螺旋藻和小球藻对碲的吸收代谢及生理生化响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋藻为原核蓝藻,小球藻为真核绿藻,本文以这两类不同的微藻为生物载体,即螺旋藻(包括极大螺旋藻S.maxima和钝顶螺旋藻S.platensis)和小球藻(包括蛋白核小球藻C.pyrenoidosa和普通小球藻C.vulgaris),研究其对硒的同族重元素碲(Te)的吸收转化,及其生理生化响应。取得了一些有重要意义的结果:
     1.在螺旋藻接种第1天加入不同剂量的碲,结果表明Te(Ⅳ)对两种螺旋藻的生长表现出不同的效应。低剂量时(χ_(Te)≤0.028,即C_(Te)≤2 mg·L~(-1)),Te(Ⅳ)对S.platensis生长有促进作用,而对S.maxima观察不到促进作用。高剂量时(对于S.platensis,χ_(Te)≥4.4,即C_(Te)≥320 mg·L~(-1);对于S.maxima,χ_(Te)≥11.5,即C_(Te)≥560 mg·L~(-1)),两种螺旋藻几乎全部死亡,但通过比较两种螺旋藻的半数有效浓度96hEC_(50)和碲剂量χ_(Te),发现两种螺旋藻对Te(Ⅳ)的敏感性表现出明显差异,S.maxima对高剂量Te(Ⅳ)的耐受性较S.platensis强。
     2.在小球藻接种第工天加入不同剂量的碲,结果表明蛋白核小球藻和普通小球藻对碲的生理生化响应与螺旋藻明显不同。低剂量的碲处理(对于C.pyrenoidosa,χ_(Te)≤0.33,即C_(Te)≤10 mg·L~(-1);对于C.vulgaris,χ_(Te)≤0.20,即_(Te)≤10 mg·L~(-1))对小球藻生长基本无影响;而高剂量(对于C.pyrenoidosa,χ_(Te)≥3.33,即C_(Te)≥100 mg·L~(-1);对于C.vulgaris,χ_(Te)≥2.00,即C_(Te)≥100 mg·L~(-1))的碲处理时,小球藻的生长不但没有受到抑制,反而得到促进。
     3.分别在螺旋藻的生长初期(即接种后第3~5天分3次添加Na_2TeO_3 650、750、850和950 mg·L~(-1))和稳定生长期(即7~9天分3次添加Na_2TeO_3 700、800、900和1000 mg·L~(-1))添加碲。生长初期实验组,最大碲剂量出现在第5天(4个碲处理组分别为1.91,2.14,2.43,2.88);稳定生长期实验组,最大碲剂量出现在第9天(4个碲处理组分别为0.90,0.99,1.14,1.26)。尽管从浓度上稳定生长期实验组的碲浓度(1000 mg·L~(-1))是最大的,但其最大碲剂量(1.26)却小于生长初期实验组的最小碲剂量(1.91)。生长初期实验组的藻细胞一直处于较大的碲剂量下,碲表现为毒性因子,致使4个碲处理组螺旋藻的最终生物量、水溶性蛋白、藻蓝蛋白和别藻蓝蛋白,以及色素的含量均低于对照组。而在藻的稳定生长期,由于每个藻细胞所承受的Te(Ⅳ)的量并不抑制藻的生长,此时,碲表现为营养因子,螺旋藻的蛋白、色素等均表现不同程度的增加,而且谷胱甘肽过氧化物酶(GPX)活性也随着碲剂量的增加而增大。
     4.进行恒定剂量碲处理实验,维持微藻在整个生长期的碲剂量χ_(Te)为恒定水平。对于螺旋藻的研究结果表明,χ_(Te)≤0.2时,Te(Ⅳ)对S.platensis的生长有促进作用,水溶性蛋白和光合色素含量高于对照组;χ_(Te)=0.4时,Te(Ⅳ)对S.platensis产生了抑制作用,水溶性蛋白含量下降,MDA含量上升。实验结果提示χ_(Te)≤0.2时,Te(Ⅳ)对S.platensis是营养因子;χ_(Te)≥0.4时,Te(Ⅳ)对S.platensis是毒性因子。对于小球藻的研究结果表明,恒定剂量碲处理对小球藻的生理生化性质的影响比较复杂,在实验所设定的碲剂量范围内,不能很明显的区分营养因子和毒性因子。当碲剂量为0.2时,小球藻的生物量和水溶性蛋白含量均最大,但此时除叶绿素a与对照接近外,其它色素含量降低。
     5.碲处理方式影响微藻对Te(Ⅳ)的吸收代谢行为。对于螺旋藻,在恒定剂量碲处理的第1天加Te(Ⅳ),螺旋藻中的有机碲产率并不是很高,添加的Te(Ⅳ)大部分被转化为气态碲(86.7%~91.0%),培养液和藻体中的碲含量都很少,这提示了螺旋藻在碲污染的生物修复中具有巨大的应用前景。而在螺旋藻稳定生长期添加Te(Ⅳ),藻体中的有机碲比率较高,对富碲螺旋藻的生产有很好的参考价值。在恒定剂量碲处理的第1天加Te(Ⅳ),小球藻有机碲比率均达到80%左右。而且在较高剂量时,小球藻可以把更多的无机碲转化为气态碲挥发出去。实验结果表明在适当的条件下,螺旋藻和小球藻都是无机碲生物有机化的良好载体,而且在碲污染的生物修复中都可发挥作用。
     6.通过谱学方法观察微藻对碲处理的响应,结果表明,碲处理后基本不影响谱峰位置。对于螺旋藻,吸收光谱显示,较高剂量的碲对藻蓝蛋白、叶绿素a的损伤较大;荧光光谱显示较高的碲剂量下,各荧光峰强度最弱。对于小球藻,在实验的碲剂量下对其UV-Vis、荧光、红外光谱影响不大,而且UW-Vis和荧光光谱仍可观察到较高剂量(χ_(Te)=0.4时)的碲处理组各谱峰强度基本最大。这与前面的结果一致,即一定的高剂量的碲,有利于小球藻的生长。因此,对于真核小球藻和原核螺旋藻,两种藻确实表现出对碲不同的响应。
Spirulina,a blue green alga,is a prokaryote.Chlorella,a single-celled green alga,is a eukaryote.Spirulina(S.maxima and S.platensis) and Chlorella(C.pyrenoidosa and C.vulgaris) are used in this paper to compare their different responses to tellurium,which is in the same group as selenium in the periodic table of elements.The physiological and biochemical characteristics of Spirulina and Chlorella,and the absorption and distribution of tellurium in those algae after the addition of tellurium are studied in this research.Some important results are as follows:
     1.Two species of Spirulina responded differently to the different tellurium dose(χ_(Te)) when Te(Ⅳ) was added on the first day of inoculation.At the low tellurium dose(χ_(Te)≤0.028,C_(Te)≤2 mg·L~(-1)) Te(Ⅳ) promoted the growth of S.platensis.However,no effect was observed on S.maxima.At high tellurium dose(for S.platensis,χ_(Te)≥4.4,C_(Te)≥320 mg·L~(-1);for S.maxima,χ_(Te)≥11.5,C_(Te)≥560 mg·L~(-1)),both Spirulina died after the addition of tellurium.S.maxima can endure more Te(Ⅳ) than S.platensis by comparing their 96hEC_(50) and tellurium dose.
     2.Two species of Chlorella had the same responses to tellurium dose(χ_(Te)) when Te(Ⅳ) was added on the first day of inoculation.These responses,however,were totally different from Spirulina.At low tellurium dose(for C.pyrenoidosa,χ_(Te)≤0.33,C_(Te)≤10 mg·L~(-1);for C.vulgaris,χ_(Te)≤0.20,C_(Te)≤10 mg·L~(-1)),there was no effect to the growth of Chlorella. But at high tellurium dose(for C.pyrenoidosa,χ_(Te)≥3.33,C_(Te)≥100 mg·L~(-1);for C.vulgaris,χ_(Te)≥2.00,C_(Te)≥100 mg·L~(-1)),the growth of Chlorella was promoted instead of being stressed as with Spirulina.
     3.Te(Ⅳ) was added to Spirulina at the different stages of their growth.At the initial stage, Te(Ⅳ) was added on the 3rd to the 5th day after inoculation with the concentration of 650, 750,850 and 950 mg·L~(-1).The maximum tellurium dose on the 5th day was 1.91,2.14, 2.43 and 2.88 for different test sets.At the stable stage,Te(Ⅳ) was added on the 7th to the 9th day after inoculation with the concentration of 700,800,900 and 1000 mg·L~(-1),and the maximum tellurium dose on the 9th day was 0.90,0.99,1.14 and 1.26 respectively. Though the Te(Ⅳ) concentration of 1000 mg·L~(-1) is the maximum in its test sets,itsχ_(Te) is 1.26.This is smaller than the minimumχ_(Te) 1.91 in the initial stage test sets.When Te(Ⅳ) was added to Spirulina at the initial stage,the algae cells were in higher tellurium dose, and Te(Ⅳ) had toxicity to Spirulina.So the final biomass,the content of soluble protein, phycocyanin,allophycocyanin and pigments of Spirulina were all lower than that of the control group.While at the stable stage of Spirulina,Te(Ⅳ) was nutrient to Spirulina.So the protein and pigments of Spirulina were increased,and the activicty of GPX was also increased with the increase of tellurium dose.
     4.We set different Te dose(χ_(Te)) and keptχ_(Te) invariable during the growth of S.platensis and C.pyrenoidosa.It indicated that the growth of S.platensis was promoted and the content of protein and pigments were higher than that of the control group whenχ_(Te) was less than 0.2.However,its growth was stressed,the content of protein being decreased, and MDA was increased whenχ_(Te) was 0.4.This implied that atχ_(Te)≤0.2,Te was nutrient to S.platensis.But atχ_(Te)≥0.4,Te was toxic to it.The results for C.pyrenoidosa were complicated,and it was difficult to distinguish when Te was nutrient or toxic to C. pyrenoidosa.Whenχ_(Te) was 0.2,the biomass and content of soluble protein were the maximum,but the content of all the pigments reduced except chlorophyll a,which was close to that of control.
     5.The absorption and distribution of tellurium in the algae were affected by the different methods of adding tellurium.For S.platensis,when Te(Ⅳ) was added on the first day of inoculation andχ_(Te) was kept invariable,it was found that most of the Te(Ⅳ) was released from algal cells in the form of volatile Te,at about 86.7%~91.0%.The content of organic Te in S.platens& was not high,while the organic Te was higher in S.platensis when Te was added at the stable stage in S.platensis.For C.pyrenoidosa,the organic Te in it was about 80%when Te(Ⅳ) was added on the first day of inoculation andχ_(Te) was kept invariable.More Te(Ⅳ) could be transformed into volatile Te by C.pyrenoidosa at higher Te dose.The results indicated that both Spirulina and Chlorella were good biological carriers for Te(Ⅳ),and both of them could be used to restore tellurium pollution.
     6.The effects of Te to different algae were observed by different methods of spectra,and the results indicated that all the peaks didn't change their positions after the addtion of Te to S.platensis and C.vulgaris.For S.platensis,the UV-Vis spectrum demonstrated that more harm was done to phycocyanin and chlorophyll a at high Te dose than other pigments;the fluorescence spectra showed that the peak intensities reduced greatly at high Te dose.For C.vulgaris,the UV-Vis,fluorescence and FT-IR spectra didn't change significantly.Moreover,when Te dose was 0.4,the peak intensities were almost the highest.This was consistent with the results we got before,that is,at a certain amount of high Te dose,the growth of C.vulgaris was promoted.In conclusion,two different species of algae had different responses to Te.
引文
1.Frainzle,S.,Markert,B.Sci.The Biological System of the Elements(BSE).Part Ⅱ:a theoretical model for establishing the essentiality of chemical elements.The application of stoichiometric network analysis to the biological system of the elements.The Science of the Total Environment,2000,249:223
    2.Thomas G.Chasteen,Ronald Bentley.Biomethylation of selenium and tellurium.Chemical Reviews,2003,103(1):1
    3.李子全.稀有金属应用(下).北京:冶金工业出版社,1985
    4.Taylor D.E.Bacterial tellurite resistance.Trends in Microbiology,1999,7(3):111
    5.Meotti F.C.,Borges V.C.,Zeni G..,et al.Potential renal and hepatic toxicity of diphenyl diselenide,diphenyl ditelluride and Ebselen for rats and mice.Toxicology Letter,2003:9
    6.Stangherlin E.C.,Favero A.M.,Zeni G..,et al.Teratogenic vulnerability of Wistar rats to diphenyl ditelluride.Toxicology,2005,207(2):231
    7.Borges V.C.,Rocha J.B.T.,Nogueira C.W.Effect of diphenyl diselenide,diphenyl ditelluride and ebselen on cerebral Na+,K+-ATPase activity in rats.Toxicology,2005:191
    8.Summerw.A.O.,Jacob.Y.G.A..Plasmid-determined resistance to tellurium compounds.J.Bacterial,1977,129:276
    9.Garberg P.,Engman.L.,Tolmachev.V.,et al.Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite:consequences for the activity of selenium-dependent glutathione peroxidase.The International Journal of Biochemistry & Cell biology.1999,31:291
    10.Briviba K.,Tamler R,Klotz LO,et al.Protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions.Bichem Pharmacol,1998,55:817
    11.Andersson C M,Brattsand R,Hallberg A,et al.Diaryl tellurides as inhibitors of lipid peroxidation in biological and chemical systems.Free Radic Res,1994,20:401
    12.Anderson C.M,Hallberg A.,Brattsand R.,et al.Glutathione peroxidase-like activity of diaryl tellurides.Bioorganic & Medical Chemistry Letter,1993:2553
    13.薛雁,任晓君,张鲲等.有谷胱甘肽过氧化物酶活性的小分子模拟化物2-TeCD保护线粒体抵抗氧化损伤.中国生物化学与分子生物学报,2002,18(4):506
    14.Albeck M.,Sredni B.Compound for the induction of in vivo and vitro production of cytokines.Isrsel.Application number:85402070.8.17.09.1986.
    15.Rodrigo L.O.R.C.,Miriam E.U.,Jair R.C.,et al.Tellurium-based cysteine protease inhibitor:evaluation of novel organotellurium(Ⅳ) compounds as inhibitors of human cathepsin B.Bioorganic & Medicinal Chemistry Letters,2005,15:755
    16.Sun X,Wong JR,Song K,et al.Anticarcinoma activity of anovel drug,3-ethyl-3'-methyl-thiatelluracarbocyanine iodide(Te),a tellurium-containing cyanine targeted at mitochondria.Cin Cancer Res,1996,2:1335
    17.Engman L,Persson J,Vessman K,et al.Organotellurium compounds as efficient retarders of lipid peroxidation in methanol.Free Radic Biol Med,1995,19:441
    18.Engman L,Cotgreave I,Angulo M,et al.Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents.Anticancer Res,1997,17:4599
    19.Engman L.,Al-Maharik N.,McNaughton M.,et al.Thioredoxin Reducatase and Cancer Cell Growth Inhibition by Organotellurium Compounds that Could be Selectively Incorporated into Tumor Cells.Bioorganic&Medicinal Chemistry,2003,11:5091
    20.Sredni B.,Caspi R.R.and Klein A.A new immunomodulating compound(AS101) with potential therapeutic application.Nature,1987,330:173
    21.郑景熙,张俊德,龚颜德等.有机碲化合物(AS101)抑制白血细胞增殖的效应.第一军医大学学报,1993,13(3):268
    22.陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,1999:107
    23.胡鸿钧.螺旋藻生物学及生物技术原理.北京:科学出版社,2003
    24.庞启深,郭宝江,阮继红.螺旋藻多糖对核酸内切酶活性和DNA修复合成的增强作用.遗传学报,1988,15(5):374
    25.郭宝江,庞启深,阮继红.螺旋藻多糖对植物细胞辐射遗传损伤的防护效应.植物学报,1992,34(10):809
    26.张以芳,段刚,刘旭川.螺旋藻及其多糖、多糖蛋白提取物对体外癌细胞的抑制作用.海洋科学,2000,24(3):16
    27.刘宇锋,张成武,沈海雁.极大螺旋藻胞内多糖对人血癌细胞生长的影响.中草药,1999,30(2):115
    28.刘力生,郭宝江,阮继红等.螺旋藻多糖对机体免疫功能的提高作用及其机理研究.海洋科学,1991,15(6):44
    29.于红,张学成.螺旋藻多糖对小鼠S-180肉瘤的免疫抑制作用.海洋科学,2003,27(5):58
    30.Hayashi K,Hanyashi T,Kojima I.A natural sulfated polysaccharide,calcium spirulan,isolated from spirulina platensis:in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities.AIDS Res Hum Retroviruses,1996,12(15):1463
    31.Kaji,Toshiyuki,Fujiwara,et al.Repair of wounded monolayers of cultured bovine aortic endothelial cells is inhibited by calcium spirulan,a novel sulfated polysaccharide isolated from Spirulina platensis.Life Sciences,2002,70(16):1841
    32.Kaji T,Fujiwara Y,Hamada C,et al.Inhibition of cultured bovine aortic endothelial cell Proliferation by sodium spirulan,a new sulfated polysaccharide isolated from Spirulina platensis.Planta Medica,2002,68(6):505
    33.闫海,张宾,王素琴等.小球藻异养培养的研究进展.现代化工,2007,4:18
    34.周秀琴译.日本小球藻的开发.世界农业,1996,(4):36
    35.Valderrama L T,Del Campo C M.,Rodriguez C M,et al.Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule.Water Research,2002,36(16):4185
    36.葛利云,邓欢欢,吴峰等.普通小球藻引发水中苯胺光降解的研究.环境化学,2004,23(2):178
    37.Translated by Japan Chlorella Treatment Associate.Scientific reports on chlorella in Japan.Silpaque Publishing,Inc.Kyoto,Japan,1992,1
    38.李师翁,李虎乾.植物单细胞蛋白资源-小球藻开发利用研究的现状.生物技术,1997,7(3):45
    39.汪炬,蒲含林,洪岸等.蛋白核小球藻提取物的抑瘤作用及对免疫功能的影响.营养学报,2004,26(2):136
    40.刘学铭,梁世中.小球藻的保健和药理作用.中草药,1999,30(5):383
    41.黄魁,刘雷,董海丽.小球藻在污水处理中的研究.江西化工,2007,1:25
    42.吕福荣,杨海波,李英敏等.自养条件下小球藻净化氮、磷能力的研究.生物技术,2003,13 (6):46
    43.Travieso L.Experiments on immobilization of microalgae for nutrient removal in wastewater treatment.Bioresource Technol,1996,55(3):181
    44.薛嵘,黄国兰,毛宁翔等.改进的PVA-硫酸盐法固定蛋白核小球藻除磷研究.中国环境科学,2002,22(4):351
    45.李坤,李琳,王福强等.淡水小球藻清除Cu(2+)、Cd(2+)、Zn(2+)污染能力的研究.中国微生态学杂志,2006,18(3):194
    46.王翠红,徐建红,辛晓芸等.固定化藻菌系统处理含酚废水.水处理技术,2000,26(4):236
    47.凌永乐.化学元素的发现.北京:科学出版社,1981
    48.Rayman,M.P.The importance of selenium to human health.Lancet,2000,356:233
    49.Rotruck J T.Selenium:Biochemical role as a component of glutathione peroxidase.Science,1973,179:588
    50.Stadtman T C.Selenocystein.Annu.Rev.Biochem,1996,65:83
    51.Remirez D,Fernandez V,Tapia G,et al.Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and Kupffer cell functioning.Inflamm Res,2002,51(7):351
    52.胡莉萍,吕京,彭开良等.碲及其化合物的毒性研究进展.卫生毒理学杂志,2002,16(2):120
    53.徐辉碧,黄开勋.硒的化学、生物化学及其在生命科学中的应用.武昌:华中理工大学出版社,1994
    54.Imam S.Z.;Ali S.F.Selenium,an antioxidant,attenuates ethamphetamine-induced dopaminergic toxicity and peroxynitrite generation.Brain Research,2000,855:186
    55.戴宇飞,陈艳,高耘等.硒对砷毒性的拮抗作用研究.中国公共卫生,2002,18(10):1187
    56.毛怀志,刘永清.微量元素硒的生物学功能及对动物健康的影响.试验研究,2007,9:16
    57.王章敬.砷暴露对小鼠遗传毒性影响及硒的拮抗作用.微量元素与健康研究,2006,23(6):3
    58.王章敬,陈华.高剂量砷暴露与硒对小鼠毒性的方差分析.微量元素与健康研究,2007,24(6):8
    59.焦石,谈伟君,周敏.锌利硒拮抗二氧化砗细胞毒性作用的研究.工业卫生与职业病,2005,31(4):200
    60.Dolph L.Hatfield.Selenium,its molecular biology and role in human health.USA,Kluwer Academic Pbulishers,2001
    61.Klein EA,Thompson IM,Lippman SM.SELECT:the next prostate cancer prevention trial.J Urol,2001,166:1311
    62.Kerstin Jonsson-Videsater,Linda Bjorkhem-Bergman,Akter Hossain,et al.Selenite-induced apoptosis in doxorubicin-resistant cells and effects on the thioredoxin system.Biochemical Pharmacology,2004,67:513
    63.Goran Bjelakovic,Dimitrinka Nikolova,Rosa G Simonetti,et al.Antioxidant supplements for prevention of gastrointestinal cancers:a systematic review and meta-analysis.Lancet,2004;364:1219
    64.VADIM N.GLADYSHEV,THRESSA C.STADTMAN,DOLPH L.HATFIELD,et al.Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase.Proc.Natl.Acad.Sci.1999,96:835
    65.El-Bayoumy,K,Sinha,R.Mechanisms of mammary cancer chemoprevention by organoselenium compounds.Mutat.Res.,2004,551:181
    66.Clark,L.C.,Combs,G.F.Jr.,Turnbull,B.W.,et al.Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin.A randomized controlled trial.Nutritional Prevention of Cancer Study Group.JAMA.1996,276:1957
    67.Yu,S.Y.;Zhu,Y.J.;Li,W.G.Protective role of selenium against hepatitis B virus and primary liver cancer in Oidong.Biol.Trace Elem.Res.,1997,56:117
    68.Kim R.Recent advances in understanding the cell death pathways activated by anticancer therapy.Cancer,2005,103:1551
    69.Sinha R.,El-Bayoumy K.Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds.Curr.Cancer Drug Targets,2004,4:13
    70.Chen Tianfeng,Zheng Wenjie,Luo Yong,et al.Determination of amino acids in Selenium-enriched sprirulina platensis by reversed phase high performance liquid chromatography.Chemical Journal on Internet,2005,7(4):32
    71.陈填烽,崔小峰,杨芳等.分次加硒法培养高富硒量螺旋藻及其对藻体光合色素和蛋白含量影响的研究.食品与发酵工业,2005,31(8):48
    72.Tianfeng Chen,Wenjie Zheng,Yum-Shing Wong,et al.Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose.Bioresource Technology,2006,97(18):2260
    73.郑文杰,欧阳政.植物有机硒的化学及其医学应用.暨南大学出版社,2001
    74.Pickering I J,Prince R C,Salt D E,et al.Quantitative,chemically specific imaging of selenium transformation in plants.Proc Natl Acad Sci USA,2000,97(20):10717
    75.Hu Q,Xu J,Pang G.Effect of selenium on the yield and quality of green tea leaves harvested in early spring.J Agric Food Chem,2003,51(11):3379
    76.黄峙,郑文杰,向军俭等.含硒藻监蛋白抗小鼠实验性肝损伤的作用.中国病理生理杂志,2002,18(7):819
    77.Li L L,Zhang J P,Chang W R,et al.Purification and crystallo-graphic investigation of Se-PC from Se enriched Spirulina platensis.Science in China(Series C),2000,30(5):449
    78.徐晶,朱茂徉,陈婉华等.螺旋藻富集同化无机Se研究.植物营养与肥料学报,1997,3(2):169
    79.唐全民,杨芳,郑文杰等.Te(Ⅳ)对钝顶螺旋藻和极大螺旋藻的生物效应.暨南大学学报,2003,24(5):75
    80.郑文杰,余景,杨芳等.两种螺旋藻在不同生长阶段的Se胁迫和生物有机化效应.生态科学,2004,22(4):305
    81.陈必链,庄惠如,余望等.钝顶螺旋藻对锌和硒生物富集作用研究.食品与发酵工业,1998,24(6):27
    82.曹吉祥.锗和硒螺旋藻的制备方法.中国发明专利公报,CN-1092104A
    83.Belokobylsky,AI;Ginturi,EI;Kuchava,NE.et al.Accumulation of selenium and chromium in the growth dynamics of spirulina platensis.J.Radioanalytical and Nuclear Chemistry,2004,259(1):65
    84.Mosulishvili L M,Kirkesali E I,Belokobylsky A I,et al.Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.J Pharm Biomed Anal,2002,30(1):87
    85.胡月微,邱承光,曲春波等.小球藻处理废水研究进展.环境科学与技术,2003,26(4):48
    86.Pascucci,Peter R,Kowalak,et al.Metal distributions in complexes with chlorella vulgaris in seawater and wastewater.Water Environ.Res.,1999,71(6):1165
    87.Muyssen B,Janssen C.Zinc acclimation and its effect on the zinc tolerance of raphidocelis subcapitata and chlorella vulgaris in laboratory experiments.Chemosphere,2001,45(4-5):507
    88.Wang W,Dei R.Influences of phosphate and silicate on Cr(Ⅵ) and Se(Ⅳ) accumulation in marine phytoplankton.Aquat.Toxicol.,2001,52(1):39
    89.Fan T.W.M.,Lane A.N.,Higashi R.M.Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond.Environ.Sci.Technol.,1997,31:569
    90.Yu Liangyao(余良耀),He Kangming(何康明),Cai Duanren(蔡端仁),et al.Evidence for telluroamino acid in biological materials and some rules of assimilation of inorganic tellurium by yeast.Analytical Biochemistry,1993,209:318
    91.欧刚政,蔡端仁,郑文杰.生物体中硒的有机形态的分析研究.分析化学新进展,国家基金委化学部组编汪尔康主编,科学出版社(ISBN-7-03-010946-5),2002,510
    92.郑文杰,贺鸿志,黄峙等.硒碲胁迫对两种螺旋藻生长的影响.海洋科学,2003,27(10):73
    93.杨芳,余景,郑文杰等.高硒浓度下两种螺旋藻对Se(Ⅳ)的吸收和代谢.食品科学,2005,26(11):51
    94.Tianfeng Chen,Wenjie Zheng,Fang Yang,et al.Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments.Enzyme and Microbial Technology,2005.
    95.Li Z Y,Guo S Y,Li L.Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation.Bioresource Technology,2003,89(2):171
    96.何晓艳,向文洲,何慧等.海水钝顶螺旋藻富硒及其含硒藻蓝蛋白的研究.热带海洋学报,2005,24(4):30
    97.黄峙,郑文杰,向军俭等.钝顶螺旋藻对硒的富集和有机化作用.暨南大学学报(自然科学版),2001,22(5):113
    98.王大志,程兆第.硒对钝顶螺旋藻生长的影响及其在细胞中的积累和分布.台湾海峡,1998,17(4):432
    99.谭龙飞,黄峙,郭宝江.螺旋藻富硒培养及转化的研究.食品与机械,1998,6:17
    100.徐晶,陈婉华,谢应先等.亚硒酸钠浓度对螺旋藻生长及富硒量的影响.土壤肥料,1996,6:38
    101.周志刚,钟罡,刘志礼.硒对极大螺旋藻生长及含硒量的影响.海洋科学,1997,5:42
    102.周志刚,李朋富,刘志礼等.三种螺旋藻及其蛋白质、多糖和脂类结合.海洋与湖沼,1997,28(4):363
    103.Wiedander E.,Engman L.,Suensjo E.,et al.Antioxidative Properties of Organotellurium Compounds in Cell Systems.Biochemical Pharmacology,1998,55:573
    104.Kanski J.,Drake J.,Aksenova M.,et al.Antioxidant activity of the organotellurium compound 3-[4-(N,Ndimethylamino) benzenetellurenyl]propanesulfonic acid against oxidative stress in synaptosomal membrane systems and neuronal cultures.Brain Research,2001:12
    105.Michale A.,Lewis.Use of freshwater plants for phytotoxicity testing:A review.Environmental pollution,1995,87:319
    106.李志勇,郭祀远,李琳等.采用鼓泡柱式光生物反应器培养螺旋藻的研究.食品工业科技,1998,5:18
    107.徐洁红,郭宝江.螺旋藻培养液的筛选.华南师范大学学报(自然科学版),1996,4:32
    108.林俊,李韬,沈宏等.镧对微囊藻的生长效应及被富集的动力学研究.环境化学,2003,22(1):75
    109.周永欣,章宗涉.水生生物毒性实验方法.北京:农业出版社,1989:114
    110.Chen F,Johns MR.Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture.Process biochem,1994,29:245
    111.陈小敏,陈思嘉,杨芳等.Te(Ⅳ)对钝顶螺旋藻的生长及其生理生化的影响.暨南大学学报(自然科学版),2005,26(1):134
    112.陈小敏,杨芳,白燕等.Te(Ⅳ)胁迫对两种螺旋藻生长及抗氧化系统的影响.水生生物学报,2008,32(2):148
    113.BRADFORD M M.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding.Anal Biochem.,1976,72:248
    114.SIEGELMAN H W,KYCIA J H.Algal biliproteins.IN:Handbook of Phycological Methods.Hellebust & Craigie(eds) Cambridge Univ.Press.1978:71
    115.Beauchamp C.,Fridovich I.Superoxide disumtase:improved assays and an assay applicable to acrylamide gel.Annal.Biochem.,1971,44:276
    116.Bewley T.D.Physiological aspects of desiccation tolerance.Annual Review of Plant Physiology,1979,30:195
    117.唐学玺,李永祺,李春雁等.有机磷农药对海洋微藻致毒性的生物学研究:四种海洋微藻对久效磷的耐受力与其SOD活性的相关性.海洋环境科学,1995,14(2):1
    118.袁建平,张义明,史贤明等.高效液相色谱法测定藻类中的类胡萝卜素和叶绿素.色谱,1997,15(3):134
    119.陈毓荃.生物化学实验方法和技术.北京:科学出版社,2002,171
    120.卿人韦,叶华勋,李扬等.在高强度光照胁迫下极大螺旋藻两种抗氧化酶活力变化的研究.四川大学学报(自然科学版),2003,40(3):565
    121.江志平,崔海瑞,朱家新等.螺旋藻品系z中不同形态藻丝体的生长速率和光合色素比较.微生物学报,1998,38(4):321
    122.丁丽娟,何腊平,张义明.醋酸盐对螺旋藻的生长和多糖及光合色素含量的影响.食品工业科技,2004,25(3):62
    123.尤珊,郑必胜,郭祀远.光明对螺旋藻形态及胞外多糖的影响和机理.海湖盐与化工,2004,33(1):23
    124.尤珊,郑必胜,郭祀远.氮源对螺旋藻生长及胞外多糖的影响.食品科学,2004,25(4):32
    125.荣征星,刘慧中,鲍景期等.小鼠全血中谷胱甘肽过氧化物酶活力的微量测定法.生物化学与生物物理进展,1994,21(4):362
    126.Chance B.,Maehly A.C.Assay of catalase and peroxidase.Methods in Enzymology,1955,2:764
    127.沈文飚,徐朗莱,叶茂炳.抗坏血酸过氧化物酶活性测定的探讨.植物生理学通讯,1996,32(3):203
    128.X.H.波饮诺克著,荆家海,丁钟荣译.植物生物化学分析方法.北京:科学出版社,1981:197
    129.林植芳,李双顺,林桂珠.水稻叶片的衰老与超氧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6):605
    130.陈思嘉,杨芳,郑文杰.硒胁迫对钝顶螺旋藻抗氧化系统的影响.水生生物学报,2007,31(5):706
    131.Hartikainen H,Xue Tailin,Piironen V.Selenium as an anti-oxidant and pro-oxidant in ryegrass.Plant and Soil,2000,225:193
    132.曾和平,郭宝江.螺旋藻多糖的化学研究.药学学报,1995,30:858
    133.董强,钱凯先.藻监蛋白的抗癌活性研究.浙江大学学报(工学版),2001,35(6):672
    134.张成武,曾昭其.钝顶螺旋藻多糖和藻监蛋白对小鼠急性放射病的防护作用.营养学报,1996,18(3):327
    135.唐玫,金鹰.螺旋藻藻蓝蛋白对小鼠免疫功能的影响.暨南大学学报(自然与医学报),1998,19(5):93
    136.黄峙,郑文杰,向军俭.钝顶螺旋藻中蛋白结合硒的研究.暨南大学学报(自然科学版),2001,22(3):86
    137.李建武.生物化学实验原理和方法.北京:北京大学出版社,1994.9
    138.陈小敏,杨芳,郑文杰.钝顶螺旋藻对无机碲的吸收代谢作用.现代生物医学进展,2007,7(1):32
    139.黄峙,向军俭,郑文杰.钝顶螺旋藻富集转化硒及硒在藻体中的分布.植物生理学通讯,2001,37(1):12
    140.韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社,2003
    141.Li D H,Xie J,Zhao Y W,et al.Probing connection of PBS with the photosystems in intact cells of Spirulina Platensis by temperature-induced fluorescence fluctuation.Biochimica et Biophysica Acta,2003,1557:35
    142.Chen Tianfeng,Zheng Wenjie,Luo Yong,et al,Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella Vulgaris.Journal of Plant Physiology and Molecular Biology.2005,31(4):369