩整理中的应用[J].印染,2006,32(7):11-15.
    [92]林桂凤,阎克路.纳米复合溶胶的羊毛防毡缩整理[J].印染,2006,32(20):1-5.
    [93]Textor T, Bahners T H, Schollmeyer E. Surface modification of textile fabrics by coatings on the sol-gel process[J]. Melliand Textilberichte,1999,80(10):847-848.
    [94]Xu P, Wang W, Chen S L. Application of Nanosol on the Antistatic Property of Polyester[J]. Melliand International,2005, 11(1):56-59.
    [95]魏丽丽.涤纶织物氧化铝溶胶抗静电整理研究[J].染整技术,2007,29(3):1-3.
    [96]Fabbri P, Messori M, Montecci M,,et al. Surface Properties of Fluorinated Hybrid Coatings[J]. J. Appl. Polym. Sci.,2006,102:1483-1488.
    [97]Mahltig B, Audenaert F, Bottcher H. Hydrophobic Silica Sol Coatings on Textiles-the Influence of Solvent and Sol Concentration[J]. J. Sol-Gel Sci. Technol.,2005,34(2):103-109.
    [98]Iwashita K, Tadanaga K, Minami T. Water Permeation Properties of SiO2-RSiO3/2 (R=Methyl, Vinyl, Phenyl) Thin Films Prepared by the Sol-Gel Method on Nylon-6 Substrate[J]. J. Appl. Polym. Sci.,1996,61:2173-2177.
    [99]Yu M H, Gu G T, Meng W D, et al. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary amimonium silane coupling agent[J]. Appl. Surf. Sci.,2007(253):3669-3673.
    [100]Satoh K, Nakazumi H, Morita M. Preparation of Super-Water-Repel lent Fluorinated Inorganic-Organic Coating Films on Nylon 66 by the Sol-Gel Method Using Microphase Separation[J]. J. Sol-Gel Sci. Technol.,2003, 27:327-332.
    [101]Mathltig B, Bottcher H. Modified Silica Sol Coatings for Water-Repellent Textiles[J]. J. Sol-Gel Sci. Technol.,2003,27:43-52.
    [102]Daoud W A, Xin J H, Tao X M. Superhydrophobic Silica Nanocomposite Coating by a Low-Temperature Process[J]. J. Am. Ceram. Soc.,2004, 87(9):1782-1784.
    [103]Song K C, Park J K, Kang H U, et al. Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane[J]. J. Sol-Gel Sci. Technol,2003,27:53-59.
    [104]敬承斌,赵修建,陈文梅等.环氧基硅烷改性TiO2薄膜对尼龙吸水性、耐化学试剂性能的影响[J].高分子材料科学与工程,2002,18(3):180-184.
    [105]Ren D S, Bei Z M, Shen J, et al. The Structure Change and the Superhydrophilicity of the Sb-Doped Titanium Dioxide Thin Films[J]. J. Sol-Gel Sci. Technol.,2005,34:123-126.
    [106]Ovington L G. Battling bacteria in wound care[J]. Home Healthcare Nurse,2001, 19(10):622-631.
    [107]Mathltig B, Bottcher H, Langen G, et al. Nonstick coatings for wound bandages containing silica and alkyltriethoxy silanes[P]. DE:10249874,2004-05-06.
    [108]Mathltig B. Sol-Gel Technik zur Realisierung von funktionellen beschichtungen (sol-gel technique for preparation of functional coatings)[J]. Vakuum in Forschung und Praxis,2004,16(3):129-132.
    [109]Xu J Z, Li Y, He Y W, et al. The flame retardant study on wool treated with metal oxide[J]. Chemical Journal of Internet,2005,7(4):33.
    [110]孙建红,徐建中,陈灵智等.稀土氧化物溶胶对羊毛纤维的阻燃改性及其热降解[J].河北大学学报(自然科学版),2008,28(2):173-177.
    [111]Satoh K, Nakazumi H, Morita M. Novel fluorinated inorganic-organic finishing material for nylon carpeting[J]. Tex. Res. J.,2004,74(12):1079-1084.
    [112]Benfer S, Boehm S, Hubner R, et al. Surface modification of textile filtering materials by sol-gel procedure[P]. DE:10209667,2003-09-25.
    [113]Wang R H, Xin J H, Tao X M. UV-Blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics[J]. Inorg. Chem.,2005,44(11):3926-3930.
    [114]Daoud W A, Xin J H. Nucleation and growth of anatase crystallites on cotton fabrics at low temperature[J]. J. Am. Ceram. Soc.,2004,87(5):953-955.
    [115]Burniston N, Bygott C, Stratton J. Nano technology meets titanium dioxide[J]. Surf. Coat. Int. Pt A-Coat. J.,2004,87(44):179-184.
    [116]Trepte J, Bottcher H. Improvement in the leaching behavior of dye-doped modified silica layers coated onto paper or textiles[J]. J. Sol-Gel Sci. Technol., 2000,19(1-3):691-694.
    [117]B6hmer M R, Keursten T A P M. Incorporation of pigments inTEOS derived matrices[J]. J-Sol-Gel Sci. Technol.,2000,19(1-3):361-364.
    [118]Mathltig B, Knittel D, Schollmeyer E, et al. Incorporation of triarylmethane dyes into sol-gel matrices deposited on textiles[J]. J. Sol-Gel Sci. Technol.,2004, 31(1-3):293-297.
    [119]Yang H Y, Zhu S K, Pan N. Studying the mechanisms of titanium dioxide as ultraviolet-blocking additives for films and fabrics by an improved scheme[J]. J. Appl. Polym. Sci.,2003,92(5):3201-3210.
    [120]Wang R H, Xin J H, Tao X M. ZnO nanorods grown on cotton fabrics at low temperature[J]. Chem. Phys. Lett.,2004,398(1-3):250-255.
    [121]Xin J H, Daoud W A, Kong Y Y. A New Approach to UV-Blocking Treatment for Cotton Fabrics[J]. Tex. Res. J.,2004,74(2):97-100.
    [122]Xu P, Wang W, Chen S L. UV-Blocking Treatment of Cotton Fabrics by Titanium Hydrosol[J]. AATCC Review,2005,5(6):17-20.
    [123]Xu P, Liu X Y, Wang W, et al. Improving the Antibacterial and UV-Resistant Properties of Cotton by the Titanium Hydrosol Treatment[J]. J. Appl. Polym. Sci., 2006,102:1478-1482.
    [124]Xing Y J, Ding X. UV Photo-Stabilization of Tetrabutyl Titanate for Aramid Fibers via Sol-Gel Surface Modification[J]. J. Appl. Polym. Sci.,2007, 103:3113-3119.
    [125]Mahltig B, Bottcher H, Rauch K, et al. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers[J]. Thin Solid Films,2005, 485:108-114.
    [126]Wang L, Peng X, Song F, et al. New near-infrared indocyanines and their spectral properties in SiO2 sol-gel[J]. Dyes Pigm.,2004,61(2):103-107.
    [127]Wu P W, Dunn B, Doan V, et al. Controlling the spontaneous precipitation of silver nanoparticles in sol-gel materials[J]. J. Sol-Gel Sci. Technol.,2000, 19(1-3):249-252.
    [128]Qi K H, Walid A D, John H X, et al. Self-cleaning cotton[J]. J. Mater. Chem., 2006,47(16):4567-4574.
    [129]Yuranova T, Mosteo R, Bandara J, et al. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating[J]. J. Mol. Catal. A:Chem.,2006, 244(1-2):160-167.
    [130]Bozzi A, Yuranova T, Guasquillo I, et al. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation[J]. J. Photochem. Photobiol. A:Chemistry,2005(174):156-164.
    [131]Kim M S, Seok S L, Ahn B Y, et al. Encapsulation of Water-Soluble Dye in Spherical Sol-Gel Silica Matrices[J]. J. Sol-Gel Sci. Technol.,2003, 27(3):355-361.
    [132]Shibata S, Taniguchi T, Yano T, et al. Formation of Water-Soluble Dye-Doped Silica Particles[J]. J. Sol-Gel Sci. Technol.,1997,10(3):263-268.
    [133]Bohmer M R, Keursten T A P M. Incorporation of Pigments in TEOS Derived Matrices[J]. J. Sol-Gel Sci. Technol.,2000(19):361-364.
    [134]Luo M, Zhang X L, Chen S L. Enhancing the Wash Fastness of Dyeing By a Sol-Gel Process, Part 1:Direct Dyes on Cotton.[J]. Color. Technol., 2003(119):297-300.
    [135]Du J, Zhan L, Chen S L. Wash Fastness of Dyed Fabric Treated by the Sol-Gel Process[J]. Color. Technol.,2005,121(1):29-36.
    [136]Mahltig B, Textor T. Combination of silica sol and dyes on textiles[J]. J. Sol-Gel Sci. Technol.,2006,39(2):111-118.
    [137]Mahltig B, Bottcher H, Knittel D, et al. Light fading and wash fastness of dyed nanosol coated textiles[J]. Tex. Res. J.,2004,74(6):521-527.
    [138]Bottcher H. Bioactive Sol-Gel coatings[J]. Journal fur praktische Chemie,2000, 342(5):427-436.
    [139]Brasack I, Bottcher H, Hempel U. Biocompatibility of modified Silica-Protein Composite Layers[J]. J. Sol-Gel Sci. Technol.,2000,19(1):479-482.
    [140]Dave B C, Miller J M, Dunn B, et al. Encapsulation of Proteins in Bulk and Thin Film Sol-Gel Matrices[J]. J. Sol-Gel Sci. Technol.,1997,8:629-634.
    [141]Li F Y, Xing Y J, Ding X. Immobilization of papain on cotton fabric by sol-gel method[J]. Enzyme Microb. Technol.,2007,40(7):1692-1697.
    [142]Gill I. Bio-doped nanocomposite polymers:sol-gel bioencapsulates[J]. Chem. Mater.,2001,13(10):3404-3421.
    [143]Branyik T, Kuncova G, Paca J, et al. Encapsulation of Microbial Cells into Silica Gel[J]. J. Sol-Gel Sci. Technol.,1998,13:283-287.
    [144]Taylor A P, Finnie K S, Bartlett J R, et al. Encapsulation of Viable Aerobic Microorganisms in Silica Gels[J]. J. Sol-Gel Sci. Technol.,2004,32:223-228.
    [145]Soares C M F, Santos O A D, Castro H F D, et al. Characterization of sol-gel encapsulated lipase using tetraethoxysilane as precursor[J]. J. Mol. Catal. B: Enzym.,2006,39,69-76.
    [146]Chen J-P, Hwang Y-N. Polyvinyl formal resin plates impregnated with lipase-entrapped sol-gel polymer for flavor ester synthesis[J]. Enzyme Microb. Technol.,2003,33,513-519.
    [147]Jasiorski M, Bakardijeva S, Doroszkiewicz W, et al. Properties and applications of silica submicron powders with surface Ag nanoclusters[J]. Mater. Sci.-Poland, 2004,22(2):137-144.
    [148]Haufe H, Thron A, Fiedler D, et al. Biocidal nanosol coatings[J]. Surf. Coat. Int. Pt B-Coat. Trans.,2005,88(1):55-60.
    [149]Mahltig B, Fiedler D, Bottcher H. Antimicrobial Sol-Gel Coatings[J]. J. Sol-Gel Sci. Technol.,2004,32(1-3):219-222.
    [150]王淑花,魏丽乔,侯文生等.纳米抗菌剂制备及在羊毛纤维中的应用研究[J].材料热处理学报,2005,26(3):40-42.
    [151]侯文生,魏丽乔,戴晋明等.载银锌纳米二氧化硅抗菌剂的制备及应用[J].合成纤维工业,2004,27(3):4-6.
    [152]Veith S R, Perren M, Pratsinis S E. Encapsulation and retention of decanoic acid in sol-gel-made silicas[J]. J. Colloid Interface Sci.,2005,283(2):495-502.
    [153]Wang C X, Chen S L. Surface treatment of cotton using β-cyclodextrins sol-gel method[J]. Appl. Surf. Sci.,2006(252):6348-6352.
    [154]Bottcher H, Kallies K H, Haufe H, et al. Silica sol-gel glasses with embedded organic liquids[J]. Adv. Mater.,1999,11(2):138-141.
    [1]何斌,王相田.纳米二氧化硅水溶胶的制备技术研究及应用[J].硅铝化合物,2000(3):14-18.
    [2]洪新华,李保国.溶胶-凝胶方法的原理与应用[J].天津师范大学学报,2001,21(1):5-8.
    [3]杨南如,余桂郁.溶胶-凝胶法简介[J].硅酸盐学报,1992,11(2):56-63.
    [4]Klein L C. Sol-Gel Technology for Thin Films, Fibers Preforms, Electronic and Specialty Shapes[M]. Noyes ParkRidge, New York,1988.
    [5]董占能,赵兵,郭玉忠.金属醇盐的物化特性[J].昆明理工大学学报,2000,25(2):63-67.
    [6]罗伍文.溶胶-凝胶法简介(二)[J].硅酸盐学报,1993,21(4):60-68.
    [7]余锡宾,吴虹.正硅酸乙酯的水解、缩合过程研究[J].无机材料学报,1996,11(4):703-707.
    [8]沈军,王珏,吴翔.硅气凝胶的结构控制研究[J].材料科学与工艺,1994,2(4):87-92.
    [9]陈龙武,甘礼华,侯秀红.Si02气凝胶非超临界干燥法制备及其形成过程.物理化学学报[J].2003,19(9):819-823.
    [10]万其进,张传越.硅溶胶的开发及其应用[J]..湖北师范学院学报,1994,14(3):86-89.
    [11]殷馨,戴媛静.硅溶胶的性质、制法及应用[J].化学推进剂与高分子材料,2005,3(6):27-32.
    [12]Hiemenz P C. Principles of Colloid and Surface Chemistry 3rd Edition [M]. New York:Marcel Dekker Inc.,1977.
    [13]沈钟,赵振国.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004,94-100.
    [14]Schwartz R W, Voigt J A. Control of thin film processing behavior through precursor structural modifications[R]. US:Department of energy,1998.
    [15]李伟,王霞瑜,张平等.快速溶胶-凝胶法制备SiO2气凝胶的研究[J].湘潭大学学报,2002,24(1):64-67.
    [16]Glaser P M, Pantano C G. Effect of H2O/TEOS ratio upon the preparation and nitridation of silica sol-gel films[J]. J. Non-Cryst. Solids,1984,63,209-211.
    [17]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学技术出版社,1998:56-108.
    [18]陈荣三,毛延.硅溶胶的制备、性质及其应用[J].化工进展,1985(10):9-14.
    [1]张国栋,李向阳.有机硅产品在化妆品中的应用[J].日用化学品科学,2006,26(6):29-31.
    [2]刘莎.硅凝胶假体植入隆乳术的护理[J].现代医药卫生,2004,20(13):1287-1288.
    [3]刘剑毅,李世荣,毋巨龙.新型硅凝胶膜充填式加强型痛疤痕贴治疗增生性瘢痕的临床疗效观察[J].中国美容医学,2006(11):1246-1247.
    [4]朱云,葛乃航,潘银根.新型硅凝胶烧伤创面气雾剂研制及临床应用[J].中国基层医药,2002,9(11):966-967.
    [5]林亚平,董芸.药物释放数学模型的评价及选择[J].数理医药学杂志,1994,7(4):308-310.
    [6]邢莹,原续波,常津等.可生物降解聚合物药物释放数学模拟研究进展[J].高分了通报,2004(6):22-30.
    [7]魏树礼.生物药剂学与药物动力学[M].北京: 北京大学医学出版社,1997.
    [8]徐铜文,何炳林.扩散型膜控制释放技术的进展[J].世界科技研究与发展,2000,22(1):20-25.
    [9]Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension[J]. J. Pharm. Sci.,1961,50:874-875.
    [10]Higuchi T. Mechanism of sustained action medication:theoretical analysis of rate of release of solid drugs dispersed in solid matrices[J]. J. Pharm. Sci.,1963, 52:1145-1149.
    [11]Ritger P L, Peppas N A. A simple equation for description of solute release: Fickian and anomalous release from swellable device[J]. J. Contr. Rel., 1987,5(1):37-42.
    [12]Hixson A W, Crowell J H. Dependence of reaction velocity upon surface and agitation (Ⅰ) theoretical consideration[J]. Ind. Eng. Chem.,1931,23:923-931.
    [13]孙宝国,何坚.香精概论——生产、配方与应用[M].北京:化学工业出版社,2006.
    [14]Georgi E C, Bisserka I S. Silica hybrid nanocomposites[J]. Centr. Eur. J. Chem., 2006,4(1):81-91.
    [15]Krihak M, Shahriari M R. The effect of MTMS on the optical properties of TEOS synthesized gels doped with thionin[J]. Optical Mater.,1996,5(4):301-310.
    [16]De D, Kundu D, Karmakar B, et al. FTIR studies of gel to glass conversion in TEOS-fumed silica-derived gels[J]. J. Non-Cryst. Solids,1993,155(3):253-258.
    [17]Dean J A. Analytical Chemistry Handbook(中译本:分析化学手册)[M].北京:科学技术出版社,2003.
    [1]贾顺田,尹江传.芳香整理剂的合成与应用[J].印染,2005(24):37-39.
    [2]王瑾,魏菊,张庆民等.聚氨酯芳香微胶囊的制备及其在纺织品上的应用[J].大连工业大学学报,2009,28(2):151-153.
    [3]胡心怡,王韶辉.芳香微胶囊整理织物的留香效果[J].纺织学报,2009,30(7):93-98.
    [4]张艺于,王璐,C.CAMPAGNE等.基于β-环糊精包合技术的棉织物熏衣草芳香整理[J].纺织学报,2008,29(9):94-97.
    [5]王春梅,何瑾馨.磺化p-环糊精在毛织物芳香整理中的应用[J].毛纺科技,2006(4):20-22.
    [6]王春梅,孙欢,缪勤华等.丝织物的芳香整理[J].丝绸,2007(2):38-40.
    [7]黄良晨,赵曙辉.α-溴代丙烯酰胺型环糊精对真丝的接枝芳香整理[J].印染,2009(17):5-9.
    [8]韩富,张高勇,王军.有机硅柔软剂[J].日用化学工业,2001,31(2):39.
    [9]汪多仁.氨基改性硅油的开发与应用进展[J].河南纺织科技,2003,24(2):5.
    [10]黄世强,孙争光,李盛彪.新型有机硅高分子材料[M].北京:化学工业出版社,2004,97.
    [11]Czech AM, Sabia A J. Reducing yellowing properties in amino modified silicone fabric softeners[J]. American Dyestuff Reporter,1993,82(9):58-65.
    [12]陈荣圻.氨基硅油存在问题及解决办法[J].印染助剂,2002,19(2):1-5.
    [13]Lautenschlager H J, Bingdle J. Struktur-wirkungs-benziehungen aminofunktioneller silicon weichmachungsmittel-veranderungen im eigenschaftsbid durch ailkylierung und acylierung[J]. Textile praxis international, 1993(5):439.
    [14]Park O H, Eo Y J, Choi Y K, Bae B S. Preparation and optical properties of silica-poly(ethylene oxide) hybrid materials[J]. J. Sol-Gel Sci. Technol.,1999, 16(3):235-241.
    [15]Schramm C, Binder W H, Tessachi R. Durable press finishing of cotton fabric with 1,2,3,4-butanetetracarboxylic acid and TEOS-GPTMS[J]. J. Sol-Gel Sci. Technol.,2004,29(3):155-165.
    [16]孙宝国,何坚.香精概论——生产、配方与应用[M].北京:化学工业出版社,2006.
    [17]Georgi E C, Bisserka I S. Silica hybrid nanocomposites[J]. Centr. Eur. J. Chem., 2006,4(1):81-91.
    [18]Krihak M, Shahriari M R. The effect of MTMS on the optical properties of TEOS synthesized gels doped with thionin[J]. Optical Mater.,1996,5(4):301-310.
    [19]De D, Kundu D, Karmakar B, et al. FTIR studies of gel to glass conversion in TEOS-fumed silica-derived gels[J]. J.Non-Cryst. Solids,1993,155(3):253-258.
    [20]Dean J A. Analytical Chemistry Handbook(中译本:分析化学手册)[M].北京:科学技术出版社,2003.
    [1]Zarzycki J. Past and Present of Sol-Gel Science and Technology[J]. J. Sol-Gel Sci. Technol.,8(1),1998,17-22.
    [2]Lee M S, Jo N J. Coating of Methyltriethoxysilane-Modified Colloidal Silica on Polymer Substrates for Abrasion Resistance[J]. J. Sol-Gel Sci. Technol.,24(2), 2002,175-180.
    [3]Schramm C, Binder W H, Tessadri R. Durable Press Finishing of Cotton Fabric with 1,2,3,4-Butanetetracarboxylic Acid and TEOS/GPTMS[J]. J. Sol-Gel Sci. Technol.,29(3),2004,155-165.
    [4]Mathltig B, Bottcher H. Modified Silica Sol Coatings for Water-Repellent Textiles[J]. J. Sol-Gel Sci. Technol.,27(1),2003,43-52.
    [5]Daoud W A, Xin J H, Tao X M. Superhydrophobic Silica Nanocomposite Coating by a Low-Temperature Process[J]. J. American Ceramic Society,87(9),2004, 1782-1784. [6] Xu P, Wang W, Chen S L. Application of Nanosol on the Antistatic Property of Polyester[J]. Melliand International,11(1),2005,56-59.
    [7]Xin J H, Daoud W A, Kong Y Y. A New Approach to UV-Blocking Treatment for Cotton Fabrics[J]. Textile Research Journal,74(2),2004,97-100.
    [8]Xing Y J, Ding X. UV Photo-Stabilization of Tetrabutyl Titanate for Aramid Fibers via Sol-Gel Surface Modification[J]. J. Appl. Polym. Sci.,103(5), 2006,3113-3119.
    [9]Du J, Zhan L, Chen S L. Wash Fastness of Dyed Fabric Treated by the Sol-Gel Process[J]. Color. Technol.,121(1),2005,29-36.
    [10]Mahltig B, Textor T. Combination of silica sol and dyes on textiles[J]. J. Sol-Gel Sci. Technol.,39(2),2006,111-118.
    [11]Karout A, Chopard C, Pierre A C. Immobilization of a lipoxygenase in silica gels for application in aqueous media[J]. J. Mol. Catal. B:Enzym.,44(3-4), 2007,117-127.
    [12]Teoli D, et al. Wet sol-gel derived silica for controlled release of proteins[J]. J. Contr. Rel.,116(3),2006,295-303.
    [13]Veith S R, Perren M, Pratsinis S E. Encapsulation and retention of decanoic acid in sol-gel-made silicas[J]. J. Colloid Interface Sci.,283(2),2005,495-502.
    [14]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989.
    [15]Sprouse J F, Hansen D L. Sprouse Collection of Infrared Spectra, Book Ⅰ:Polymers [M]. Sprouse Scientific Systems Inc., Pennsylvania,1987,414.
    [16]沈德言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,982.
    [17]Georgi E C, Bisserka I S. Silica hybrid nanocomposites[J]. Centr. Eur. J. Chem., 2006,4(1):81-91.
    [18]Krihak M, Shahriari M R. The effect of MTMS on the optical properties of TEOS synthesized gels doped with thionin[J]. Optical Mater.,1996,5(4):301-310.
    [19]De D, Kundu D, Karmakar B, et al. FTIR studies of gel to glass conversion in TEOS-fumed silica-derived gels[J]. J. Non-Cryst. Solids,1993,155(3):253-258.
    [20]Colthup N B, Daly L H, Wiberley S E, et al. Introduction to Infrared and Raman Spectroscopy[M]. Boston:Academic Press,1990:94.
    [21]Huang K S, Nien Y H, Hsiao K C, et al. Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics[J]. J. Appl. Polym. Sci.,2006, 102(5):4136-4143.