微藻产氢研究及2种绿藻氢酶基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源需求的不断增长与日益严重的环境污染之间存在着尖锐的矛盾,寻找清洁的替代能源已成为一项迫切的课题。氢作为一种清洁的能源,其研究开发已经成为能源研究的重要方向。微藻产氢是生物制氢领域最有应用前景的研究方向之一。
     本论文对8种绿藻:羊角月牙藻(Selenastrum capricormutum)、纤维藻(Ankistrodesmus sp.)、雪衣藻(Chlamydomonas nivalis)、斜生栅藻(Scenedesmusobliqnus)、莱茵衣藻(Chlamydomonas reinhardtii)、绿藻1969(Chlamydomonas augustae)、小球藻(Chlorella vnlgaris)、蛋白核小球藻(Chlorella pyrenoidosa)和7种蓝藻:水华微囊藻(Microcystis flos-aquae)、具缘微囊藻(Microcystis marginata)、铜绿微囊藻(Microcystis aeruginosa)、束丝藻(Aphanizomenon sp.)、假鱼腥藻(Pseudanabaena sp.)、丝藻(Ulothrix sp.)和颤藻(Oscillatoria sp.)的产氢能力进行了测定;研究了其中6种绿藻:雪衣藻、斜生栅藻、莱茵衣藻、绿藻1969、小球藻和蛋白核小球藻在有硫培养液(TAP培养液)和无硫培养液(TAP-S培养液)的产氢特征,测定了绿藻对不同产氢条件下的光合作用生理响应;研究和分析了蛋白核小球藻在pH(5.0-8.0)的TAP和TAP-S培养液内产氢能力以及与光合作用的关系;对雪衣藻和绿藻1969的氢酶基因进行了克隆和分析,以期为今后氢酶的改造或修饰,提高其耐氧性和产氢活性的研究提供基础。研究结果如下:
     (1)采用BG11_0培养基,将藻液经过3 h暗适应,然后照光培养1 h,结果显示①绿藻羊角月牙藻和纤维藻经3 h暗适应和光照培养1 h两个阶段后均未检测到氢气,而莱茵衣藻、绿藻1969、小球藻、蛋白核小球藻在两个阶段均可检测到有氢气产生;雪衣藻在暗适应3h后未检测到氢气,光照1h后,可以检测到氢气产生;斜生栅藻在暗适应3h后可产生氢气,而光照1h后,则吸收暗适应时产生的部分氢气。②蓝藻中的水华微囊藻在上述两个阶段后未检测到氢气产生;缘微囊藻、束丝藻、假鱼腥藻、丝藻和颤藻暗适应3 h后可检测到氢气产生,而光照1h后,则吸收暗适应时产生的氢气。铜绿微囊藻在两个阶段均可检测到有氢气产生。
     (2) 6种产氢绿藻在TAP和TAP-S培养液中的产氢以及叶绿素荧光的研究结果显示:①暗适应24 h,6种绿藻在TAP和TAP-S培养液中均可产氢。②在光照不同培养条件时,莱茵衣藻在TAP-S培养液内产氢最多,120 h时总产氢量达到4.77 ml,产氢速率0.63 ml·h~(-1)·L~(-1),是蛋白核小球藻在两种培养条件下产氢总量的10倍左右,是其它藻产氢总量的100倍左右。③在TAP培养液内光照培养时,6种绿藻的F_v/F_m值和φ_(PSII)值与初始值相比都有不同程度的升高,表明这6种绿藻在TAP培养液中的原初光能转化效率和光化学反应效率均有提高,可知在TAP培养液中绿藻产氢需要的无氧环境是由绿藻细胞生长速度快,呼吸作用强形成的局部缺氧环境。在TAP-S培养液内光照培养时,6种绿藻F_v/F_m值和φ_(PSII)值与初始值相比都有不同程度的降低,可知6种绿藻在TAP-S培养液中,原初的光能转化效率和光化学反应效率均有不同程度的下降,使氧气含量减少,形成无氧环境,促使氢气产生。
     (3)采用不同pH(5.0-8.0)的TAP和TAP-S培养液,对蛋白核小球藻进行光照产氢实验,结果显示:在持续光照(165μmol·m~(-2)·s~(-1))条件下,有硫培养液(TAP培养液)内最高产氢速率和总产氢量出现在pH 7.0,分别是0.62 ml·h~(-1)·L~(-1)和1.39 ml。。无硫培养液(TAP-S培养液)内叶绿素a含量、F_v/F_m值及φ_(PSII)值变化表明蛋白核小球藻生长明显受抑制,形成的无氧环境持久,故产氢持久,总体产氢量比有硫培养液内高。pH 5.5的培养液内藻的产氢速率和总产氢量最大,分别是0.78 ml·h~(-1)·L~(-1)和10.98 ml。
     (4)对雪衣藻和绿藻1969的细胞进行无氧条件诱导,收集藻细胞提取总RNA,采用RT-PCR与RACE-PCR相结合方法,克隆两个绿藻的全长hydA基因。两种绿藻的hydA基因序列全长均为1176 bp,核苷酸序列同源性高达99.8%。两种测试藻与绿藻Chlorellafusca的核苷酸同源性为85%,与斜生栅藻的核苷酸同源性为76%。hydA基因编码的氢酶蛋白,由392个氨基酸组成,其氨基酸同源性达100%。
Molecular hydrogen(H_2) has been suggested to be an optimal energy for the future,contributing to the growth of the world economy by facilitating a stable supply and by reducing the pollution of environment.Biological H_2 production linked to photosynthetic water oxidation is a promising technology that may play a major role in the future of renewable energy.The ability of green algae and cyanobacteria to photosynthetically generate H2 has captivated the interest of the scientific community due to the fundamental and practical importance.
     In this thesis,H_2 production by microalgal photosynthesis(green algae: Selenastrum capricormutum,Ankistrodesmus sp.,Chlamydomonas nivalis, Scenedesmus obliqnus,Chlamydomonas reinhardtii,Chlamydomonas augustae, Chlorella vnlgaris,Chlorella pyrenoidosa and cyanobacteria:Microcystis flos-aquae,Microcystis marginata,Microcystis aeruginosa,Aphanizomenon sp., Pseudanabaena sp.,Ulothrix sp.,Oscillatoria sp.),which are cultured in BG11_0 medium,was detected;Investigated the effects of sulfur on H_2 production of six species from green algae,and measured the chlorophyll fluorescence: Fv/Fm andφPSⅡduring H_2 production;Physiological conditions for optimal H_2 production of C.pyrenoidosa were analyzed by investigating the effects of sulfur and pH in the medium;Cloning of the hydrogenase gene from two species of green algae,C.nivalis and C.augustae,had been cloned.The results indicate that:
     (1) Photosynthetic H_2 production by micro-algae in BG11_0 was detected in two phases,three hours dark treatment,and then one hour light cultured phase.①H_2 couldn't be detected in the medium of S.capricormutum and Ankistrodesmus sp.in both dark phase and light phase;C.reinhardtii,C. augustae,C.vnlgaris and C.pyrenoidosa produced H_2 in the dark and light phases;H_2 couldn't be detected under dark phase but could be detected under light phase in the medium of C.nivalis;After light phase,S.obliqnus absorbed the part of H_2 that had been produced in the dark phase.②H_2 couldn't be detected in M.flos-aquae medium in the dark and light phases;M.marginata,M. aeruginosa,Aphanizomenon sp.,Pseudanabaena sp.,Ulothrix sp.,Oscillatoria sp.produced H_2 in the dark phase;In light phase M.aeruginosa could produce H_2 but the others cyanobacteria absorbed the H_2 that had been produced in the dark phase.
     (2) The effects of sulfur on H_2 production of six species from green algae were investigated.①After twenty-four hours dark cultured,C.reinhardtii,S. obliqnus,C.augustae,C.nivalis,C.vnlgaris and C.pyrenoidosa could produce H_2 in the TAP and TAP-S mediums.②Under continuous illumination of 165μmol·m~(-2)·s~(-1) condition,the maximum rate of H_2 production by C.reinhardtii was 0.63 ml·h~(-1)·L~(-1) and the maximum total yield of H_2 production was 4.77 ml in TAP-S medium,H_2 production by C.reinhardtii was approximately 10 timers higher than that by C.pyrenoidosa in TAP and TAP-S mediums,was about 100 timers higher than that H_2 production by others green algal species in TAP and TAP-S mediums.③In the TAP medium,Fv/Fm andφPSⅡsuggested growth of six species of green algae grew well which supported sufficient respiration rates for establishing a partial anoxic conditions in favor of H_2 production.In TAP-S culture medium,changes of Fv/Fm andφPSⅡindicated photosynthesis of six green algal species were partially inhibited and can form a permanent anoxic conditions in favor of H_2 production.
     (3) The effects of sulfur and pH(5.0-8.0) on H_2 production by C. pyrenoidosa were investigated.In the TAP medium,chlorophyll a content, Fv/Fm andφPSⅡindicated that C.pyrenoidosa grew well at initial cultivation pH ranged from 6.0 to 7.0 and can form a temporary anoxic conditions in favor of H_2 production.Maximum H_2 production was obtained at initial cultivation pH 7.0 by C.pyrenoidosa.The maximum rate of H_2 produced by C.pyrenoidosa was 0.62 ml·h~(-1)·L~(-1) and the maximum total yield of H_2 production was 1.39 ml; In TAP-S medium,chlorophyll a content,Fv/Fm andφPSⅡindicated that growth of C.pyrenoidosa were inhibited and can form a permanent anoxic conditions in favor of H_2 production.The Fv/Fm value of C.pyrenoidosa in pH 5.5 TAP-S culture was higher than the other cultures.It indicated that the residual PSⅡwas more than the other residual PSⅡs.Under continuous illumination the electron of production H_2 requirement mostly comes from PSⅡso the maximum rate and yield of H_2 produced by C.pyrenoidosa appeared in pH 5.5 TAP-S cultures.The maximum rate of H_2 produced by C.pyrenoidosa was 0.78 ml·h~(-1)·L~(-1) and the total yield of H_2 was 10.98 ml.
     (4) Total RNA of C.nivalis and C.augustae were isolated under anaerobic conditions.From the total RNA,hydA cDNA encoding hydrogenase was cloned through RT-PCR and RACE-PCR.Sequence analysis suggested the hydA gene of two alga species is consisted of 1 176 bp encoding 392 amino acids,the homology between the whole nucleotide sequence of two green algal species is 99.8%,shared 85%homologue with C.fusca and 76%with S.obliquus,the homology of amino acids between two green algal species is 100%.
引文
1.陈兆平,曹毓英,何小琼,张文文,程双奇.固定化固氮鱼腥藻细胞的固氮放氢.植物生理学通讯,1990,(6):21-23.
    2.戴玲芬,林惠民.蓝细菌红萍鱼腥藻的两种固氮酶系统的放氢特点.水生生物学,1994,18(4):383-385.
    3.韩志国,李爱芬,龙敏南,韩博平.微藻光合作用制氢--能源危机的最终出路?.生态科学,2003,22(2):104-108.
    4.韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社.2003,第一版:57-76.
    5.贺立静,雷腊梅,韩博平.6种淡水绿藻产氢的比较.西北农业学报,2007,16(5):239-242
    6.胡成春.新能源.上海科学技术出版社,1994.
    7.顾天青,王发珠.螺旋藻Spirulina platensis整体细胞放氢特性的研究.植物生理学报,1984,10(1):1-9.
    8.管英富.绿藻间接光解水制氢过程的研究.博士学位论文,2003,20-22.
    9.管英富,邓麦村,金美芳,虞星炬,张卫.微藻光生物水解制氢技术.中国生物工程杂志,2003,(4):8-13.
    10.管英富,邓麦村,虞星炬,金美芳,张卫.4种海洋绿藻光合放氢特征的研究.海洋科学,2004,28:(9)32-35.
    11.匡廷云.光合作用原初光能转化过程的原理与调控.江苏科学技术出版社,2003,442-443.
    12.李全顺,徐成海.螺旋藻作为生物能源的研究进展.节能,2005,(8):2,15-18
    13.林少君,贺立静,黄沛生,韩博平.浮游植物中叶绿素a提取方法的比较和改进.生态科学,2005,24(1):9-11.
    14.龙敏南,林志,詹雄凌,吴健民,张风章,许良树.螺旋藻Spirulina platensis放氢的研究.厦门大学学报[自然科学版],1998,37(6):921-924.
    15.孙晓筠,刘颖,吴庆余.叶绿素缺失和异养生长对监藻Synechocystis Sp.PCC 6803藻胆白含量的影响.植物学通报,1998,15(2):58-62.
    16.王庆仁,林葆.硫胁迫对油菜超微结构及超细胞水平硫分布的影响.植物营养与肥料学报,1999,5(1):46-49.
    17.王义琴,尹良宏,王鹏,张利明,孙勇如.小球藻的分子生物学研究进展.遗传,2004,26(3):399-402.
    18.我国首次完成生物制氢中试研究.创造博览,2000,4:37.
    19.杨素萍,赵春贵,刘瑞田,曲音波,钱新民.沼泽红假单细胞乙酸光合放氢研究.生物工程学 报,2002,18(4):486-491.
    20.杨素萍,赵春贵,曲音波.光合细菌产氢研究进展.水生生物学报,2003,27(1):85-90.
    21.张凤章,林淑贞,龙敏南,许良树.高等植物放氢的初步研究.厦门大学学报(自然科学版),1997,36(5):808-811.
    22.张爱琴,姜泉,谢小军,羊洁,方昭希.不同光质对钝顶螺旋藻生长和放氧放氢活性的影响.植物生理学通讯,1989,(4):23-26.
    23.赵永丰,鲍德佑.制氢方法.太阳能,1999,(4):14-15.
    24.朱核光,史家禊.生物产氢技术研究进展.应用与环境生物学报,2002,8(1):98-104.
    25.朱建良,冯有智.固氮类微生物产氢机理研究进展,南京工业大学学报,2003,25(1):102-106.
    26.曾定.固氮生物学.厦门,厦门大学出版社,1987
    27.Abeles F B.Cell free hydrogenase from Chlamydomonas.Plant physiology,1964,39:167-176.
    28.Adams M W W,Stiefel E I.Organometallic iron:the key to biological hydrogen metabolism.Current Opinion in Chemical Biology,2000,4(2):214-220.
    29.Adams M W W.The structure and mechanism of iron-hydrogenase.Biochimica et Biophysica Acta,1990,1020:115-145.
    30.Altschul S F,Madden T L,Schafer A A,Zhang J,Zhang Z,Miller W,Lipman D J.Gapped BLAST and PSI-BLAST:a new generation of protein database search program.Nucleic Acids Research,1997,25(17):3389-3402.
    31.Appel J,Phunpruch S,Schulz R.Hydrogenase(s) in Synechocystis:tools for photohydrogen production? In:Zaborsky O R(ed).BioHydrogen.New York:Plenum Press,1998,189-196.
    32.Appel J,Schulz R.Hydrogen metabolism in organisms with oxygenic photosynthesis:hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry and Photobiology,B:Biology,1998,47:1-11.
    33.Antal T K,Lindblad P.Production of H_2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp.PCC 6803 during dark incubation with methane or at various extracellular pH[J].Journal Appliy Microbiology,2005,98:114-120.
    34.Asada Y,Kawamura S,Ho K K.Hydrogenase from the unicellular cyanobacterium.Microcystis.aeruginosa,Phytochemist,1987,26:637-640.
    35.Asada Y,Miyake J.Photobiological hydrogen production(review).Journal of Bioscience and Bioengineering,1999,88(1):1-6.
    36.Benemann J R.Feasibility analysis of photobiological hydrogen production.International of Hydrogen Energy,1997,22(10):979-987.
    37.Benemann J R.Hydrogen production by microalgae.Journal of Applied Phycology,2000.12:291-300
    38.Cao H M,Zhang L P,Melis A.Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella Salina.Journal of Applied Phycology,2001,13(1):25-34.
    39.Coumac L,Mus F,Bemard L,Guedeney G,Vignais P,Peltier G.Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechosystis PCC 6803 as analyed by light-induced gas exchange transients. International of Hydrogen Energy, 2002, 27: 1229-1237.
    40. Das D, Veziroglu T N. Hydrogen production by biological processes: a survey of literature. International of Hydrogen Energy, 2001, 26:13-28.
    41. Ferreira R M B, Teixeira A R N. Sulfur starvation in Lemna leads to degradation of ribulose-bisphosphate carboxylase without plant death. The Journal of Biological Chemistry, 1992, 267(11):7253-7257.
    42. Florin L, Tsokoglou A, Happe T. A novel type of [Fe]-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. The Journal of Biological Chemistry, 2001, 276:6125-6132.
    43. Gaffron H. Carbon dioxide reduction with molecular hydrogen in green algae. Am J Bot, 1940, 27: 273-283.
    44. Gaffron H. Reduction of CO_2 with H_2 in green plants. Nature, 1939,143: 204-205.
    45. Ghirardi M L, Amos W. Renewable hydrogen from green algae. Biocycle energy, 2004, 45(5):59,62
    46. Ghirardi M L, Kosourov S, Tsygankov A, Rubin A, Seibert M. Cyclic Photobiological Algal H_2-Production. Proceedings of the 2002 DOE Hydrogen Program Review, 2002, 1-12
    47. Ghirardi M L, King P W, Posewitz M C, Maness P C, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M. Approaches to Developing Biological H_2-Photoproducing Organisms and Processes. Biochemical Society Transactions, 2005, 33:70-72.
    48. Ghirardi M L, Togasaki R K, Seibert M. Oxygen sensitivity of algal H_2-production. Applied Biochemistry and Biotechnology, 1997, 63-65:141-151.
    49. Ghirardi M L, Zhang L, Lee J W, Flynn, T, Seibert M, Greenbaum E, Melis A. Microalgae: a green source of renewable H_2. Trends in Biotechnology, 2000, 18, 506-511.
    50. Guan Y F, Deng M C, Yu X J, Zhang W. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochemi Engineer Journey, 2004a, 19:69-73.
    51. Guan Y, Zhang W, Deng M, Jin M, Yu X. Significant enhancement of photobiological H_2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Biotechnology Letters, 2004b, 26: 1031-1035.
    52. Hall D O, Markov S A, Watnanbe Y, Rao K K. The potential applications of cyanobacterial photosynthesis for clean technologies. Photosynthesis research, 1995, 46:159-167.
    53. Hallenbeck P C. Immobilized microorganisms for hydrogen and ammonia production. Enzyme Microb Technol, 1983,5:171-180.
    54. Hallenbecka P C, Benemannb J R. Biological hydrogen production; fundamentals and limiting processes. International of Hydrogen Energy, 2002, 27:1185-1193.
    55. Happe R P, Roseboom W, Plerik A J, Albracht S P L, Bagley K A. Biological activation of hydrogen. Nature, 1997,385:126.
    56. Happe T, Hemschemeier A, Winkler M, Kaminski A. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?. Trends in Plant Science, 2002, 7:246-250.
    57. Happe T, Kaminski A. Differential regulation of the [Fe]-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem, 2002, 269: 1022-1032.
    58. Happe T, Mosler B, Naber J D. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem, 1994, 222,769-774.
    59. Happe T, Naber J D. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur. J. Biochem, 1993,214:475-481.
    60. Harris E H. The Chlamydomonsa sourcebook: a comprehensive guide to biology and laboratory use. San Diego: Academic Press, 1989, 575-580.
    61. Hase E, Morimua Y, Mibara S, Tamiya H. The role of sulfur in the cell division of Chloella. Arch Mikrobiol. 1958.31: 87-95.
    62. Hase E, Otsuka H, Mihara S. Role of sulfur in the cell division of Chlorella, studied by the technique of synchronous culture. Biochim Biophys Acta, 1959, 35:180-189.
    63. Horner D S, Heil B, Happe T, Embley M. Iron hydrogenase-ancientenzymes in modern eukaryotes. Trends in Biochem Sci, 2002, 27(3): 148-153.
    64. Kentemich T, Bahnweg M, Mayer F, Bothe H, Localization of the reversible hydrogenase in cyanobecteria.Z Naturforsch, 1989, 44c:384-391.
    65. Khatipova E, Miyakea M, Miyakec J, Asadaa Y. Accumulation of poly-b-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiology Letters, 1998,162,39-45.
    66. Kosourov S, Tygankov A, Seibert M, Ghirardi M L. Sustained hydrogen photopoduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol. Bioeng, 2002, 78, 731-740.
    67. Kosourov S, Seibert M, Ghirardi M L. Effect of Extracellular pH on the Metabolic Pathways in Sulfur-Deprived H_2-Producing Chlamydomonas reinhardtii Cultures. Plant Cell Physiol, 2003, 44(2):146-155.
    68. Kruse O, Rupprecht J, Mussgnug J H, Dismukesc G C, Hankamer B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci, 2005, 4:957-969.
    69. McTavish H, Sayavedra-Soto L A, Arp D J. Substitution of Azotobacter vinelandii hydrogenase small subunit cysteins by serines can creat insensitivity to inhibition by O_2 and preferentially damages H_2 oxidation over H_2 evolution. J. Bact, 1995, 177:3960-3964.
    70. Melis A, Neidhardt J, Benemann, J R., Dunaliella salina (Chlorophyta) with small antenna sizes exhibit higher photosynthetic productivities and photon efficiencies than normally pigmented cells. J. Appl. Phycol, 1999, 10:515-525.
    71. Melis A., Zhang L., Forestier M., Ghirardi M L, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant physiology, 2000, 122:127-136.
    72. Melis A, Happe T. Hydrogen production: Green alga as a source of energy. Plant Physiology, 2001, 127:740-748.
    73. Melis A. Green alga hydrogen production: progress, challenges and prospects. International of Hydrogen Energy, 2002, 27:1217-1228.
    74. Melis A., Happe T. Trails of green alga hydrogen research—from Hans Gaffron to new frontiers. Photosynthesis Research, 2004, 80:401-409.
    75. Neale P J, Melis A. Salinity stress enhances photoinhibition. of photosynthesis in Chlamydomonas reinhardtii. Plant Physiology, 1989,134:619-622.
    76. Nikiforova V J, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford M J, Hesse H, Hoefgen R. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants, Plant Physiology, 2005, 138:304-318.
    77. Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Desulfovibrio desufiuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure, 1999,7:13-23.
    78. Nicolet Y., Lemon B J, Fontecilla-Camps J C. Peters J W. A novel FeS cluster in Fe-only hydrogenases. Trends Biochem.Sci, 2000, 25: 138-143.
    79. Peters J W, Lanzolotta W N, Lemon B J, Seefeldt L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 1998, 282, 1853-1858.
    80. Polle J E W, Kanakagiri S, Jin E S, Masuda T, Melis A. Truncated chlorophyll antenna a size of the photosystems-a practical method to improve microalgal productivity and hydrogen production in mass culture Int. J.Hydrogen Energy, 2002, 27:1257-1264.
    81. Rao K K, Hal D O. Hydrogen production by cyanobacteria: potential, problems and prospects. Journal of Marine Biotechnology, 1996, 4:10-15.
    82. Reeves M E, Greenbaum E. Long-term endurance and selection studies in hydrogen and oxygen photoproduction by Chlamydomonas reinhardtii. Enzyme Microb Technol, 1985, 10:169-174.
    83. Rippka R, Deruelles J, Waterbury J B. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiology, 1979, 111:1-61.
    84. Ruban A V, Horton P. Mechanism of Ph-dependent dissipation of absorbed excitation energy by photosynthetic membrane: spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta, 1992, 1116:219-227.
    85. Schnackenberg J, Ikemoto H, Miyachi S. Photosynthesis and hydrogen evolution under stress conditions in a CO_2-tolerant marine green alga, Chlorococcum littorale. J. Photochem Photobiol B:Biol, 1996,34:59-62.
    86. Schreiber U, Bilger W, Neubauer C, Chlorophyll fluorescence as a non-invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, E D , Calswell M M. (Eds.), Ecophysiology of Photosynthesis. Springer, Berlin, 1994, pp. 49-70.
    87. Schreiber U. Chlorophyll fluorescence and photosynthetic energy conversion: Simple introductory experiments with the TEACHING-RAM Chlorophyll Fluorometer, Heinz Walz GmbH, 1997, 23-24 (韩志国译,叶绿素荧光与光合作用能量转换——叶绿素荧光基础实验指南,23—24)
    
    88. Schulz R, Schnackenberg J, Stangier K, Wunschiers R, Zinn T, Senger H, Light-dependent hydrogen production of the green alga Scenedesmus obliquus. In: Zaborsky O R(ed). BioHydrogen . New York: Plenum Press, 1998,243-251.
    89. Serebryakova L T, Medina M, Zorin N A, Gogotov I N, Cammack R. Reversible hydrogenase of Anabaena variabilis ATCC 29413: Catalytic properties and characterization of redox centres. FEBS Lett, 1996, 383:79-82.
    90. Shah V, Garg N, Madamwar D. Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiol Lett, 2001, 194:71-75.
    91. Tamagnini P. AXelsson R, Lindberg P, OXelfelt F, Wunschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria: Microbiology and molecular biology reviews, 2002, 66:1-20.
    92. Tsygankov A, Kosourov S, Seibert M, Ghirardi M L. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. International of Hydrogen Energy, 2002, 27:1239-1244.
    93. Ueno Y, Kurano N, Miyachi S. Purification and characterization of hydrogenase from the marine green alga, Chlorococcum Morale. FEBS Lett, 1999, 443: 144-148.
    94. Vignais P M, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiology Reviews, 2001, 25:455-501.
    95. Winkler M, Heil B, Happe T. Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta, 2002a, 1576:330-334.
    96. Winkler M., Hemschemeier A, Gotor C, Melis A, Happe T. Fe-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International of Hydrogen Energy, 2002b, 27, 1431-1439.
    97. Wunschiers R, Senger H, Schulz R. Electron pathways involved in H_2-metabolism in the green alga Scenedesmus obliquus. Biochimica Biophysica Acta, 2001a, 1503(3):271-278.
    98. Wunschiers R, Stangier K, Senger H, Schulz R. Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus. Journal Seek entry for Current Microbiology, 2001b, 42, 353-360.
    99. Wunschiers R, lindblad P. Hydrogen in education-a biological approach. International of Hydrogen Energy, 2002, (27) :1131-1140.
    100. Wykoff D D, Davies J P, Mells A, Grossman A R. The Regulation of photosythetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology, 1998, 117:129-139.
    101. Zhang LP, Happe T, Melis A. Biochemical and morphological characterization of sulfur-deprived and H_2-producing Chlamydomonas reinhardtii (green alga). Planta, 2002, 214:552-561.