三角褐指藻的自养、兼养和异养特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻的营养方式具有多样性,兼养和异养研究成为近年来国内外藻类生物学领域关注的热点问题。兼养和异养有利于提高微藻生物量和胞内活性物质产量,同时不同营养方式之间转化的叶绿体特征有助于光合作用机理的研究。但迄今为止,能够进行兼养和异养生长的微藻物种有限,并且制约微藻兼养和异养生长的机理尚不清楚。本文以硅藻门的典型藻三角褐指藻(Phaeodactylumtricornutum)为研究对象,从细胞生长、营养吸收、胞内生化组分、光合能力和细胞结构等方面,研究了三角褐指藻的自养、兼养和异养特性,同时探讨了异养生长的光需求机制。
     1.研究了有机碳种类、浓度和光照强度对三角褐指藻生长的影响。结果表明:三角褐指藻具有兼养和光异养生长的能力,不具备化能异养和光激活异养生长的能力,并且对有机碳的利用具有选择性;三角褐指藻在兼养下的生物量显著提高,50 mM甘油兼养下的最大生物量可达自养的1.46倍,光异养条件下的生物量低于自养;有机碳浓度对其生长的影响呈现正态分布特征;兼养生长不受高光强的限制,兼养和光合自养的饱和光强均为50μmol·m~(-2)·s~(-1)。
     2.通过对藻液中有机碳、无机氮和磷浓度的测定,研究了三角褐指藻在兼养和光异养下的营养吸收。结果表明:三角褐指藻对有机营养和无机营养的吸收与生长状态相对应,藻细胞快速繁殖的指数生长期,有机碳浓度直线下降;兼养较自养消耗更多的氮和磷来满足生长的需要,光异养消耗的氮和磷浓度低于自养。
     3.三角褐指藻在不同营养方式下的胞内生化组分存在显著差异,在兼养和光异养条件下,蛋白质含量明显下降,碳水化合物和总脂含量上升,饱和脂肪酸和单不饱和脂肪酸比例提高,多不饱和脂肪酸和EPA比例降低,乙酸钠兼养下的胞内EPA含量和产量分别是自养的1.10倍和1.40倍,甘油和葡萄糖兼养及光异养下的EPA含量和产量均低于自养。
     4.通过对光合色素含量和组成、常温吸收光谱、低温荧光光谱、光合放氧速率、呼吸速率、PSⅡ最大光能转化效率(Fv/Fm)和电子传递速率(ETR)等指标的测定,研究了三角褐指藻在不同营养方式下的光合能力特征。结果表明:三角褐指藻在兼养和光异养条件下,叶绿素a、叶绿素c和类胡萝卜素含量以及Chl a/Chl c均下降;相对荧光强度和PSⅠ/PSⅡ激发能比例均降低,光合放氧速率、Fv/Fm和ETR均下降,从而表明有机碳降低了三角褐指藻的光合能力,但是有机碳显著提高了三角褐指藻的呼吸速率。
     5.利用显微镜和透射电镜拍照,观察了三角褐指藻在不同营养方式下的细胞体积和细胞结构的变化。结果表明:在兼养和光异养条件下,三角褐指藻的细胞体积增大,细胞形态由自养条件下纤细的三角放射型转变为中心膨胀的三角短粗型;自养下的类囊体膜垛叠整齐有序,兼养下类囊体膜垛叠程度降低,光异养下类囊体膜呈现非垛叠现象。
     6.采用不同抑制剂对三角褐指藻生长的影响,以及气相-质谱联用法(GC-MS)测定有机酸,揭示了黑暗制约该藻生长的原因。结果表明:有机碳主要作为三角褐指藻兼养和光异养生长的碳源,光是能量的主要来源;藻细胞中存在琥珀酸脱氢酶和细胞色素氧化酶系统;在完全黑暗条件下,添加葡萄糖的藻液pH显著下降,GC-MS检测到了甲酸和乙酸,推测三角褐指藻利用葡萄糖进行异养生长的光需求机制在于,黑暗条件下末端氧化系统不起作用,从而使藻细胞利用葡萄糖转入了厌氧代谢途径。
Trophic modes of microalgae are diversified.Over the last decades,significant attention has been drawed to mixotrophy and heterotrophy.Culturing microalgae in mixotrophic or heterotrophic conditions could potentially yield higher biomass concentration and algal products of high value.Meanwhile,many studies on photosynthetic mechanisms have been carried out with mixotrophic and heterotrophic strains.Up to now,few microalgae species have been found to possess the ability to grow mixotrophically and heterotrophically,and the reasons for the restrictions are still unknown.In this paper,a typical diatom ofPhaeodactylum tricornuturn was used as the material,characteristics of photoautotrophy,mixotrophy and heterotrophy were studied,parameters of cell growth,nutrient absorption,biochemical components, photosynthetic activity,and cell structure were examined,and mechanism of the light requirement for heterotrophic growth was also investigated.The main results are listed as follows:
     1.Effects of sources and concentration of organic carbon sources and light intensity on the growth of P.tricornutum were investigated.The results showed that P. tricornutum could grow mixotrophically and photoheterotrophically,and the utilization of organic carbon sources was selective.Under mixotrophic condition,the biomass of P.tricornutum was greatly enhanced.But under photoheterotrophic condition,the biomass maintained in the lower concentration level.Effects of organic carbon concentrations on the growth of P.tricornutum were in normal distribution. The mixotrophic growth was not inhibited by the high light.The saturation irradiance of mixotrophic and photoautotrophic growth was almost at the same level,which was 50μmol·m~(-2)·s~(-1)
     2.To study the nutrient absorption of P.tricornutum under different trophic modes,concentrations of organic nutrient and inorganic nutrient in the culture were examined.The results indicated that the absorption of organic nutrient and inorganic nutrient were corresponding to the growth state.During the exponential growth phase, the growth rate was faster,and the concentration of organic carbon decreased dramatically.Under mixotrophic conditions,the absorption of nitrogen and phosphorus were more than those under photoautotrophic condition.However,the nitrogen and phosphorus absorption were lower under photoheterotrophic condition.
     3.The biochemical components of P.tricornutum under different trophic modes were significantly different.Compared with photoautotrophic condition,under mixotrophic and photoheterotrophic conditions,the content of soluble protein was obviously decreased,whereas the content of soluble carbohydrate and total lipid were increased.The proportions of saturated fatty acids and mono-saturated fatty acids were enhanced,however the proportion of polyunsaturated fatty acids and EPA (Eicosapentaenoic acid) were lowered.The EPA content and yield were 6.23%and 36.59 mg·L~(-1) during mixotrophic culture with 100 mM acetate,which were 1.10-fold and 1.40-fold of those obtained under photoautotrophic condition,respectively. During mixotrophic culture with glycerol or glucose,and photoheterotrophic culture with glycerol,acetate,or glucose,the EPA content and yield were lower than those obtained under photoautotrophic condition.
     4.The experiment was conducted to determine the photosynthetic characteristics of P.tricornutum under different trophic modes.Parameters of photosynthetic pigment content and composition,absorption spectra,77 K fluorescence spectra, photosynthetic O_2 evolution rate,respiration rate,maximal photochemical efficiency of PSⅡ(Fv/Fm),and electron transport rate(ETR) were examined.The results showed that under mixotrophic and photoheterotrophic conditions,the cell photosynthetic pigment content,values of Chl a/Ch1 c were reduced.The relative fluorescence intensity of PSⅠ,PSⅡand the values of F685/FT10 and F685/F738 were decreased.The net maximum photosynthetic O_2 evolution rate was also depressed. These were in consistent with Fv/Fm and ETR.Therefore,organic carbon sources reduced the photosynthesis efficiency of P.tricornuturn.However,organic carbon sources enhanced the respiration rate dramatically.
     5.Microscopy and transmission electron microscopy were conducted to investigate the cell volume and structure of P.tricornutum under different trophic modes.Under mixotrophic and photoheterotrophic condition,the cell volume was increased.The cell structure was finely triangular under photoautotrophic condition, but the cell center became bulgy,and the radiation was dumpy.Under photoautotrophic condition,the thylakoids were predominantly arranged in pairs. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions.
     6.Organic carbon sources were mostly used as carbon sources ofP.tricornutum, and the main source of energy came from light.Effects of sodium malonate and sodium azide on the growth of P.tricornutum confirmed that there were succinate dehydrogenase and cytochrome oxidase system in the cell.Under chemoheterotrophic growth with glucose,the value of pH dramatically decreased,and there were formic and acetic acids in the culture.It can be assumed that an inoperative terminal oxidase system would adjust metabolism toward anaerobic metabolism pathway.
引文
[1]成静,郭勇.有机碳化合物对鱼腥藻7120生长的影响.华南理工大学学报(自然科学版),2000,28(9):69-72.
    [2]桂林,史贤明,李琳,等.蛋白核小球藻不同培养方式的比较.河北工业大学学报,2005,26(5):52-55.
    [3]黄伟坤.二硝基水杨酸法测定还原糖.食品检验与分析,北京:中国轻工业出版社,1989(第一版),583-584.
    [4]金传荫.满江红鱼腥藻的异养生长.水生生物学集刊,1984,8(4):443-448.
    [5]金传荫,宋立荣,黎尚豪.鱼腥藻1017株的混合营养型生长.水生生物学报1996,20(2):134-137.
    [6]刘晨临,王秀良,张学成.卡德藻自养、异养与兼养培养的比较研究.青岛海洋大学学报,2002,32(4):579-584.
    [7]王高鸿,陈兰洲,李根保,等.改变捕光色素比例用于提高微藻光合效率.科学通报,2005,14(50):1475-1479.
    [8]王永红,李元广,施定基,等.集胞藻6803的混合培养-光照强度和葡萄糖的影响.生物工程学报,2000,16(2):193-197.
    [9]王永红,叶济宇,米华玲,等.集胞藻Synechococcus sp.PCC6803利用葡萄糖生长与光合能量转化的关系.植物学报,2000,42(11):1122-1125.
    [10]徐芳,胡晗华,丛威,等.有机碳源对产EPA微藻Nannochloropsis sp.生长及光合作用的影响.过程工程学报,2003,3(6):560-563.
    [11]阎杰,丘泰球.甘油铜比色法测定甘油含量的研究.中国油脂,2004,29(1):40-43.
    [12]喻国策,丛威,蔡昭铃,等.有机碳化合物对鱼腥藻7120生长的影响.水生生物学报,2003,27(3):238-242.
    [13]张志良.植物生理学实验指导.北京:高等教育出版社,1990,183-184.
    [14]Anderson J M.Consequences of spatial separation of photosystem Ⅰ and photosystem Ⅱ in thylakoid membranes of higher plant chloroplasts.FEBS Letters,1981,124:1-10.
    [15]Anderson J M,Goodchild D J,Boardman N K.Composition of the photosystems and chloroplast structure in extreme shade plants.Biochimica et Biophysica Acta,1973,325:573-585.
    [16]Anderson S L,Mclntosh I.Light-activated heterotrophic growth of the cyanobacterium Synechocystis strain PCC 6803:a blue-light-requiring process.Journal of Bacteriology,1991,173:2761-2767.
    [17]Bagchi S N,Chauhan V S,Palod A.Heterotrophy and nitrate metabolism in a cyanobacterium phormidium uncinatum.Current Microbiology,1990,21:53-57.
    [18]Barclay W R,Maeger K M,Abril J R.Heterotrophic production of long chain omega-3 fatty acids utilizing algae-like microorganisms.Journal of Applied Phycology,1994,6:123-129.
    [19]Berger E A,Heppel A.Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permease of Escherichia coli.Journal of Biological Chemistry,1974,7747-7755.
    [20]Bigogno C,Khozin-Goldberg I,Cohena Z.Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae,Chlorophyta).Phytochemistry,2002,60:135-143.
    [21]Bligh E G,Dyer W J.A rapid method of total lipid extraction and purification.Canadian Journal of Biochemistry and Physiology,1959,37:911-917.
    [22]Borowitzka M A.Commercial production of microalgae:Ponds,tanks,tubes and fermentors.Journal of Biotechnology,1999,70:313-321.
    [23]Borowitzka M A,Borowitzka L J.Dunaliella.In:Borowitzka M A,Borowitzka L J(Eds.),Micro-algal Biotechnology.Cambridge:Cambridge University Press,1988,27-58.
    [24]Bouarab L,Dauta A,Loudiki M.Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose:effect of light and acetate gradient concentration.Water Research,2004,38:2706-2712.
    [25]Briand J,Calvayrac R.Paramylon synthesis in heterotrophic and photoheterotrophic Euglena (Euglenophyceae) . Journal of Phycology, 1980, 16(2): 234-239.
    [26] Carr N G Mechanism of autotrophic physiology in the blue-green algae. Journal of General Microbiology, 1973a, 75: 336-342.
    [27] Carr N G Metabolic control and autotrophic physiology. In: Carr N G, Whitton B A (Eds.), The biology of blue-green algae. Oxford: Blackwell Scientific Publications, 1973b, 39-65.
    [28] Ceron Garcia M C, Sanchez Miron A, Fernandez Sevilla J M, et al. Mixotrophic growth of the microalga Phaeodactylum tricornutum Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochemistry, 2005, 40: 297-305.
    [29] Ceron Garcia M C, Sevilla J M F, Acien Fernandez F G, et al. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. Journal of Applied Phycology, 2000, 12: 239-248.
    [30] Chen F, Johns M R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 1991,3:203-209.
    [31] Chen F, Johns M R. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry, 1996, 31: 601-604.
    [32] Chen F, Zhang Y. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 1997,20: 221-224.
    [33] Chojnacka K, Andrzej N. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 2004, 34: 461-465.
    [34] Cox G B, Gibson F, Mccann L. Oxidative phosphorylation in Escherichia coli K-12. An uncoupled mutant with altered membrane structure. Biochemical Journal, 1974,138:211-215.
    [35] Cooksey, K E. Acetate metabolism by whole cells of Phaeodactylum tricornutum Bohlin. Journal of Phycology, 1974,10: 253-257.
    [36] Delaney S F, Dickson A, Carr N G The control of homoserine O-transsuccinylase in a methionine-requring mutant of the blue-green alga Anacystis nidulans. Journal of General Microbiology, 1973, 79: 89-94.
    [37] Day J D, Edwards A P, Rodgers G A. Development of an industrial-scale process for the heterotrophic production of a microalgal mollusc feed. Bioresource Technology, 1991, 38: 245-250.
    [38] Day J G, Tsavalos A J. An investigation of the heterotrophic culture of the green alga Tetraselmis. Journal of Applied Phycology, 1996, 8: 73-77.
    [39] Darley, W M, Wimpee, B B, Ohlman, C T. Heterotrophic and photoheterotrophic utilization of lactate by the diatom, Cylindrotheca fusiformis. European Journal of Phycology, 1981, 16:423-428.
    [40] Endo T, Asada K. Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant and Cell Physiology, 1996, 37(4): 551-555.
    
    [41] Endo H, Sansawa H, Nakajima K. Studies on Chlorella regularis heterotrophic fast growing strain. II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant and Cell Physiology, 1977,18: 199-205.
    [42] Facundo J M, Sasaki K, Kakizono T, et al. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 1993, 76: 408-410.
    [43] Fay P. Heterotrophy and nitrogen fixation in Chlorogloea fritschii Mitra. Journal of General Microbiology, 1965, 39: 11-20.
    [44] Fett, J P, Coleman, J R. Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiology, 1994, 106: 103-108.
    [45] Figueroa F L, Conde-Alvarez R, Gomez I. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorometery and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research, 2003, 75: 259-275.
    [46] Franklin L A, Badger M R A. A comparison of photosynthetic electron transport rates in macroalgae measure by pulse amplitude modulated chlorophyll fluorometery and mass spectrometry. Journal of Phycology, 2001, 37: 756-767.
    [47] Fujita Y, Iwama Y, Ohki K, et al. Regulation of the size of light-harvesting antennae in response to light intensity in the green Alga Chlorella pyrenoidosa. Plant and Cell Physiology, 1989,30: 1029-1037.
    [48] Freedrerg W B, Kistler W S, Lin E E C. Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism. Journal of Bacteriology, 1971,108: 137-144.
    [49] Garab G, Mustardy L. Role of LHC II-containing macrodomains in the structure function and dynamics of grana. Australian Journal of Plant Physiology, 1999, 26: 649-658.
    [50] Gladue R M. Heterotrophic microalgae production: potential for application to aquaculture feeds. In: Fulks W, Main KL (Eds.), Rotifer and Microalgae culture systems. Honolulu: Proceedings of a US-Asia workshop, 1991,28-31: 275-286.
    [51] Gladue R M, Maxey J F. Microalgal feeds for aquaculture. Journal of Applied Phycology, 1994,6:131-141.
    [52] Goldschmidt-Clermont, M. The two genes for the small subunit of RuBp carboxylase/oxygenase are closely linked in Chlamydomonas reinhardtii. Plant Molecular Biology, 1986,6: 13-21.
    
    [53] Grobbelaar J U. Physiological and technological considerations for optimisingmass algal cultures. Journal of Applied Phycology, 2000, 12: 201-206.
    [54] Guillard R R L. Division rates. In: Stein J R (Eds.), Handbook of phycological methods. Culture methods and growth measurements. Cambridge: Cambridge University Press, 1973,289-311.
    [55] Guillard R R L. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H (Eds.), Cultures of marine invertebrate animals. New York: Plenum Press, 1975, 29-60.
    
    [56] Haass D, Tanner W. Regulation of hexose transport in Chlorella vulgaris. Plant physiology, 1974, 53: 14-20.
    [57] Hard, B C, Gilmour, D J. The uptake of organic compounds by Dunaliella parva CCAP 19/9. European Journal of Phycology, 1996, 31: 217-224.
    
    [58] Hata N, Ogbonna J C, Hasegawa Y, et al. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology, 2001,13: 395-402.
    
    [59] Heifetz P B, Foster B, Osmond C B, et al. Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photo synthetic measurements and stable isotope analyses. Plant Physiology, 2000, 122: 1439-1445.
    
    [60] Hoober J K, Maloney M A, Asbury L R, et al. Accumulation of chlorophyll a/b-binding polypeptides in Chlamydomonas reinhardtii y-1 in the light or dark at 38℃. Plant Physiology, 1990, 92: 419-426.
    [61] Hood W, Carr N G Branched-chain amino acid biosynthesis in the blue-green alga Anabaena variabilis. Journal of General Microbiology, 1972, 73: 417-426.
    [62] Hoshida H, Ohira T, Minematsu A, et al. Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO_2 concentrations. Journal of Applied Phycology, 2005, 17: 29-34.
    [63] Hu H H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters, 2003, 25:421-425.
    [64] Ingram L O, Calder J A, Van Baalen C, et al. Role of reduced exogenous organic compounds in the physiology of the blue-green bacteria (algae): photoheterotrophic growth of a "heterotrophic" blue-green bacterium. Journal of Bacteriology, 1973,114(2): 695-700.
    [65] Ip P F, Chen F. Production of astaxanthin by the green microalga Chlorella zofinginesis in the dark. Process Biochemistry, 2005, 40: 733-738.
    [66] Janette P F, John R C. Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiology, 1994, 106: 103-108.
    [67] Jeffrey, S W, Humphrey, G F. New Spectrophotometric equations for determining chlorophylls a,b,c_1 and c_2 in higher plants,algae and natural phytoplankton.Biochemistry Physiology Pflanzen,1975,167:191-194.
    [68]Jiang Y,Chen F.Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii.Process Biochemistry,2000,35:1205-1209.
    [69]Joset-Espardellier F,Astier C,Evans E H,et al.Cyanobacteria growth underphotoautotrophic,photoheterotrophic,and heterotrophic regimes:sugar metabolism and carbon dioxide fixation.FEMS Microbiology Letters,1978,4:261-264.
    [70]Henly,W J.Measurement and interpretation of photosynthetic light-response curves in alga in the context of photoinhibition and diel changes.Journal of Phycology,1993,29:729-739.
    [71]Kang R J,Wang J,Shi D J,et al.Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp.Biotechnology Letters,2004,26:1429-1432.
    [72]Karlander E P,Krauss R W.Responses of heterotrophic cultures of Chlorella vulgaris Beyerinck to darkness and light.Ⅱ.Action spectrum for and mechanism of the light requirement for heterotrophic growth.Plant Physiology,1966,41:7-14.
    [73]Kelly D P.Autotrophy:concepts of lithotrophic bacteria and their orhanic metabolism.Annual Reviewof Microbiology,1971:25:177-210.
    [74]Kindle K L.Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii:effect of light and acetate.Plant Molecular Biology,1987,9:547-563.
    [75]Kitano M,Matsukawa R,Karube I.Changes in eicosapentsenoic acid content of Navicula saprophila,Rhodomonas salina and Nitzschia sp.under mixotrophic conditions.Journal of Applied Phycology,1997,9:559-563.
    [76]Kitano M,Matsukawa R,Karube I.Enhanced eicosapentaenoic acid production by Navicula saprophila.Journal of Applied Phycology,1998,10:101-105.
    [77]Kobayashi M,Kakizono T,Nishio N,et al.Effects of light intensity,light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 1992, 74: 61-63.
    [78] Kobayashi M, Kakizono T, Yamaguchi K, et al. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. Journal of Fermentation and Bioengineering, 1992, 74: 12-20.
    [79] Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez M V, et al. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequency of administration. Journal of Biotechnology, 1999, 70: 357-362.
    [80] Kroymann, J, Schneider, W, Zetsche, K. Opposite regulation of the copy number and the expression of plastid and mitochondrial genes by light and acetate in the green flagellate Chlorogonium. Plant Physiology, 1995, 108: 1641-1646.
    [81] Laliberte G, Noiie J D L. Auto-, hetero-, and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. Journal of Phycology, 1993, 29: 612-620.
    [82] Lalucat J, Imperial J, Pares R. Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnology and Bioengineering, 1984, 26: 677-681.
    [83] Lee Y K, Ding S Y, Hoe C H, et al. Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. Journal of Applied Phycology, 1996, 8: 163-169.
    [84] Lewin J C, Lewin R A. Culture and nutrition of some apochlorotic diatoms. Journal of General Microbiology, 1967, 11: 361-367.
    [85] Lewitus A J, Caron D A, Miller K R. Effects of light and glycerol on the organization of the photo synthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae). Journal of Phycology, 1991, 27: 578-587.
    [86] Lichtenthaler H K, Buschmann C , Doll M, et al. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 1981,2: 115-141.
    [87] Mannar R M, Pakrasi H B. Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous Cyanobacterium Anabaena variabilis ATCC29413. Plant Physiology, 1993, 103: 971-977.
    [88] Marquez F J, Saski K, Kakizono T, et al. Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 1993, 76: 408-410.
    [89] Marguez F J, Nishio N, Nagai S. Enhancement of biomass and pigment production during growth of Spirulina platensis mixotrophic culture. Journal of Chemical Technology and Biotechnology, 1995,62: 159-164.
    [90] Martinez F, Orus M I. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM101. Plant Physiology, 1991, 95: 1150-1155.
    [91] Martinez M E, Camacho F, Jimenez J M, et al. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochemistry, 1997, 32: 93-98.
    [92] Me lis A. Light regulation of photosynthetic membrane structure organization and function. Journal of Celularl Biochemistry, 1984,24: 271-285.
    [93] Miao X L, Wu Q Y. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 2006, 97: 841-846.
    [94] Michel D, Gilles K A, Hamilton J K, et al. Colorimeteric method for determination of sugas and related substances. Analytical Chemistry, 1956, 28(3): 350-356.
    [95] Milner H W, Lawrence N S, French C S. Colloidal dispersal of chloroplast material. Science, 1950, 111: 633-634.
    [96] Nuutila A M, Aura A M, Kiesvaara M, et al. The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. Journal of Biotechnology, 1997, 55:55-63.
    [97] Oesterhelt C, Schmalzlin E, Schmitt J M, et al. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. The Plant Journal, 2007,51:500-511.
    [98]Ogasawara N,Miyachi S.Regulation of CO_2-fixation in Chlorella by light of varied wavelengths and intensities.Plant and Cell Physiology,1970,11:1-14.
    [99]Ogawa T,Aiba S.Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus.Biotechnology and Bioengineering,1981,23:1121-1132.
    [100]Ogbonna J C,Ichige E,Tanaka H.Regulating the ratio of photoautotrophic to heterotrophic metabolic activities in photoheterotrophic culture of Euglena gracilis and its application to α-tocopherol production.Biotechnology Letters,2002,24:953-958.
    [101]Ogbonna J C,Masui H,Tanaka H.Sequential heterotrophic/autotrophic cultivation-An efficient method of producing Chlorella biomass for health food and animal feed.Journal of Applied Phycology,1997,9:359-366.
    [102]Ogbonna J C,Tomiyama S,Tanaka H.Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol.Journal of Applied Phycology,1998,10:67-74.
    [103]Ogbonna J C,Yomiyama S,Tanaka H.Production of α-tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis.Journal of Biotechnology,1999,70:213-221.
    [104]Ohki K,Katoh T.Photoorganotrophic growth of a blue-green alga Anabaena variabilis.Plant and Cell Physiology,1975,16:53-64.
    [105]Pan P.Growth of a photoautotroph,Plectonema boryannum,in the dark on glucose.Canadian Journal of Microbiology,1972,18:275-280.
    [106]Pan P,Umbreit W W.Growth of obligate autotrophic bacteria on glucose in a continuous flow-through apparatus.Journal of Bacteriology,1972,1149-1155.
    [107]Pearce J,Carr N G.The incorporation and metabolism of glucose by Anabaena variabilis.Journal of General Microbiology,1969,54:451-462.
    [108]Pelroy R A,Bassham J A.Kinetics of glucose incorporation by Aphanocapsa 6714.Journal of Bacteriology,1973,115(3):943-948.
    [109]Pelroy R A,Bassham J A.Photosynthesis and dark carbon metabolism in unicellular Blue-Green algae. Archives of Microbiology, 1972, 86: 25-38.
    [110] Pulich W M, Van Baalen C. Pyridine nucleotide-dependent glucose dehydrogenase activity in blue-green algae. Journal of Bacteriology, 1973, 114:28-33.
    [111] Raboy B, Padan E, Shilo M. Heterotrophic capacities of Plectonema boryanum. Archives of Microbiology, 1976,110: 77-85.
    
    [112] Richmond A. Spirulina. In: Borowitzka M A, Borowitzka L J (Eds.), Micro-algal biotechnology. Cambridge: Cambridge University Press, 1988, 85-121.
    [113] Richmond A, Lichtenberg E, Stahl B, et al. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. Journal of Applied Phycology, 1990, 2: 195-206.
    [114] Rippka R. Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Archives of Microbiology, 1972, 87: 93-98.
    [115] Rittenberg S C. The obligate autotroph-the demise of a concept. Antonie van Leeuwenhoek, 1972, 38: 457-478.
    [116] Running J A, Huss R J, Olson P T. Heterotrophic production of ascorbic acid by microalgae. Journal of Applied Phycology, 1994, 6: 99-104.
    [117] Schneegurf M A, Sherman D M, Sherman L A. Growth, physiology, and ultrastructure of a diazotrophic Cyanothece sp. Strain ATCC 51142 in mixotrophic and chemo heterotrophic cultures. Journal of Phycology, 1997, 33: 632-642.
    [118] Shi X M, Liu H J, Zhang X W, et al. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry, 1999, 34: 341-347.
    [119] Shihiro-Ishikawa I, Hase E. Nutritional control of cell pigmentation in Chlorella protothecoides with special reference to the degeneration of chloroplast induced by glucose. Plant and Cell Physiology, 1964, 5: 227-240.
    [120] Smart L B, Anderson S L, Mclntosh L. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechococcus sp. PCC6803.The EMBO Journal,1991,10:3289-3296.
    [121]Steinbib H J,Zetsche K.Light and metabolite regulation of the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase and the corresponding mRNAs in the unicellular alga Chlorogonium.Planta,1986,167:575-581.
    [122]Steinmüller K,Zetsche,K.Photo- and Metabolite Regulation of the synthesis of ribulose bisphosphate carboxylase/oxygenase and the phycobiliproteins in the alga Cyanidium caldarium.Plant Physiology,1984,76:935-939.
    [123]Syrett P J,Merrett M J,Bocks S M.Enzymes of the glyoxylate cycle in Chlorella vulgaris.Journal of Experimental Botany,1963,41:249-264.
    [124]Takeyama H,Kanamaru A,Yoshino Y,et al.Production of antioxidant vitamins,β-carotene,vitamin C,and vitamin E by two-step culture of Euglena gracilis Z.Biotechnology and Bioengineering,1997,53:185-190.
    [125]Tan C K,Johns M R.Fatty acid production by hetrotrophic Chlorella saccharophila.Hydrobiologia,1991,215:13-19.
    [126]Tan C K,Johns M R..Sreening of diatoms for heterotrophic eicosapentaenoic acid production.Journal of Applied Phycology,1996,8:59-64.
    [127]Tredici M R,Margheri M C,Giovanneni L,et al.Heterotrophic metabolism and diazotrophic growth of Nostoc sp.from Cycas.Circinalis.Plant and Soil,1988,110:199-206.
    [128]Tsavalos A J,Day J G..Development of media for the mixotrophic/heterotrophic culture of Brachiomonas submarina.Journal of Applied Phycology,1994,6:431-433.
    [129]Valiente E F,Nieva M,Avendano C,et al.Uptake and utilization of fructose by Anabaena variabilis ATCC 29413.Effect on respiration and photosynthesis.Plant and Cell Physiology,1992,33:307-313.
    [130]Van Baalen C,Hoare D S,Brandt E.Heterotrophic growth of Blue-Green algae in dim light.Journal of Bacteriology,1971,105(3):685-689.
    [131]Vartanian M D,Espardellier F J,Astier C.Contributions of respiratory and photosynthetic pathways of a facultative photoautotrophic cyanobacterium,Aphanocapsa 6714.Plant Physiology,1981,68:974-978.
    [132] Vernotte C, Picaud M, Kirilovsky D, et al. Changes in the photosynthetic apparatus in the cyanobacterium Synechococcus sp. PCC6714 following light-to-dark and dark-to-light transitions. Photosynthesis Research, 1992, 32: 42-57.
    [133] Vonshak A, Cheung S M, and Chen F. Mixotrophic growth modifies the response of Spirulina(Arthrospira) platensis(Cyanobacteria) cells to light. Journal of Phycology, 2000, 36: 675-679.
    [134] Walter J. The role of glucose on enzyme in the release of mature spores of Chlorellafusca var vacuolate. Plant Physiology, 1983, 71(2): 219-223.
    [135] Wang H Y, Guo S Y, Zheng B S, et al. Growth and biochemical components of Chlorella Vulgaris under autotrophic, heterotrophic and mixotrophic cultivations. Journal of South China University of Technology (Natural Science Edition), 2004, 32(5): 47-55.
    [136] Wellburn A R. The spectral determination of chlorophylls a and b, as well total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1994, 144: 307-313.
    [137] Wen Z Y, Chen F. Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis effects of silicate and glucose. Journal of Industrial Microbiology and Biotecnology, 2000, 25: 218-224.
    [138] Wen Z Y, Chen F. Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochemistry, 2002, 38: 523-529.
    
    [139] Wiessner W. Photoassimilation of organic compounds. In: Gibbs M, Latzko E (Eds.), Photosynthesis II. Photosynthetic carbon metabolism and related processes. Encyclopedia of plant Physiology, New Series, 1979, 6: 181-189.
    [140] Wood B J B, Grimson P H K, German J B, et al. Photoheterotrophy in the production of phytoplankton organisms. Journal of Bacteriology, 1999, 70: 175-183.
    [141] Xie J L, Zhang Y X, Li Y G, et al. Mixotrophic cultivation of Platymonas subcordiformas. Journal of Phycology, 2001, 13: 343-347.
    [142] Xu F, Cong W, Cai Z L, et al. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp.. Journal of Applied Phycology, 2004, 16: 499-503.
    [143] Xu F, Hu H H, Cong W, et al. Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions. Biotechnology Letters, 2004, 26:51-53.
    [144] Xu N J, Zhang X C, Fan X, et al. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). Journal of Applied Phycology, 2001, 13: 463-469.