蛋壳超微结构影响孵化率及相关候选基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管影响孵化率的因素众多,本文试从蛋壳超微结构角度探讨影响孵化率的因素,在排除其他因素的影响下,研究蛋壳超微结构对孵化率的影响。利用MALDI-TOF MS对蛋壳超微结构候选基因SNP的基因型分型和关联分析,进一步了解影响蛋壳超微结构的遗传因素。
     本研究以洛岛白纯系蛋鸡400只为试验群体,通过蛋壳超微结构表型数据进行统计分析找出影响孵化率的因素。结果显示,蛋壳总厚度、乳突层厚度、有效层厚度和平均乳突大小均影响孵化率。蛋壳总厚度在324.5-364.5μm范围内具有较高孵化率。乳突层厚度范围在80.5-94.5μm的鸡蛋其孵化率最高。同样,有效层厚度在258.5-298.5μm范围内的蛋壳具有较高孵化率,蛋壳的平均乳突大小在76.5-87.5μm范围内,其孵化率更高。主成分分析表明,在蛋壳超微结构中,蛋壳总厚度和乳突层厚度可作为影响孵化率的主要因素。此外,平均乳突大小与蛋壳总厚度、乳突层厚度均呈中等的正相关。在试验中,晶体大小对孵化率没有影响,晶体取向结果显示所有样品都存在两个优势取向{104}和{018}。
     通过比较洛岛白两个品系的蛋壳超微结构来进一步揭示蛋壳超微结构对孵化率的影响。试验结果显示,品系2的蛋壳强度极显著高于品系1且具有较重的蛋壳重,其蛋壳总厚度和有效层厚度也极显著高于品系1。由于蛋壳总厚度与蛋壳强度正相关,因此有效层厚度的大小可能直接影响蛋壳强度。与品系1相比,品系2蛋壳强度大,并且具有较厚的微观结构。然而其孵化率较低,这说明过硬或过厚的蛋壳都不利于孵化。
     试验以洛岛白纯系蛋鸡68只亲代,417只子代为材料。使用DMU6.0软件包中的DMUAI模块对蛋壳超微结构的遗传力、遗传相关和表型相关进行估计。所估计的蛋壳总厚度、乳突层厚度、有效层厚度以及平均乳突大小的遗传力都很低。乳突层厚度和有效层厚度存在遗传的正相关和表型的负相关,蛋壳总厚度与乳突层厚度、有效层厚度间存在较高的正的遗传相关和表型相关。此外,平均乳突大小与蛋壳总厚度、乳突层厚度存在中等的正的遗传相关。
     利用MALDI-TOF MS对洛岛白蛋鸡的蛋壳超微结构候选基因SNP的基因型分型和关联分析,结果显示共有8个SNP位点(涉及4个基因)与蛋壳微观结构显著相关。Ovalbumin基因的与蛋壳总厚度和有效层厚度显著相关。Ovocleidin-116基因与乳突层厚度、有效层厚度和乳突大小均呈显著相关。Ovocalyxin-32与蛋壳总厚度显著相关。ChEST985k21基因与蛋壳总厚度和乳突层厚度显著相关。
Though many factors affect the hatchability, this article tries from the angle of eggshell ultrastructure to explore the factors influencing hatchability. Expelling the role of other factors, we study the influence of eggshell ultrastructure organization on hatchability and genes.
     Eggshell quality is associated with hatchability, and ultrastructural organization is an important eggshell quality parameter. To the determine relationship of shell ultrastructural properties with hatchability, we measured the effect of Rhode Island White eggshell thickness, mammillary layer thickness, effective thickness and the average size of mammillary cones on hatchability. Egg had the highest incidence of hatching when total eggshell thickness was324.5-364.5μm. Mammillary layers range in80.5-94.5μm had the highest hatchability. As such, hatchability correlated positively with both eggshell thickness (r=0.30; P<0.05) and mammillary layer thickness (r=0.28; P<0.05). In addition, the correlation between the average size of mammillary cones and hatchability was not statistically significant. However, a significant positive correlation was observed between the average size of mammillary cones and mammillary layer thickness. It can be concluded that eggshell thickness and mammillary layer thickness affect hatchability. Crystallite size and crystallite orientation have no effect on hatchability. All samples have same two crystallite orientation:{104} and{018}.
     With respect to eggshell ultrastructural properties, two Rhode Island White strains were used to to determine the relationship of shell ultrastructural properties with hatchability. The strain2had thick shell, mammillary layer and effective layer compared to strain1. Eggs of strain2had significantly higher shell strength than strain1. As such, shell strength was very highly correlated with both eggshell thickness (r=0.82; P<0001) and effective thickness (r=0.82; P<0001). In addition, a significant difference in hatchability among eggs from different breeder flocks was found. Comparing to strain1, strain2breed was associated with a low incidence of hatching, suggesting that these eggshell ultrastructural properties could affect hatchability.
     In the analysis, all eggshell ultrastructure organization traits hold low heritabilities. Furthermore, the genetic and phenotypic correlations of the same egg quality traits including, eggshell thickness, mammillary layer thickness, the average size of mammillary cones are positive.
     Twenty-three candidate SNPs from4genes were genotyped by a high throughput genotyping method, MALDI-TOF MS, to search for mutations related to eggshell ultrastructural properties.384pure-line Rhode Island White layers were selected for this study. As for the following4genes: Ovalbumin、Ovocleidin-116、Ovocalyxin-32and ChEST985k21. Associtations were found for: Ovalbujhhmin with eggshell thickness and effective layer thickness, Ovocleidin-116with mammillary layer thickness、effective layer thickness and the average size of mammillary cones, Ovocalyxin-32with eggshell thickness, ChEST985k21with eggshell thickness and mammillary layer thickness.
引文
[1]Ahmed AM, Rodriguez-Navarro AB, Vidal ML, Gautron J, Garcia-Ruiz JMand Nys Y. Changes in eggshell mechanical properties, crystallographic texture and in matrix proteins induced by moult in hens. British Poultry Science.2005,46:268-279.
    [2]Ar, A., C.V. Paganelli, R.B. Reeves, D.G. Greene, H. Rahn.1974. The avian egg:Water vapor conductance, shell thickness and functional pore area. The Condor,76:153-158.
    [3]Arias JL, Fink DJ, Xiao SQ, Heuer AH, Caplan AI. Biomineralization and eggshells:cell-mediated acellular compartments of mineralized extracellular matrix. Int Rev Cytol.1993,45:217-250.
    [4]A. Rodriguez-Navarro, J. Gautron, Y. Nys, A. Hernandez-Hernandez, J.M. Garcia-Ruiz, Characterization of eggshell Microstructure and its influence on mechanical properties, in:Proc.16th Eur. Symp. on the Quality of Poultry Meat and 10th European Symposium on the Quality of Eggs and Egg products,Vol. Ⅲ,,2003, pp.63-69.
    [5]A. Rodriguez-Navarro, J.M. Garcia-Ruiz. Model of texturaldevelopment of layered crystal aggregates, Eur. J. Mineral.2000,12:609-614.
    [6]Bain, M.1991. A reinterpretation of eggshell strength, in:Solomon, S.E. (Ed). Egg and Eggshell Quality, Wolfe Publishing, UK,9:131-141.
    [7]Bar A, Vax E, Striem S.Relationships among age, eggshell thickness and vitamin D metabolism and its expression in the laying hen. Comp Biochem Physiol A Mol Integr Physiol.1999,123(2):147-54.
    [8]Bellairs, R. and M. Osmond. The atlas of chick development,2nd edn. Elsevier, San Diego.2005.
    [9]Chien YC, Hincke MT and McKee MD. Avian eggshell structure and osteopontin. Cells, Tissue, Organs,2009,189:38-43.
    [10]Dennis, J.E., S-Q Xiao, M. Agarwal, et al. Microstructure of matrix and mineral components of eggshells from white leghorn chicken (Gallus gallus). J Morphol.1996; 228:287-306.
    [11]Dieckert, J.W., M.C. Dieckert, C.R. Creger.1989. Calcium reserve assembly:A basic structural unit of the calcium reserve system of the hen egg shell. Poult. Sci,68:1569-1584.
    [12]Dunn, I.C., A.B. Rodn'guez-Navarro, K. Mcdade, M.Schmutz, R. Preisinger, D. Waddington, P.W. Wilson and M.M. Bain,2011. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers. Anim. Genet,43(4):410-418.
    [13]Dunn, I.C., A.B. Rodr' guez-Navarro, K. Mcdade, M.Schmutz, R. Preisinger, D. Waddington, P.W. Wilson and M.M. Bain,2011. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers. Anim. Genet,43(4):410-418.
    [14]Gautron J, Hincke MT, Nys Y. Precursor matrix proteins in the uterine fluid change with stages of eggshell formation in hens.Connect Tissue Res.1997,36:195-210.
    [15]Gautron J, Hincke MT, PanheleuxM, Garcia-Ruiz JM, Boldicke T and Nys Y. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. Connective Tissue Research, 2001,42:255-267.
    [16]Gautron J, Murayama E, Vignal A, Morisson M, McKee MD, Rehault S, Labas V, Belghazi M, Vidal ML, Nys Y, Hincke MT.Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins (LPB)bactericidal permeability-increasing proteins (BPI), and Plunc family proteins. J Biol Chem.2007,282:5273-5286.
    [17]Gautron J, Nys Y. Eggshell matrix proteins. In:Huopalahti R, Lo'pez-Fandin-o R, Anton M, Schade R (eds) Bioactive egg compounds. Springer, Berlin.2007, pp 103-108.
    [18]Haff, L.A. and I.P. Smirnov. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 1997.7:378-88.
    [19]Hernandez-Hernandez A, Gomez-Morales J, Rodriguez-Navarro AB, Gautron J, Nys Y and Garcia-Ruiz JM.Identification of some active proteins in the process of hen eggshell formation.Crystal Growth & Design,2008,8:4330-4339.
    [20]Hincke MT, Chien YC, Gerstenfeld LC and McKee MD. Colloidal-gold immunocy to chemical localization of osteopropontin in avian eggshell gland and eggshell. Journal of Histochemistry and Cytochemistry.2008,56:467-476.
    [21]Hincke MT, Gautron J, Mann K, Panhe'leux M, McKee MD, Bain M, Solomon SE, Nys Y.Purification of ovocalyxin-32, a novel chicken eggshell matrix protein. Connect Tissue Res.2003, 44:16-19.
    [22]Hincke MT, Gautron J, Panh'eleux M, Garcia-Ruiz J, McKee MD and Nys Y. Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix.Matrix Biology,2000,19:443-453.
    [23]Hincke MT, Gautron J, Tsang CPW, McKee MD and Nys Y.Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, Ovocleidin-116. Journal of Biological Chemistry.1999,274:32915-32923.
    [24]Hincke, M.T., Nys Y., Gautron J., Karlheinz M., A.B. Rodriguez-Navarro, M.D. McKee.2012. The eggshell:structure, composition and mineralization. Frontiers in Bioscience,1(17):1266-1280.
    [25]Hincke MT. Ovalbumin is a component of the chicken eggshell Kawasaki K and Weiss K. Evolutionary genetics of vertebrate matrix. Connective Tissue Research,1995,31:227-233.
    [26]Hincke MT, Tsang CPW, Courtney M, Hill V and Narbaitz R.Purification and Immunochemistry of a soluble matrix protein of the chicken eggshell (Ovocleidinl7). Calcified Tissue International.1995,56:578-583.
    [27]Hincke MT, Wellman-Labadie O, McKee MD, Gautron J, Nys Y,Mann K.Biosynthesis and structural assembly of eggshell components. In:Mine Y (ed) Egg bioscience and biotechnology, chapter 2. Wiley, Hoboken,2008, pp 97-128.
    [28]Hunton P. [J].Poult International,1993, (8):30-40.
    [29]Jacobsen, L., P. Madsen, C.Jacobsen, et al. Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem 2001.276(25):22788-22796.
    [30]J. F. Yao, Z. X. Chen, G. Y. Xu, X. L. Wang, Z. H. Ning, J. X. Zheng, L. J. Qu, and N. Yang. Low-density lipoprotein receptor-related protein 8 gene association with egg traits in dwarf chickens. Poultry Science.2010,89:883-886.
    [31]Johansson KOrberg J. Carlgren AB, et al. Selection for egg shell strength in laying hens using shell membrane characteristics [J]. British Poultry Science,1996,37 (4):757-763.
    [32]Johnston PM and Comar CL. Distribution and contribution of calcium from the albumen, yolk and shell to the developing chick embryo. Am J Physiol.1955 12; 183(3):365-70.
    [33]Johnson, Z.B, Chewning, J.J, Nugent, R.A., Maternal effects on traits measured during postweaning performance test of swine from four breeds. Journal of Animal Science,2002,80(6): 1470-1477.
    [34]Joseph M D, el al, [J].Poult Digem,1988,7:342-344.
    [35]Karlsson, O. and Lilja, C.,2008. Eggshell structure, mode of development and growth rate in birds. Zoology,111:494-502.
    [36]Khatkar, M.S., Sandhu, J.S., Brah, G.S., Chaudhary, M.L.,1997. Estimation of egg shell breaking strength from egg characteristics in layer chickens. Indian Journal of Poultry Science,32:111-113.
    [37]Kim, S,J.R. Edwards, L.Deng, et al. Solid phase capturable dideoxynucleotides for multiplex genotyping using mass spectrometry. Nucleic Acids Res.2002.30:e85.
    [38]Lakshminarayanan R, Valiyaveettil S, Roa VS and Kini RM. Purification, characterization, and in vitro mineralization studies of a novel goose eggshell matrix protein, ansocalcin. Journal of Biological Chemistry,2003,278:2928-2936.
    [39]Mann K, Olsen JV, Macek B, Gnad F and Mann M. Phosphoproteins of the chicken eggshell calcified layer. Proteomics.2007,7:106-115.
    [40]Mann K and Siedler F. The amino acid sequence of Ovocleidin-17, a major protein of the avian eggshell calcified layer. Biochemistry and Molecular Biology Journal.1999,47:997-1007.
    [41]Maxwell T. Hincke, Yves Nys, Joel Gautro. The role of matrix proteins in eggshell formation. Journal of Poultry Science.2010,47(3):208-219.
    [42]Maxwell T. Hincke, Yves Nys, Joel Gautron, Karlheinz Mann, Alejandro B. Rodriguez-Navarro, Marc D. McKee. The eggshell:structure, composition and mineralization. Frontiers in Bioscience.2012, 1(17):1266-1280.
    [43]Mcdaniel, G.R., Roland, D.A., Coleman, M.A.,1979. The effect of egg shell quality on hatchability and embryonic mortality. Poult. Sci,58:10-13.
    [44]Megan L. H. Rose, Maxwell T. Hincke.Protein constituents of the eggshell:eggshell-specific matrix proteins. Cell. Mol. Life Sci.2009,66:2707-2719.
    [45]Meir M, el al. [J].Poult Sci,1984,63:1489-1496.
    [46]MM Bain. Calcium Carbonate crystal size is highly heritable and positively correlated with eggshell quality in laying hens.2010.
    [47]M. M. BAIN. Eggshell strength:A relationship between the mechanism of failure and the ultrastructural organisation of the mammillary layer. British Poultry Science,1992,33:303-319.
    [48]Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT.Avian eggshell mineralization:biochemical and functional characterization of matrix proteins. Comptes Rend Paleovol.2004,3:549-562.
    [49]Nys Y, Hincke MT, Arias JL, Garcia-Ruiz JM, Solomon S.Avian eggshell mineralization. Poult Avian Biol Rev.1999,10:143-166.
    [50]Paganelli, C. V.,1980. The physics of gas exchange across the avian egg. Am. Zool.20:329-349.
    [51]Peebles E D, Brake J T, et al. The role of the cuticle in water vapor conductance by the eggshell of broiler breeders[J].Poult Sci,1986,65:1034-1039
    [52]Rahn, H., A. Ar, C.V. Paganelli.1979. How bird eggs breathe. Sci. Am.240:46-55.
    [53]Rodriguez-Navarro A, Kalin O, Nys Y, Garcia-Ruiz JM. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. Br Poult Sci,2002,43:395-403.
    [54]Sasaki, O., S. Odawara, H. Takahashi, K.Nirasawa, et al. Genetic mapping of quantitative trait lociaffecting boby weight, egg character and egg production in F2 intercross chicken. AnimGenet.2004.35:188-194.
    [55]Sauer, S., D.Lechner, K.Berlin, et al. Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. Nucleic Acids Res.2000.28:e100.
    [56]Sazanov AA, Stekol'nikova VA, Korczak M, Sazanova AL, Jaszczak K, Zieba G, Malewski T. Expression of positional candidates for shell thickness in the chicken. Poultry Science.2007, Jan; 86(1):202-205.
    [57]Sharp RM, Silyn-Roberts H.Development of preferred orientation in the eggshell of the domestic fowl. Biophys J.1986,46:175-179.
    [58]Solomon, S.E.,1991. Egg and Eggshell Quality, Wolfe Publ. Ltd, London.
    [59]Takahashi, H., D. Yang, O. Sasaki, et al. Mapping of quantitative trait loci affecting eggshell quality on chromosome 9 in F(2) intercross between two chicken lines divergently selected for eggshell strength. Anim Genet.2009.40:779-782.
    [60]Tuiskula-Haavisto M., M. Honkatukia, J. Vilkki, et al. Mapping of quantitative trait loci affecting quality and production traits in egg layers.Poult Sci.2002,81:919-927.
    [61]Tullett, S. G.,1984. The porosity of avian eggshells. Comparative Biochemistry and Physiology A, 78(1):5-13.
    [62]Wenzel, T., T.Elssner, K.Fahr, et al. Genosnip:SNPgenotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides Nucleic Acids.2003.22:1579-81.
    [63]Wilson, H.R.,1997. Effects of maternal nutrition on hatchability. Poult. Sci,76:134-143.
    [64]Wu, T.M., Fink, D.J., Arias, J.L, et al. The molecular control of avian eggshell mineralization [J]. Chemistry and Biology of Mineralized Tissues.1992,133-141.
    [65]Xing J, Wellman-Labadie O, Gautron J, Hincke MT.Recombinant eggshell ovocalyxin-32: Expression, purification and biological activity of the glutathione S-transferase fusion protein. Comp Biochem Physiol.2007,147:172-177.
    [66]陈杰,尹玉港.基质蛋白及其与蛋壳形成的关系研究.家禽科学,2009,11:40-43.
    [67]陈志炫.利用MALDI-TOF MS筛选蛋品质候选基因的研究.[硕士学位论文].北京:中国农业大学,2010.
    [68]崔琳,王学东,刘秀玫.蛋壳结构与质量关系的研究[J].电子显微学报,1998,17(4):369.
    [69]房俊卓,徐崇福,郗军.鸡卵壳超微结构及矿物组成研究[J].宁夏工程技术,2007,6(4):358-360.
    [70]房兴堂,薛忠,卜建锋.乌骨鸡蛋形指数对孵化率影响的研究.山东家禽.2000.3.
    [71]房兴堂,赵家飞,宋远见,钱洋,朱玉涛,王翠美.乌骨鸡蛋形指数对孵化率影响的研究.四川畜牧兽医.2000,09.
    [72]耿照玉.改变蛋壳通透性对肉鸡种蛋失水率及出雏影响的研究.安徽农业大学学报,1996,23(4):514-517.
    [73]哈宽富.金属力学性质的微观理论[M].北京:科学出报社.1983:271-273.
    [74]胡成西.蛋壳的X-射线衍射实验研究.光散射学报,2006,18(3):282-287.
    [75]李昂,连森阳,王长康,吴旭,王宏.番鸭蛋壳气孔数、壳厚对出雏效果的研究.实验研究,2003,39(5):11-13.
    [76]李治学,魏丽娜,章世元.鸡蛋壳质量与超微结构关系的研究.动物生产.2008,44(1):35-39.
    [77]佘永新,田发益,赵晓玲,田见辉.低氧环境对良种鸡蛋孵化率的影响.西南农业学报,2001,14(3):71-74.
    [78]宋远见,张芳,陈彦,吴健,付燕燕,房兴堂.蛋形指数和蛋重对罗曼褐壳蛋鸡种蛋孵化率的影响.湖北农业科学.2008,47(5):565-566.
    [79]孙从佼,孙菡聪,侯卓成,徐桂云.丝羽乌鸡蛋质对种蛋受精率和受精蛋孵化率的影响.中国家禽.2011,08.
    [80]杨俊奎,张先民,王清河,宁书田.山鸡蛋形指数对孵化效果的影响.黑龙江畜牧兽医.1997,08.
    [81]王凤华,李文红,滕可导.影响鸡种蛋孵化率的因素.动物生产,2007,34(2):133-135.
    [82]俞路,王雅倩,章世元,周卫东.蛋壳元素组成及超微构造研究.中国家禽,2008,30(13):17-20.
    [83]周光玉.蛋壳颜色、成分和结构与蛋壳质量关系的研究.[硕士学位论文].扬州大学,2010.
    [84]张龙超.鸡蛋品质性状遗传参数及相关候选基因研究.[博士学位论文].北京:中国农业大学,2007.
    [85]章世元,俞路,王雅倩,王志跃,周卫东,杨海明.蛋壳质量与元素组成、超微结构关系的研究.动物营养学报.2008,20(4):423-428.