基于柔性直流联网的风力发电系统的协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多端柔性直流输电技术更适合风电联网系统的潮流优化控制,然而直流系统内不具备交流同步电网的机械惯性支持,因此风电机组和换流站需具备快速的有功协同调节能力,以提高其稳定性。本文首先提出变速风电机组的虚拟惯性和一次调频综合控制策略,使风电机组具有较完备的动态有功-频率调节能力。然后建立风电端换流站的交流侧频率与直流侧电压的联动调节关系,进而提出含风电的多端直流系统的有功协调控制策略,充分利用各端电网间的相互支持能力及风电机组的机械储能,确保风电直流联网系统稳定运行及增强其故障穿越能力。本文的主要研究内容如下:
     1.研究了变速风电机组及直流输电系统的动态模型及控制方法,分析了直流电网的组网方式,提出一种适用于风电联网的多端直流系统拓扑结构及其运行模式,搭建了基于直流联网的风力发电系统的仿真平台,为风电直流联网系统的功率协调控制策略研究奠定了基础。
     2.分析了变速风电机组虚拟惯性控制及调频控制方法,提出了风电机组虚拟惯性与一次调频相结合的综合频率控制策略。通过引入减载水平和桨距静调差系数的定义,并利用变桨技术,改进了风电机组的减载运行方法和可整定静调差系数的一次调频控制策略,并最终实现了与虚拟惯性控制的有机结合,使风电场不仅具备惯性频率响应,并可满足系统的一次调频要求,进而对电网有功扰动具有较为完备的快速有功调节能力。
     3.分析了交流电网故障扰动对两端柔性高压直流输电系统稳定运行的影响,提出了变速风电机组及换流站协同控制的两端柔性直流输电系统的故障穿越方法。在网侧换流站因电网故障而限流期间,改变风电侧换流站的恒频控制方式,将直流侧电压波动与交流侧频率调节建立有效联系,从而可通过变速风电机组的虚拟惯性控制快速调节电磁功率,利用风电机组的机械储能为直流系统的故障穿越提供有效支持。该方法成本低,不依赖于通讯,可拓展到多端直流系统之中。
     4.含风电的直流系统内惯性小、功率波动大,为提高其稳定性,本文提出了多端系统之间的分散协同控制及源网协调控制策略,使互联系统具备了快速的有功协同调节能力。首先,设计了各端换流站的分散协同控制特性,确保直流电网在不同运行模式下均可对直流电压进行有效控制。然后分别设计了受端换流站的直流电压-有功功率控制和风电端换流站的变频控制环节,使分散在各端电网内的常规电源以及在综合频率控制下的风电均可充分发挥其有功调节能力,实现源网协调控制。本文所提出的风电直流联网系统的协调控制策略,充分利用各端电网间的相互支持能力及风电机组的机械储能,从而增强了高风电渗透率下直流互联电网的稳定运行能力,并且该控制策略无需通讯,易于扩展。
The voltage source converter multi-terminal direct current (VSC-MTDC) transmission technology is suitable for power flow optimal control of the wind power interconnection system, however, DC network cannot provide effective mechanical inertia for dynamic support as AC network, thus the quick collaboration capability of active power regulation for both wind turbines and converters should be achieved to enhance the system stability. In this dissertation, an integrated control scheme of variable speed wind turbines for virtual inertia and primary frequency regulation is proposed to achieve the complete active power-frequency control ability. Following that, the linkage adjustment relationship between the system frequency and the dc voltage is established, and then the power coordinated control strategy of MTDC system with high wind penetration level is further presented, so as to fully utilize the mutual support ability of each network and the mechanical energy storage of wind turbines. In addition, the operation stability and the fault ride through (FRT) capabilty of the MTDC system connected with wind turbines can be enhanced as well. The main research results are as follows:
     1. The dynamic model of variable speed wind turbines and DC transmission system are established, the different topologies of MTDC system are analyzed, and then the suitable topology and operating mode of MTDC system for wind power interconnection is proposed, and the simulation platform of the wind power system is also built, which are used to provide the basis for designing the coordinated power control of wind turbines and each terminal converters.
     2. The virtual inertia control and the frequency regulation method of variable speed wind turbines are analyzed, and the integrated frequency control strategy for virtual inertia and primary frequency regulation is proposed. According to the definition of de-loading level and the pitch static difference coefficient, an optimized de-loading control scheme and a primary frequency regulation scheme with settable static difference coefficient are proposed respectively by variable pitch technology, which resolve the issue of the combination between virtual inertia and primary frequency regulation. With the proposed strategies, wind turbines achieve not only the inertia frequency response but also the system frequency regulation requirement, and thus the response ability to the grid active disturbances is enhanced.
     3. According to the analysis of the impact of grid faults on the safe operation of two terminal voltage source converter high voltage direct current (VSC-HVDC) system, an active power coordinated control strategy of wind turbines for fault ride through capability enhancement of DC system is proposed. During the current limit process of the grid side converter, the constant frequency control mode of the wind farm side converter is changed, and the relationship between the DC voltage fluctuation and the system frequency regulation is established, then the electromagnetic power of variable speed wind turbines can be regulated by the virtual inertia control, so as to provide the effectively support for DC system FRT using the mechanical energy storage. Moreover, the proposed scheme at low cost can be easily applied in MTDC system and without any communication.
     4. In the DC system connected with wind turbines, the inertia is low while power fluctuation is high. In order to improve the system stability, the decentralized cooperative control of each terminal network and the source network coordination control strategy are proposed respectively, and then the coordinate regulation ability of the interconnection systems is achieved. The decentralized cooperative control characteristics is explored firstly to regulate the dc network voltage in different operating modes effectively. And then, the dc voltage-active power control of the receiving end converters and the variable frequency control loop of the wind turbine side converter are designed respectively. Both the conventional power and the wind turbines under the integrated frequency control, which are dispersed in each terminal network, can develop their active power regulation ability to achieve the the source network coordination control. With the proposed coordinated control strategy, the mutual support ability of each network and the mechanical energy storage of wind turbines can be fully utilized, and thus the operation stability of the MTDC system with high wind penetration level is further enhanced. Moreover, the proposed scheme is easier to extended and without communication.
引文
[1]Global wind statistics 2013[R]. Brussels:Global Wind Energy Council,2014.
    [2]刘世林,文劲宇,孙海顺,等.风电并网中的储能技术研究进展[J].电力系统保护与控制,2013,41(23):145-153.
    [3]刘琳.新能源风电发展预测与评价模型研究[D].北京:华北电力大学,2013.
    [4]杨楠,王波,刘涤尘,等.计及大规模风电和柔性负荷的电力系统供需侧联合随机调度方法[J].中国电机工程学报,2013,33(16):63-69.
    [5]关宏亮,迟永宁,王伟胜,等.双馈变速风电机组频率控制的仿真研究[J].电力系统自动化,2007,31(7):61-65.
    [6]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2003,23(11):122-125.
    [7]Li S H, Haskew T A, Xu L. Conventional and novel control designs for direct driven PMSG wind turbines[J]. Electric Power Systems Research,2010,80: 328-338.
    [8]国家标准化管理委员会.GB/T19963-2011风电场接入电力系统技术规定[S].北京:中国标准出版社,2011.
    [9]国家能源局.NB/T31003-2011大型风电场并网设计技术规范[S].北京:中国电力出版社,2011.
    [10]洪海生.应用于平抑风电功率波动的多类型储能系统容量配置与协调控制研究[D].浙江:浙江大学,2013.
    [11]王成福.风电场并入电网的调控理论研究[D].山东:山东大学,2012.
    [12]吴雄,王秀丽,李骏,等.考虑风电外送的省级系统调峰分析模型[J].电网技术,2013,37(6):1578-1583.
    [13]李茜,刘天琪,李兴源.大规模风电接入的电力系统优化调度新方法[J].电网技术,2013,37(3):733-739.
    [14]艾斯卡尔,朱永利,唐斌伟.风力发电机组故障穿越问题综述[J].电力系统保护与控制,2013,41(19):147-153.
    [15]王毅,张祥宇,李和明,等.永磁直驱风电机组对系统功率振荡的阻尼控制[J].电工技术学报,2012,27(12):162-171.
    [16]Geng H, Yang G, Xu D W, et al. Unified power control for PMSG-based WECS operating under different grid conditions[J]. IEEE Transactions on Energy Conversion,2011,26(3):822-830.
    [17]Kim K H, Jeung Y C, Lee D C, et al. LVRT scheme of PMSG wind power systems based on feedback linearization[J]. IEEE Transactions on Power Electronics,2012,27(5):2376-2384.
    [18]Rahimi M, Parniani M. Coordinated Control Approaches for Low-Voltage Ride-Through Enhancement in Wind Turbines With Doubly Fed Induction Generators[J]. IEEE Transactions on Energy Conversion,2010,25(3):873-883.
    [19]Wang Y, Xu L. Coordinated Control of DFIG and FSIG-Based Wind Farms Under Unbalanced Grid Conditions[J]. IEEE Transactions on Power Delivery, 2010,25(1):367-377.
    [20]周宏林,杨耕.不同电压跌落深度下基于撬棒保护的双馈式风机短路电流特性分析[J].中国电机工程学报,2009,29:184-191.
    [21]李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.
    [22]肖磊,黄守道,黄科元,等.不对称电网故障下直驱永磁风力发电系统直流母线电压稳定控制[J].电工技术学报,2010,25(7):123-129.
    [23]张学清.风电预测-协同调度及电网电压安全评估研究[D].山东:山东大学,2013.
    [24]杜雄,李珊珊,刘义平,等.直驱风力发电故障穿越控制方法综述[J].电力自动化设备,2013,33(3):129-135.
    [25]高仕红,张吕华,耿东山,等.提供双馈式风力发电机故障穿越能力的控制策略[J].电力系统保护与控制,2013,41(5):126-132.
    [26]P. Kundur. Power systems stability and control [M]. New York:McGraw-Hill, 1994:581-623.
    [27]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:华大学出版社,2002,72-80.
    [28]Zavadil R, Zack J, Miller N, et al. Technical Requirements for Wind Generation Interconnection and Integration[R]. New England:GE Energy Applications and Systems Engineering EnerNex Corporation,2009.
    [29]Mullane A, O'Malley M. The Inertial Response of Induction-Machine-Based Wind Turbines[J]. IEEE Transactions on Power Systems,2005,20(3): 1496-1503.
    [30]Ekanayake J, Jenkins N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion,2004,19(4):800-802.
    [31]李立成,叶林.变风速下永磁直驱风电机组频率—转速协调控制策略[J].电力系统自动化,2011,35(17):26-31.
    [32]Aho J, Buckspan A, Laks J, et al. A tutorial of wind turbine control for supporting grid frequency through active power control[C]. Proceedings of American Control Conference, Montreal, Canada,2012.
    [33]Zhu X R, Wang Y, Xu L, et al. Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support[C]. Proceedings of IET Conference on Renewable Power Generation, Edinburgh, UK,2011.
    [34]Morrena J, Pierikb J, Sjoerd W H. Inertial response of variable speed wind turbines [J]. Electric Power Systems Research,2006,3(2):980-987.
    [35]Jason M K, Brendan F, Tim L, et al. Validation of fixed speed induction generator models for inertial response using wind farm measurements[J]. IEEE Transactions on Power Systems,2011,26(3):1454-1461.
    [36]李和明,张祥宇,王毅,等.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报,2012,32(7):32-39.
    [37]Holdsworth L, Ekanayake J B, Jenkins N. Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J]. Wind Energy,2004,7:21-35.
    [38]Gautam D, Goel L, Ayyanar R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems[J]. IEEE Trans on Power Systems,2011,26(1):214-224.
    [39]Lalor G, Mullane A, O'Malley M. Frequency control and wind turbine technologies[J]. IEEE Trans on Power Systems,2005,20(4):1905-1913.
    [40]Mauricio J M, Marano A, Exposito A G, et al. Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Trans on Power Systems,2009,24(1):173-180.
    [41]曹军,王虹富,邱家驹.变速恒频双馈风电机组频率控制策略[J].电力系统自动化,2009,33(13):78-82.
    [42]Almeida R G, Lopes J A P. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Trans on Power Systems, 2007,22(3):944-950.
    [43]Ramtharan G, Ekanayake J B, Jenkins N. Frequency support from doubly fed induction generator wind turbines[J]. IET Renew on Power Gener,2007,1(1): 3-9.
    [44]Zhang Z S, Sun Y Z, Lin J, et al. Coordinated frequency regulation by doubly fed induction generator-based wind power plants[J]. IET Renew on Power Gener,2012,6(1):38-47.
    [45]Chi en L R C, Lin W T, Yin Y C. Enhancing frequency response control by DFIGs in the high wind penetrated power systems[J]. IEEE Trans on Power Systems,2011,26(2):710-718.
    [46]李军军,吴政球.风电参与一次调频的小扰动稳定性分析[J].中国电机工程学报,2011,31(13):1-9.
    [47]倪琳娜,罗吉,王少荣.含风电电力系统的频率控制[J].电工技术学报,2011,26:235-241.
    [48]Ioannis D M, Stavros A P, Nikos D H. Frequency control in autonomous power systems with high wind power penetration[J]. IEEE Trans on Sustainable Energy,2012,3(2):189-199.
    [49]Zhang X Y, Li H M, Wang Y. Control of DFIG-based wind farms for power network frequency support[C]. Proceedings of IEEE International Conference on Power System Technology, Hangzhou, China,2010.
    [50]Zhang X Y, Wang Y, LiHM. Dynamic frequency regulation of PMSG-based wind farms for power network support[C]. Proceedings of International Conference on Electrical Machines And Systems. Incheon, Korea,2010.
    [51]Zertek A, Verbic G, Pantos M. A Novel Strategy for Variable-Speed Wind Turbines'Participation in Primary Frequency Control[J]. IEEE Trans on Sustainable Energy,2012,4(3):791-799.
    [52]Mikel de P G, Andreas S, Oriol G B. Modeling and control of a pitch-controlled variable-speed wind turbine driven by a DFIG with frequency control support in PSS/E[C]. Proceedings of Power Electronics and Machines in Wind Applications, Ljubljana, Slovenia,2012.
    [53]朱晓荣,赵猛,王毅.双馈感应风力发电机组复合频率控制策略研究[J].电力系统保护与控制,2012,40(8):20-29.
    [54]Miao Z X, Fan L L, Osborn D. Wind farms with HVdc delivery in inertial response and primary frequency control[J]. IEEE Transactions on Energy Conversion,2010,25(4):1171-1178.
    [55]Xue Y C, Tai N L. System frequency regulation in doubly fed induction generators[J]. International Journal of Electrical Power and Energy Systems, 2011,43(1):977-983.
    [56]Milina M G, Mercabo P E, Analysis of Using FACTS Controllers with Superconducting Magnetic Energy Storage in the Primary Frequency Control of Power Systems [J]. Wind Energy,2004,7(1):1-7.
    [57]Milina M G, Mercabo P E, Analysis of Using FACTS Controllers with Superconducting Magnetic Energy Storage in the Primary Frequency Control of Power Systems [J]. Wind Energy,2004,7(1):21-35.
    [58]孙春顺,王耀南,李欣然.飞轮辅助的风力发电系统功率和频率综合控制[J].中国电机工程学报,2008,28(29):111-116.
    [59]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究[J].中国电机工程学报,2003,23(3):108-1111.
    [60]薛迎成,邰能灵,宋凯,等.变速风力发电机提供调频备用容量研究[J].电力自动化设备,2010,30(8):75-80.
    [61]Zertek A, Verbic G, Pantos M. Participation of DFIG wind turbines in frequency control ancillary service by optimized rotational kinetic energy[C]. Proceedings of International Conference on the European Energy Market, Ljubljana, Slovenia,2010.
    [62]Xue Y C, Tai N L. Review of contribution to frequency control through variable speed wind turbine[J]. Renewable Energy,2011,25:1671-1677.
    [63]Eduardo V N, Andreas S, Oriol G B, et al. Design of a pitch control of a wind turbine to improve system frequency response[C]. Proceedings of Power Electronics and Applications, Barcelona, Spain,2009.
    [64]Zertek A, Verbic G, Pantos M. Optimised control approach for frequency-control contribution of variable speed wind turbines[J]. IET Renewable Power Generation,2012,6(1):17-23.
    [65]Grillo S, Marinelli M, Silvestro F, et al. Transient Support to Frequency Control From Wind Turbine With Synchronous Generator and Full Converter[C]. Proceedings of Universities Power Engineering Conference, Genoa, Italy,2010.
    [66]Sow T, Akhrif O, Okou A F, et al. Control strategy insuring contribution of DFIG-Based wind turbines to primary and secondary frequency regulation[C]. Proceedings of Annual Conference on IEEE Industrial Electronics Society, Montreal, Canada,2011.
    [67]张昭遂,孙元章,李国杰,等.超速与变桨协调的双馈风电机组频率控制 [J].电力系统自动化,2011,35(17):20-25.
    [68]Morren J, Haan S, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control [J]. IEEE Trans on Power Systems, 2006, 21(1):433-434.
    [69]周宏林,杨耕.大型DFIG风电场的LCC-HVDC并网及控制[J].电力自动化设备,2009,29(7):8-12.
    [70]姚伟,程时杰,文劲宇.直流输电技术在海上风电场并网中的应用[J].中国电力,2007,40(10):70-74.
    [71]赵成勇,孙营,李广凯.双馈入直流输电系统中VSC-HVDC的控制策略[J].中国电机工程学报,2008,28(7):97-103.
    [72]郭春义.新型混合双馈入直流输电系统的基础特性研究[D].北京:华北电力大学,2012.
    [73]陈霞.基于多端直流输电的风电并网技术研究[D].湖北:华中科技大学,2012.
    [74]范心明,管霖,夏成军,等.多电平柔性直流输电在风电接入中的应用[J].高电压技术,2013,39(2):497-504.
    [75]韦延方,卫志农,孙国强,等.适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究发展[J].高电压技术,2012,38(5):1243-1252.
    [76]Liang J, Jing T J, Gomis-Bellmun O, et al. Operation and control of multiterminal HVDC transmission for offshore wind farms[J]. IEEE Transactions on Power Delivery,2011,26(4):2596-2604.
    [77]Chen X, Sun H S, Wen J Y, et al. Integrating wind farm to the grid using hybrid multiterminal HVDC technology [J]. IEEE Transactions on Industry Applications,2011,47(2):965-972.
    [78]徐政,屠卿瑞,裘鹏.2010国际大电网会议看直流输电技术[J].高电压技术,2010,36(12):3070-3077.
    [79]胡兆庆,毛承雄,陆继明,等.一种新型的直流输电技术-HVDC Light[J].电工技术学报,2005,20(7):12-16.
    [80]俞俊霞,肖斌.基于VSC-HVDC的南汇风电场并网应用研究[J].上海电力,2011,3:234-236.
    [81]Boon-Teck Ooi, Xiao Wang. Voltage angel lock loop control of the boost type PWM converter for HVDC application [J]. IEEE Transaction on Power Delivery,1990,5(2):229-235.
    [82]Boon-Teck Ooi, Xiao Wang. Boost type PWM HVDC transmission system [J].IEEE Transaction on Power Delivery,1991,6(1):1557-1563.
    [83]赵成勇,李金丰,李广凯.基于有功和无功独立调节的VSC-HVDC控制策略[J].电力系统自动化,2005,29(9):20-24.
    [84]傅晓帆,周克亮,程明,等.风电场并网用VSC-HVDC的无差拍解耦控制策略[J].电工技术学报,2009,24(11):157-164.
    [85]王国强,王志新,张学燕.海上风电场柔性直流输电变流器的无源性控制策略[J].电力自动化设备,2011,31(8):11-15.
    [86]解大,解蕾,张延迟,等.连接海上风电场的基于直接功率控制的三电平VSC-HVDC电力系统保护与控制[J].电力系统保护与控制,2010,38(14):98-103.
    [87]赵成勇,胡东良,李广凯,等.多端VSC-HVDC用于风电场联网时的控制策略[J].电网技术,2009,33(17):135-140.
    [88]朱晓东,周克亮,程明,等.大规模近海风电场VSC-HVDC并网拓扑及其控制[J].电网技术,2009,33(18):17-24.
    [89]梁海峰,李庚银,周明,等.电压源换流器高压直流输电的动态等效电路及其特性分析[J].中国电机工程学报,2010,30(13):53-60.
    [90]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009,24(9):140-146.
    [91]Christian F, Holger W, Friedrich W K, et al. Enhanced Fault Ride-Through Method for Wind Farms Connected to the Grid Through VSC-Based HVDC Transmission [J]. IEEE Transactions on Power Systems,2009,24 (3): 1537-1546.
    [92]Abbey C, Joos G. Effect of Low Voltage Ride Through (LVRT) Characteristic on Voltage Stability[C]. IEEE Power Engineering Society General Meeting, San Francisco, CA, USA,2005.
    [93]Ming Yin, Gengyin Li, Guangkai Li, et al. Modeling of VSC-HVDC and Its Active Power Control Scheme[C]. International Conference on Power System Technology, Singapore,2004.
    [94]Lie Xu, Liangzhong Yao, Christian Sasse. Grid Integration of Large DFIG-based Wind Farms Using VSC Transmission[J]. IEEE Trans on Power Systems,2007,22(3):976-984.
    [95]Christian F, Erlich I. Fault Ride-through of DFIG-Based Wind Farms Connected to the Grid through VSC-based HVDC Link[C]. Power System Computation Conference, Glasgow, Scotland,2008.
    [96]Christian F, Erlich I. Variable Frequency Operation of DFIG based Wind Farms connected to the Grid through VSC-HVDC Link[C]. IEEE Power Engineering Society General Meeting, Tampa, Florida,2007.
    [97]任敬国,李可军,刘合金,等.基于改进定有功功率控制特性的VSC-MTDC系统仿真[J].电力系统自动化,2013,37(15):133-139.
    [98]任敬国,李可军,赵建国,等.基于N-1准则的VSC-MTDC输电系统稳态调控方案[J].电力自动化设备,2013,33(2):74-80.
    [99]郑荣进,余晓鸿,熊玮,等.基于电压源型换流器的三端直流输电系统仿真研究[J].华中电力,2011,24(2):32-35.
    [100]Jiang H B, Ake Ekstrom. Multiterminal HVDC systems in urban areas of large cities[J]. IEEE Trans on Power Delivery,1998,13(4):1278-1984.
    [101]辛俊峰,韩金铜,康金良.基于直流电压下降特性的VSC-MTDC控制策略研究[J].电力科学与工程,2011,27(8):42-45.
    [102]Johnson B K, Lasseter R H, Alvarado F L, et al. Expandable multiterminal DC systems based on voltage droop[J]. IEEE Trans on Power Delivery,1993,8(4): 1926-1932.
    [103]Tang W Z, Lasseter R H. An LVDC industrial power distribution system without central control unit [C]. Power Electromics Specialists Conference, Galway Ireland,2000.
    [104]阮思烨,李国杰,孙元章.多端电压源型直流输电系统控制策略[J].电力系统自动化,2009,33(12):57-60.
    [105]Temesgen M, Haileselassie, Uhlen K. Impact of DC line voltage drops on power flow of MTDC using droop controls[J]. IEEE Transactions on Power Systems, 2012,27(3):1441-1449.
    [106]陈谦,唐国庆,潘诗锋.采用多点直流电压控制方式VSC多端直流输电系统[J].电力自动化设备,2004,24(5):10-15.
    [107]吴俊宏,艾芊.多端柔性直流输电系统在风电场中的应用[J].电网技术,2009,33(4):22-27.
    [108]陈海荣,徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化,2006,30(19):28-33.
    [109]丁涛,张承学,孙元博.基于本地信号的VSC-MTDC输电系统控制策略[J].电力系统自动化,2010,34(9):44-48.
    [110]Ren J G, Li K J, Zhao J G, et al. A multi-point DC voltage control strategy of VSC-MTDC transmission system for integrating large scale offshore wind power [C]. Proceedings of IEEE Conference on Innovative Smart Grid Technologies-Asia. Tianjin, China,2000:1-4.
    [111]Murdoch A, Barton R S, Winkelman J R, et al. Control design and performance analysis of a 6 MW wind turbine-generator[J]. IEEE Trans on Power Apparatus and Systems,1983,102(5):1340-1347.
    [112]Olimpo A-L, Nick J, Janaka E, et al. Wind Energy Generation Modelling and Control[M]. Wiley,2009.
    [113]宋亦旭.风力发电机的原理与控制[M].北京:机械工业出版社,2012年.
    [114]Hossain M J, Saha T K, Mithulananthan N, et al. Control Strategies for Augmenting LVRT Capability of DFIGs in Interconnected Power Systems[J]. IEEE Transactions on Industrial Electronics,2013,60(6):2510-2522.
    [115]Yao J, Li H, Zhe C, et al. Enhanced Control of a DFIG-Based Wind-Power Generation System With Series Grid-Side Converter Under Unbalanced Grid Voltage Conditions[J]. IEEE Transactions on Power Electronics,2013,28(7): 3167-3181.
    [116]Kundur.P. Power System Stability and Control[M]. McGraw-Hill, New York, 1994.
    [117]高景德,王祥珩,李发海.交流电机及其系统的分析(第二版)[M].北京:清华大学出版社,2005年.
    [118]马志云.电机瞬态分析[M].北京:中国电力出版社,1998年.
    [119]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江:浙江大学,2009.
    [120]Yi Wang, Lie Xu. Coordinated Control of DFIG and FSIG-Based Wind Farms Under Unbalanced Grid Conditions[J]. IEEE Transactions on Power Delivery, 2010,25(1):367-377.
    [121]Lie Xu, Yi Wang. Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions[J]. IEEE Transactions Power Systems, 2007,22:314-323.
    [122]Lie Xu. Coordinated Control of DFIG's Rotor and Grid Side Converters During Network Unbalance[J]. IEEE Transactions on Power Electronics,2008,23(3): 1041-1049.
    [123]汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2005:103-104.
    [124]Bin W, Yongqiang L, Zargari N. Power Conversion and Control of Wind Energy Systems[M]. Wiley-IEEE Press,2011.
    [125]张祥宇.变速风电机组的虚拟惯性与阻尼控制技术研究[D].北京:华北电力大学,2013.
    [126]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2009:144-149.
    [127]Thomas Ackermann,谢桦、王建强,等.风力发电系统[M],北京:中国水利水电出版社2010年,390-398.
    [128]Grenier.D, Dessaint L-A, Akhrif O. Experimental Nonlinear Torque Control of a Permanent Magnet Synchronous Motor Using Saliency[J]. IEEE Transactions on Industrial Electronics,1997,44(5):680-687.
    [129]杨恩星.低速永磁直驱风力发电变流器若干关键技术研究[D].浙江:浙江大学,2009.
    [130]陈谦.新型多端直流输电系统的运行与控制[D].福建:东南大学,2004.
    [131]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010:122-144.