番茄黄化曲叶病毒和黄瓜绿斑驳花叶病毒单克隆抗体的制备及其检测应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以抗体为核心建立的血清学方法用于植物病毒的检测具有操作方便、快捷、灵敏以及高通量等优点,但国内制备的植物病毒抗体并不多,大多数重要植物病毒的检测得依赖进口的抗体或者试剂盒。因此,制备重要植物病毒的特异性抗体、建立相应的血清学检测方法对植物病毒的检测及口岸检验检疫和防治具有重要意义。番茄黄化曲叶病毒(Tomato yellow leaf curl virus, TYLCV)是严重危害番茄生产的双生病毒之一,而黄瓜绿斑驳花叶病毒(Cucumber green mottle mosaic virus, CGMMV)是我国近年来葫芦科作物上发生的又一重要的检疫性病毒。本论文分别制备了抗TYLCV和CGMMV的特异性单克隆抗体(Monoclonal antibodies, MAbs),并建立了相应的的血清学检测方法。
     (1)抗TYLCV单克隆抗体制备及其检测应用:用PCR方法从感染TYLCV上海分离物(TYLCV-SH2)的番茄基因组中克隆了该病毒的外壳蛋白(Coat protein, CP)基因,将其插入到原核表达载体pET-32a中构建成重组原核表达载体。重组表达载体pET-32a-CP转化大肠杆菌BL21DE3),经IPTG诱导,Ni+-NTA亲和柱纯化获得分子量约为48 kDa的融合蛋白。以纯化的重组蛋白为抗原免疫BALB/c小鼠,获得3株能稳定传代并分泌抗TYLCV的单克隆抗体杂交瘤细胞。单克隆抗体的特异性检测表明3株单抗中3E10能与4种侵染番茄的双生病毒反应,而另外2株(2B22E3)能特异性识别TYLCV-SH2。利用单抗3E10建立了三抗夹心ELISA检测TYLCV的方法,该方法检测病叶的灵敏度可达1:2 560(w/v, g/mL),对田间样品的检测表明,TYLCV在田间番茄植物上发病普遍。
     (2)抗CGMMV单抗制备及其检测应用:用提纯的CGMMV病毒粒子免疫的BALB/c鼠脾细胞与SP2/0鼠骨髓瘤细胞融合,经细胞筛选与克隆,获得6株能稳定传代并分泌抗CGMMV单克隆抗体的杂交瘤细胞,并分别制备其单抗腹水。其中单抗5D11可以与CGMMV、烟草花叶病毒(TMV)和番茄花叶病毒(ToMV) 3种烟草花叶病毒属的病毒反应,单抗8E3和11B12除与CGMMV有强阳性反应外,与TMV和ToMV存在较弱的反应,而单抗4H1、5B10和11A4仅与CGMMV有特异性反应。利用最灵敏的4H1单抗为核心建立了检测CGMMV的抗原包被间接ELISA方法(Antigen-coated plate enzyme-linked immunosorbent assay, ACP-ELISA、免疫斑点法(Dot-blot ELISA)、组织印迹法(Tissue-blotELISA)和免疫捕获RT-PCR(Immunocapture reverse transcriptase polymerase chain reaction, IC-RT-PCR)。建立的ACP-ELISA和Dot-blot ELISA方法检测感染CGMMV的黄瓜植株组织的灵敏度分别高达1:40960和1:20480 (w/v, g/mL)。Tissue-blot ELISA操作简便,尤其适合大规模的田间样品检测和诊断。IC-RT-PCR具有最高的检测灵敏度和特异性,对提纯的病毒检出量达到了0.1 pg,对感病植物组织的检测灵敏度为1:102400(w/v,g/mL)。
The antibody-based serological method had much success in plant virus detection, because it is sensitive, specific, rapid and simple to conduct, can be conducted on a large-scale. Antibodies of a few plant viruses had been produced in China, but detection of most plant viruses was relied on imported commercial antibodies or ELISA kits. Thus, it is necessary to produce antibodies against important plant viruses, and develop effective serological methods for virus detection, quarantine and prevention. Tomato yellow leaf curl virus (TYLCV) is a species of the family Geminiviridae, causing serious yield losses in tomato production, and cucumber green mottle mosaic virus (CGMMV) is a serious alien invasive pathogen of cucurbit crops. In this study, monoclonal antibodies (MAbs) against TYLCV and CGMMV were producted, and several serological methods were set up for rapid, reliable and sensitive detection.
     (1) MAbs against TYLCV and their application:The coat protein (CP) gene of TYLCV isolate SH2 (TYLCV-SH2) was amplified by PCR and inserted into a prokaryotic expression vector pET-32a to produce pET-32a-CP, which was used to transform Escherichia coli BL21 (DE3). After induced by IPTG, an about 48 kDa fusion protein was obtained and purified through Ni+ -NTA affinity column. The purified recombinant CP was used to immunize BALB/c mice for producing MAbs. Three hybridoma cell lines secreting MAbs aganint TYLCV were obtained. The results of TAS-ELISA detection showed that the MAb 3E10 could react with four begomoviruses infecting tomato, while the others MAbs (2B2 and 2E3) mainly reacted with TYLCV. A TAS-ELISA method based on MAb 3E10 was set up for TYLCV detection, and this method could successfully detect virus in plant sap at 1:2 560 (w/v, g/mL). The resultes of TAS-ELISA detection of field samples showed begomoviruses were common in tomato plants.
     (2) MAbs against CGMMV and their application:After selected and cloned, six hybridoma cell lines secreting MAbs against CGMMV were produced by fusing mouse myeloma cells (SP2/0) with spleen cells from BALB/c immunized by purified CGMMV particles. MAb 5D11 could react strongly with CGMMV, TMV and ORSV, not with ToMV. MAbs 8E3 and 11B12 could react strongly with CGMMV and weakly with TMV and ToMV, while MAbs 4H1,5B10 and 11A4 could react strongly only with CGMMV, but not with the other three tobamoviruses. Based on the most sensitive MAb 4H1, the indirect antigen-coated plate (ACP)-ELISA, Dot-blot ELISA, Tissue-blot ELISA and immunocapture reverse transcriptase polymerase chain reaction (IC-RT-PCR) for CGMMV detection were set up. Both ACP-ELISA and Dot-blot ELISA could specifically detect CGMMV in infected cucumber leaf tissue extracts diluted 1:40 960 andl:20 480 (w/v, g/mL), separately. Tissue-blot ELISA is more practical for routine detection of large-scale samples in the field survey. The IC-RT-PCR was the most sensitive method, which could detect as little as 0.1 pg of purified virus and could successfully detect virus in plant sap at 1:102 400 (w/v, g/mL).
引文
1. Accotto G P, Navas-Castillo J, Noris E, Moriones E, Louro D. (2000). Typing of tomato yellow leaf curl viruses in Europe. European Journal of Plant Pathology.106:179-186.
    2. Adkins S, Kamenova I, Rosskopf E N. (2007). Identification and characterization of a novel Tobamovirus from tropical soda apple in Florida. Plant Disease.91:287-293.
    3. Al-Bitar L, Luisoni E. (1995). Tomato yellow leaf curl geminivirus:serological evaluation of an improved purification method. EPPO Bull.25:269-276.
    4. Al-Moudallal Z, Briand J P, Van-Regenmortel H V.(1985). A major part of the polypeptide chain of tobacco mosaic virus protein is antigenic. EMBO Journal.4:1231-1235.
    5. Aniwoah G C.(1935).Mosaic disease of cucumber. Annals of Applied Biology.22:55-67.
    6. Antignus Y, Cohen S.(1994).Complete nucleotide-sequence of an infectious clone of a mild isolate of tomato yellow leaf curl virus (TYLCV). Phytopathology.84:707-712.
    7. Antignus Y, Wang Y, Pearlsman M, Lachman O, Lavi N, Gal-On A.(2001).Biological and molecular characterization of a new cucurbit-infecting tobamovirus. Phytopathology.91: 565-571.
    8. Briand J P, Al-Moudallal Z, Van Regenmortel M H.(1982).Serological differentiation of tobamoviruses by means of monoclonal antibodies. Journal of Virological Methods.5: 293-300.
    9. Brunt A, Crabtree K, Dallwitz M J, Gibbs A J, Watson L.(1996). Viruses of plants. Description and lists from the VIDE database tomato yellow leaf curl bigeminivirus.CAB International, Wallingford (URL:http://biology. Anu. edu. au/research-group/MES/vide /refs.htm)
    10. Caciagli P, Bosco D. (1997). Quantitation over time of tomato yellow leaf curl geminivirus DNA in its whitefly vector. Phytopathology.87:610-613.
    11. Caciagli P. Bosco D. (1996). Quantitative determination of tomato yellow leaf curl geminivirus DNA by chemiluminescent assay using digoxigenin-labeled probes. Journal of Virological Methods.57:19-29.
    12. Canto T, Tostado J M, Gilardi P, Garcia-Luque L, Diaz-Ruiz J R, Serra-Yoldi M T. (1994). Geminivirus detection in plant samples from field cultures.1st International Symposium on Geminiviruses.(El-Ejido, Almeria, Spain), p 77.
    13. Chen M J, Wang S M.(1986). A strain of Cucumber green mottle virus in bottle gourd in Taiwan. Plant virus disease of horticultural crop in tropics and subtropics, Food Fertilizer Technology Center for Asian and Pacific Region, Taiwan:Book Series.33:38-42.
    14. Choi G S, Kim J H, Chung B N, Kim H R, Choi Y M. (2001). Simultaneous detection of three Tobamoviruses in cucurbits by rapid immunofilter paper assay. Plant Pathology Journal. 17:106-109.
    15. Choi G S. (2004). Occurrence of two tobamovirus diseases in cucurbits and control measures in Korea. Plant Pathology Journal.17:243-248.
    16. Choi Gugseoun, Choi G S. (2001). Occurrence of two Tobamovirus diseases in cucurbits and control measures in Korea. Plant Pathology Journal.17:243-248.
    17. Cohen S, Nitzany F E. (1960). Curly top virus of tomatoes:its identification and mode of transmission. Israeli Plant Protection and Inspection Services (in Hebrew). No.311.
    18. Crespi S, Noris E, Vaira A M, Accotto G P. (1995). Molecular characterization of cloned DNA from a tomato yellow leaf curl virus isolate from Sicily. Phytopathologia Mediterranea. 34:93-99.
    19. Czosnek H, Ber R, Antignus Y, Cohen S, Navot N, Zamir D. (1988). Detection of tomato yellow leaf curl virus in lysates of plants and insects by hybridization with a viral DNA probe. Plant Disease.72:949-951.
    20. Czosnek H, Laterrot H. (1997). A worldwide survey of tomato leaf curl viruses. Archives of Virology.142:1391-1406.
    21. Dalmon A, Cailly M, David C. (2000). Comparison of serological and molecular techniques for detection of tomato yellow leaf curl begomovirus. Bull OEPP.30:457-462.
    22. Davino S, Davino M, Accotto G P. (2008). A single-tube PCR assay for detecting viruses and their recombinants that cause tomato yellow leaf curl disease in the Mediterranean basin. Journal of Virological Methods.147:93-98.
    23. Dawson W O, Culver J. (1991). A Virus-host interactions induction of chlorotic and necrotic responses in plants by to bamoviruses. Annual Review of Phytopathology.29:193-217.
    24. Dietzgen R G, Sander E. (1982). Monoclonal antibodies against a plant virus. Archives of Virology.74:197-204.
    25. Disco R, Hill J H, Hill E K, (1985). Monoclonal antibody based biotin avidin ELISA for the detection of Soybean mosaic virus in soybean seeds. Journal of General Virology.66: 2089-2094.
    26. Edelman I S, Bogoroch R, Porter G A. (1963). On the mechanism of action of aldosterone on sodium transport:the role of protein synthesis. Proc Natl Acad Sci U S A.50 (6):1169-1177.
    27. Fauquet C M, Sawyer S, Idris A M. (2005). Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the nile andMediterranean Basins. Phytopathology.95:549-555.
    28. Francki R I B, Hu J, Palukaitis P. (1986). Taxonomy of cucurbit-infecting Tobamovirus as determined by serological and molecular hybridization analyses. Intervirology.26:156-163.
    29. Goodman R M. (1981). Geminiviruses. In E. Kurstak (Ed.), Handbook of Plant Virus Infection and Comparative Diagnosis. New York:Elsevier/North Holland Biomedical Press, pp.879-910.
    30. Hajimorad M R, Kheyr-Pour A, Alavi V, Ahoonmanesh A, Bahar M, Rezaian M A, Gronenborn B. (1996). Identification of whitefly transmitted tomato yellow leaf curl geminivirus from Iran and a survey of its distribution with molecular probes. Plant Pathology. 45:418-425.
    31. Hanley-Bowdoin L, Settlage S B, Orozco B M, Nagar S, Robertson D. (2000). Geminiviruses: Models for plant DNA replication, transcription, and cell cycle regulation. Critical Reviews in Biochemistry and Molecular Biology.35:105-140.
    32. Harrison B D, Swanson M M, Fargette D. (2002). Begomovirus coat protein:serology, variation and functions. Physiological and Molecular Plant Pathology.60:257-271.
    33. Hentschel G. (1975).Virus diseases on greenhouse cucumber results from 1974 and the outlook for 1975.Gemuse.11:108-111.
    34. Hollings M, Komuro Y, Tochihara H. (1975). Cucumber green mottle mosaic virus. CMI/AAB, Descriptions of Plant Virus.pp.154.
    35. Hsu H T, Jordan R L, Lawson R H. (1984). Differences among monoclonal antibodies to barley yellow dwarf viruses.Phytopathology.74:600-605.
    36. Huber R, Deisenhofer J, Colman P M, Matsushima M. (1976). Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature.264:415-420.
    37. Hull R. (2002). Matthews'plant virology(4th ed.). San Diego:Academic Press. pp.644-645.
    38. Kato K, Onuki M, Fuji S, Hanada K.(1998). The first occurrence of tomato yellow leaf curl virus in tomato (Lycopersicon esculentum Mill.) in Japan. Annals of the Phytopathological Society of Japan.64:552-559:
    39. Kawai A, Kimura S, Nishio T, Nagao N. (1985). Detection for Cucumber green mottle mosaic virus in cucumber seeds using enzyme linked irnmunosorbent assay. Research Bulletin of the Plant Protection Service.21:47-53.
    40. Kheyr-Pour A, Bendahmane M, Matzeit M, Accotto G P, Crespi S, Gronenborn B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids.19:6763-6769.
    41. Kim S M, Nam S H, Lee J M, Yim K O, Kim K H.(2003). Destruction of Cucumber green motile mosaic virus by heat treatment and rapid detection of virus inactivation by RT-PCR. Molecules and Cells.16:338-342.
    42. Koheler G, Milstein C. (1975). Continuous culture of fused cells secreting antibody of predefined specificity. Nature.256:495-510.
    43. Komum Y, Tochihara H, Fukatsu R, Nagai Y, Yoncyama S. (1971). Cucumber green mottle mosaic virus (watermelon strain) in watermelon and its bearing on deterioration of watermelon fruit known as konnyaku disease. Annals Phytopathological Society of Japan.37: 34-42.
    44. Komuro Y.(1971). Cucumber green mottle mosaic virus on cucumber and watermelon and melon necrotic spot virus on muskmelon. Japan Agricultural Research Quarterly.6:41-45.
    45. Kristin D K, James C C. (1998). A counter defensive strategy of plant viruses:suppression of posttranscriptional gene silencing. Cell.95:461-470.
    46. Laufs J, Jupin I, David C, Schumacher S, HeyraudNitschke F, Gronenborn B.(1995). Geminivirus replication:Genetic and biochemical characterization of Rep protein function, a review. Biochimie.77:765-773.
    47. Lee K W.(1990). Occurrence of Cucumber green mottle mosaic virus disease of watermelon in Korea. Korean Journal of Plant Pathology.6:250-255.
    48. Lee S. H, Tomiyama M, Kakutani T.(2000). Nucleotide sequence of coat protein gene of kyufi green mottle mosaic virus isolated from zucchini. Plant Pathology Journal.16:118-124.
    49. Linnasalmi A, Toivianinen A.(1974). The chemical composition of Finnish Cucumber mosaic virus (CMV) and Cucumber green mottle mosaic virus (CGMMV). Annales Agricuhurae Fenniae.13:79-87.
    50. Littlefield J W.(1964). Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science.145:709-710.
    51. Lizardi P M, Huang X H, Zhu Z R, Bray-Ward P, Thomas D C, Ward D C.(1998). Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics.19:225-232.
    52. Macias W. (2000). Methods of disinfecting cucumber seeds that originate from plants infected by cucumber green mottle mosaic tobamovirus (CGMMV). Vegetable Crops Research Bulletin.53:75-82.
    53. Maroon C J M. (2002). PCR based tests for the detection of tobamoviruses and carlaviruses. Acta Horticulturae.568:117-122.
    54. Medvedskaya I G.(1981).Virus diseases of glasshouse cucumber. Zashchita Rastenii.5: 44-45.
    55. Mohammad A, Basavaprabhul L P, Claude M F. (2007). Molecular biodiversity, taxonomy and nomenclature of tomato yellow leaf curl-like viruses. Tomato Yellow Leaf Curl Virus Disease.85-118.
    56. Monci F, Navas-Castillo J, Cenis J L, Lacasa A, Benazoum A, Moriones E. (2000). Spread of tomato yellow leaf curl virus sar from the Mediterranean Basin:Presence in the Canary Islands and Morocco. Plant Disease.84 (4):490.
    57. Morilla G, Janssen D, Garcia-Andres S, Moriones E, Cuadrado M I, Bejarano E R. (2005). Pepper(Capsium annuum) is a dead-end host for tomato yellow leaf curl virus. Phytopathology.95 (9):1089-1097.
    58. Moriones E, Navas-Castillo J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research.71:123-134.
    59. Nahm M, Der-Balian G P, Venturini D, Bazin H, Davie M J. (1980). Antigenic similarities of rat and mouse IgG subclasses associated with anti-carbohydrate specificities. Immunogenetics.1:199-203.
    60. Nakhla M K, Mazyad H M, Maxwell D P.(1993). Molecular characterization of four Tomato yellow leaf curl virus isolates from Egypt and development of diagnostic methods. Phytopathologia Mediterranea.32:163-173.
    61. Nakhla M K, Rojas M R, McLaughlin W, Wyman J, Maxwell D P, Mazyad H M.(1992). Molecular characterization of tomato yellow leaf curl virus from Egypt. Plant Disease. 76:583.
    62. Navot N, Ber R, Czosnek H.(1989). Rapid detection of tomato yellow leaf curl virus in squashes of plants and insect vectors. Phytopathology.79:562-568.
    63. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H.(1991).Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genome component. Virology.185:151-161.
    64. Nisonoff A, Hopper J E, Spring S B.(1975). The antibody molecule. Academic Press, New York.
    65. Noris E, Hidalgo E, Accotto G P, Moriones E.(1994). High similarity among the tomato yellow leaf curl virus isolates from the West meditetranean Basin:the nucleotide sequence of an infectious clone from Spain. Archives of Virology.135:165-170.
    66. Noueiry A O, Lucas W J, Gilbertson R L.(1994). Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell.76:925-932.
    67. Padidam M, Beachy R N, Fauquet C M.(1996). The role of AV2 ("precoat") and coat protein in viral replication and movement in tomato leaf curl geminivirus.Virology.224:390-404.
    68. Petemen H I. (1978). Plant diseases in Denmark in 1977 94th annual survey. State Plant Pathology.69:18-20.
    69. Pico B, Diez M J, Nuez F. (1996). Viral disease causing the greatest economic losses to the tomato crop II. The tomato yellow leaf curl virus-a review. Scientia Horticulturae.67: 151-196.
    70. Pico B, Diez M J, Nuez F. (1999). Improved diagnostic techniques for tomato yellow leaf curl virus in tomato breeding programs. Plant Disease.83:1006-1012.
    71. Pico B, Ferriol M, Diez M J, Nuez F.(1999). Developing tomato breeding lines resistant to tomato yellow leaf curl virus. Plant Breeding.118:537-542.
    72. Polston J E, McGovern R J, Brown L G.(1999).Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Disease.83(11):984-988.
    73. Polston J E, Rosebrock T R, Sherwood T, Creswell T, Shoemaker P J. (2002). Appearance of tomato yellow leaf curl virus in North Carolina. Plant Disease.86(1):73.
    74. Pop I, Jilaveanu A.(1985). Identification of cucumber green mottle virus in Romania. Analele Institutului de Cercetari Pentru Protectia Plantelor.18:43-47.
    75. Rahimian H, Izadpanab K.(1977). A new strain of Cucumber green mottle mosaic virus from Iran. Iranian Journal of Agricultural Research.50:25-34.
    76. Raychaudhuri M, Varma A. (1978). Mosaic disease of muskrnelon, caused by a minor variant of cucumber green mottle mosaic virus. Phytopathologische Zeitschrift.93:120-125.
    77. Rigden J E, Krake L R, Rezaian M A, Dry I B.(1994). ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology.204:47-50.
    78. Rochester D E, Kositratana W, Beachy R N. (1990). Systemic movement and symptom production following agroincculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology.178:520-526.
    79. Rochester D E, Paulo J J, Fauquet C M, Beachy R N.(1994). Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. Journal of General Virology.75:477-485.
    80. Rojas M R, Gilbertson R L, Russell D R, Maxwell D P.(1993).Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses.Plant Disease.77: 340-347.
    81. Rojas, M R, Jiang H, Salati R, Xoconostle-Cazares B,Sudarshana M R, Lucas W J, Gilbertson R L. (2001). Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology.291:110-125.
    82. Rott M E, Tremaine J H, Rochon D M.(1991).Comparison of the 5'and 3'termini of tomato ringspot virus RNA1 and RNA2:evidence for RNA recombination. Virology.185:468-472.
    83. Roudet-Tavert G, German-Retana S, Delaunay T, Delecolle B, Candresse T, Le-Gall O. (2001).Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. Journal of General Virology.83:1765-1770.
    84. Russo M, Cohen S, Martelli G P.(1980). Virus-like particles in tomato plants affected by the yellow leaf curl disease.Journal of General Virology.49:209-213.
    85. Sadava D, Heller H C, Orians G H, Purves W K, Hillis D. (2008). Life:the science of biology, eight edition. Sinauer Associates Inc, and WH Freeman express.pp 1252.
    86. Sawangjit S, Chatchawankanphanich O, Chiemsombat P, Attathom T, Dale J, Attathom S. (2005). Possible recombination of tomato-infecting begomoviruses in Thailand. Journal of General Plant Pathology.71:314-318.
    87. Schieber O, Seddas A, Belin C, (1997). Monoclonal antibodies for detection, serological characterization and immunopurification of Grapevine fleck virus. European Journal of Plant Pathology.103:767-774.
    88. Shim C K, Han K S, Lee J H, Bae D W, Kim D K, Kim H K. (2005). Isolation and characterization of watermelon isolate of cucumber green mottle mosaic virus (CGMMV-HY1) from watermelon plants with severe mottle mosaic symptoms. Plant Pathology Journal.21 (2):167-171.
    89. Sunter G, Bisaro D M. (1991).Transactivation in a geminivirus:AL2 gene product is needed for coat protein expression. Virology.180:416-419.
    90. Sunter G, Bisaro D M. (1992). Transactivation of geminivirus AR1 and geminivirus BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell. 4:1321-1331.
    91. Tan S H, Nishiguchi M, Murata M, Motoyoshi F. (2000). The genome structure of Kyuri green mottle mosaic tobamovirus and its comparison with that of Cucumber green mottle mosaic tobamovirus. Archives of Virology.145:1067-1079.
    92. Tarasashvili L. (1976). Study on the spread and harmfulness of cucumber ordinary mosaic virus in Georgia and on the resistance of varieties to the disease. Trudy Nauchno Issledovatd skogo Instituta Zashchity Rastenii GruzSSR.28:31-34.
    93. Tochihara H, Komuro Y. (1974). Infectivity test and serological relationships among various isolates of Cucumber green mottle mosaic virus. Annals of the Phytopathological Society of Japan.40:52-58.
    94. Ueda S, Takeuchi S, Okabavashi M, Hanada K, Tomimura K, Iwanami T. (2005). Evidence of new tomato yellow leaf curl virus in Japan and its detection using PCR. Journal of General Plant Pathology.71:319-325.
    95. Ugaki M, Tomiyama M, Kakutani T, Hidaka S, Kiguchi T, Nagata R, Sato T, Motoyoshi F, Nishiguchi M. (1991). The complete nucleotide sequence of Cucumber green mottle mosaic virus (SH strain) genomic RNA.Journal of General Virology.72:1487-1495.
    96. Varveri C, Vassilakos N, Bern F. (2002).Characterization and detection of Cucumber green mottle mosaic virus in Greece.Phytoparasitica.30 (5):493-501.
    97. Varveri C. (2002). Characterization and detection of Cucumber green mottle mosaic virus in Greece. Phytoparasitica.30:493-501.
    98. Wieczorek A, Sanfacon H. (1993). Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology.194:734-742.
    99. Wu J B, Dai F M, Zhou X P. (2006). First report of tomato yellow leaf curl virus in China. Plant Disease.90:1359-1359.
    100. Wu J X, Yu C, Yang C Y, Zhou X P. (2009). Monoclonal antibodies against the recombinant nucleocapsid protein of tomato spotted wilt virus and its application in the virus detection. Journal of Phytopathology.157:344-349.
    101. Xie Y, Zhou X P, Zhang Z K, Qi Y J. (2002). Tobacco curly shoot virus isolated in Yunnan is a distinct species of begomovirus. Chinese Science Bulletin.47:197-200.
    102. Ye R, Xu L, Gao Z Z, Yang J P, Chen J, Chen J P, Adams J, Yu S Q. (2000). Use of monoclonal antibodies for the serological differentiation of wheat and oat furoviruses. Journal of Phytopathology.148(5):257-262.
    103. Yoon J Y, Min B E, Choi S H, Ryu K H. (2001). Completion of nucleotide sequence and generation of highly infectious transcripts to cucurbits from full-length cDNA clone of Kyuri green mottle mosaic virus. Archives of Virology.146:2085-2096.
    104. Yoshida K. (1980). Squash mosaic virus isolated from melon (Cucumis melo L.). Annals of the Phytopathological Society of Japan.46:349-356.
    105. Zhang Y, Zhu W, Cui H, Qiu Y, Sha K, Wan Y, Zhou L, Yu L, Hui Z. (2008). Molecular identification and the complete nucleotide sequence of TYLCV isolate from Shanghai of China. Virus Genes.36:547-551.
    106.蔡健和,秦碧霞,朱桂宁,黄福新,陈永慧,李焜华.(2006).番茄黄化曲叶病毒病在广西爆发的原因和防治策略.中国蔬菜7:47-48.
    107.陈红运,赵文军,白静,朱永芳.(2007).黄瓜绿斑驳花叶病毒CP基因的原核表达及抗血清制备.植物病理学报37(5):467-471.
    108.陈红运,赵文军,程毅,李明福,朱永芳.(2006).辽中地区西瓜花叶病病原的分子鉴定.植物病理学报36(4):306-309.
    109.杜念兴.(1995).兽医免疫学.北京:中国农业出版社32-58.
    110.古勤生.(2007).防治监控黄瓜绿斑驳花叶病毒确保瓜类安全生产.中国瓜菜1:47-48.
    111.黄静,廖富荣,林石明,陈青.(2007).黄瓜绿班驳花叶病毒的检测及分子检测.中国农学通报23:318-322.
    112.季良.(1995).植物种传病毒与检疫北京:中国农业出版社.152-154.
    113.李桂芬,曹振,马洁,李明福,陈笑瑜,丁建云,李娜.(2009).黄瓜绿斑驳花叶病毒单克隆抗体的研制.植物保护35(6):40-42.
    114.李小妮,任小平,王琳,王明强,周国辉.(2009).广东省黄瓜绿斑驳花叶病毒分子检测及防疫.植物保护学报36:283-284.
    115.刘秀梵.(1995).单克隆抗体在农业上的应用.Hefei:Anhui Science and Technology Press.
    116.刘栩平,路文长,李经略,刘元凯.(1989).我国十省(市)十字花科蔬菜蔬菜芜菁花叶病毒(TuMV)株系分化研究.科学通报34(21):1660-1664.
    117.马中良,李艳利,刘迎,黎晶晶.(2006).黄瓜花叶病毒2b蛋白在大肠杆菌中的表达及抗血清制备.药物生物技术13:6-8.
    118.秦碧霞,蔡健和,刘志明,陈永惠,朱桂宁,黄福新.(2005).侵染观赏南瓜的黄瓜绿斑驳花叶病毒的初步鉴定.植物检疫19(4):198-200.
    119.青玲,吴建祥,戚益军,周雪平.(2000).蚕豆萎蔫病毒单克隆抗体的研制及检测应用.微生物学报40(2):166-173.
    120.施曼玲,吴建样,郭维,周雪平.(2004).芜菁花叶病毒单克隆抗体的制备及检测应用.微生物学报44(2):185-188.
    121.汪继玲,张仲凯,丁铭.(2004).TMV接种烟株后不同部位与不同时期病毒相对含量的研究.云南农业大学学报19(3):275-278.
    122.王冬生,匡开源,袁永达,王红,瞿培荣,王次马.(2007).番茄黄化曲叶病毒在上海发生流行的初步观察.上海蔬菜4:61-62.
    123.王贵珍,周益军,陈正贤,周雪平.(2004).水稻条纹病毒单克隆抗体的制备及检测应用.植物病理学报34(4):302-306.
    124.吴建祥,周雪平.(2005).马铃薯X病毒云南分离物单克隆抗体的制备及其检测应用.浙江大学学报31(5):608-612.
    125.杨金明,姜飞,马秀玲,廖开志,史明武,魏秀翠.(2005).番茄黄化曲叶病毒的发生流行规律及其综防措施.中国植保导刊5:28-29.
    126.于翠,吴建祥,周雪平.(2002).番茄花叶病毒单克隆抗体的制备及检测应用.微生物学报42(4):453-457.
    127.余诞年,吴定华,陈竹君.(1999).番茄遗传学.长沙:湖南科技出版杜2-3.
    128.赵统敏,余文贵,周益军,季英华.(2007).江苏省番茄黄化曲叶病毒病(TYLCD)的发生与诊断初报.江苏农业学报23(6):654-655.
    129.周雪平,陈集双,李德葆,李尉民.(1994).马铃薯Y病毒组病毒的高产量提取方法建立.微生物学通报21(3):184-186.
    130.周仲驹,徐平东.(1996).香蕉束顶病毒株系的研究.植物病理学报26:63-68.