海洋微藻对CO_2加富响应的实验生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO_2的浓度以前所未有的速度稳步增加是全球性的重大环境问题之一。CO_2等温室气体的增加导致全球气温的上升即“温室效应”的加剧,随之而来的是海平面的上升、生物多样性的丧失和沙漠化的加剧等等,这已影响到整个地面生态系统的变化。全球CO_2浓度升高对生态系统中的绿色植物将产生直接的影响,进而使生物从生态系统、群落、种群、个体、细胞以及分子各个层次水平上发生变化。在整个海洋食物网中,海洋微藻是CO_2加富最直接的响应者,它不仅驱动着整个海洋生态系统的能流和物流,直接和间接地养育着几亿吨的海洋动物,而且对调节全球变化起着重要的作用。本文采用实验生态学的方法从种间、种群、生理生化和分子水平研究了6种海洋微藻:小球藻(Chlorella.sp)、亚心形扁藻(Platymanas subcordiformis)、金藻8701(Isochrysisgalbana Parke 8701)、中肋骨条藻( Skeletonema costatum )、盐藻(Dunaliella salina)和赤潮异弯藻(Heterosigma akashiwo)对大气CO_2浓度升高的响应。研究结果如下:
     1.海洋微藻种群增长对CO_2加富的响应
     6种海洋微藻的种群增长对CO_2加富都作出了一定的响应,即CO_2加富(5000μl/L)能够显著促进6种海洋微藻:小球藻、盐藻、金藻8701、中肋骨条藻、亚心形扁藻和赤潮异弯藻的种群增长。使其种群增长进入静止期的时间缩短,种群达到的最大细胞密度显著提高(p < 0.05)。6种海洋微藻的种群增长对CO_2加富(5000μl/L)响应的敏感性存在一定的差异,按敏感性由低到高的顺序依次为:小球藻<盐藻<金藻8701<中肋骨条藻<亚心形扁藻<赤潮异弯藻,赤潮异弯藻对CO_2加富最敏感,而小球藻对CO_2加富最不感。
     2.双藻共培养条件下海洋微藻种群竞争对CO_2加富的响应
     以赤潮异弯藻和中肋骨条藻为目标微藻,在共培养条件下研究了二者的竞争作用及其对CO_2加富的响应变化。结果发现:起始接种密度对赤潮异弯藻和中肋骨条藻的种群增长有明显的影响。即随着接种密度的提高,2种赤潮微藻种群增长进入指数生长期的时间都相应地提前,进入静止期的时间同样都相应地提前,而种群增长所达到的最大细胞密度均相应地降低。共培养条件下,中肋骨条藻在与赤潮异弯藻的竞争中始终占优势,且随着中肋骨条藻相对起始接种密度的提高,其种群竞争生长的优势越加明显,对赤潮异弯藻种群生长的抑制作用愈加显著。CO_2加富处理可改变赤潮异弯藻和中肋骨条藻种群竞争的关系,使赤潮异弯藻种群竞争能力降低,中肋骨条藻种群竞争能力大大提高。
     3.多藻共培养条件下海洋微藻种群竞争对CO_2加富的响应
     选用3种海洋微藻--亚心形扁藻、中肋骨条藻和金藻8701为实验藻种,研究了多藻共培养条件下微藻竞争性平衡以及对CO_2加富的响应变化。结果表明:在正常条件(通空气)下,金藻8701的种群增长动态表现为弱竞争型,中肋骨条藻的种群增长动态为强竞争型,亚心形扁藻种群增长动态为增长型。因此,在多藻共培养体系中,种群竞争向有利于中肋骨条藻种群增长的方向发展,使中肋骨条藻最终成为优势种,而亚心形扁藻则成为亚优势种,金藻8701成为劣势种。
     CO_2加富(通含5000μl/L CO_2的空气)处理改变了3种海洋微藻的种群增长动态,同时引起了种群竞争平衡的变化。CO_2加富条件下,中肋骨条藻的种群增长动态表现为为增长型,而亚心形扁藻种群增长动态表现为强竞争型,而金藻8701种群增长动态仍然表现为弱竞争型。因此,在多藻共培养体系中,种群竞争向有利于亚心形扁藻种群增长的方向发展,使亚心形扁藻由正常条件下的亚优势变化为CO_2加富条件下的优势种,而中肋骨条藻则由正常条件下的优势种变化为CO_2加富条件下的亚优势种。
     4.海洋微藻大分子物质合成动态对CO_2加富的响应
     选用3种海洋微藻--中肋骨条藻、赤潮异弯藻和小球藻探讨CO_2浓度升高对海洋微藻大分子物质合成动态的影响。结果表明:3种海洋微藻DNA合成动态对CO_2加富显示出类似的响应,表现在DNA合成速度加快,DNA合成量增加。3种海洋微藻相比,赤潮异弯藻的DNA的合成对CO_2加富最敏感,其次是中肋骨条藻,而小球藻的DNA的合成对CO_2加富最不敏感。
     3种海洋微藻RNA合成动态对CO_2加富同样显示出类似的响应,表现在RNA合成速度加快,RNA合成量增加。3种海洋微藻相比,中肋骨条藻的RNA的合成对CO_2加富最敏感,其次是赤潮异弯藻,而小球藻RNA的合成对CO_2加富最不敏感。
     3种海洋微藻蛋白质合成动态对CO_2加富显示出不同的响应,赤潮异弯藻蛋白质合成对CO_2加富最敏感,表现在蛋白质合成速度加快,蛋白质合成量显著增加。中肋骨条藻蛋白质的合成对CO_2加富相对不敏感,而小球藻蛋白质的合成对CO_2加富没有显示出响应性变化。
     5.海洋微藻对CO_2加富的生理生化响应
     选用中肋骨条藻、赤潮异弯藻和小球藻为实验藻种,从生理生化层次继续研究其对CO_2加富的响应变化,结果发现:3种海洋微藻的光合速率、光合固碳速率和碳酸酐酶活对CO_2加富都作出了明显的响应变化,与对照组相比差异显著(p< 0.05)。说明CO_2加富处理刺激了3种海洋微藻的碳酸酐酶活性,从而提高了它们的光合速率和光合固碳速率,这将对其生长产生间接的促进作用。三种海洋微藻相比,赤潮异弯藻的响应最明显,其次是中肋骨条藻,小球藻的响应相对最不明显。
     3种海洋微藻的硝酸还原酶活性和对N、P的吸收速率对CO_2加富都作出了明显的响应变化,与对照组相比差异极显著(p<0.01)。指示CO_2加富处理刺激了3种海洋微藻的硝酸还原酶活性,从而提高了它们对N、P的吸收速率,这将对其生长产生间接的促进作用。三种海洋微藻对P吸收速率的响应敏感性顺序是赤潮异弯藻>中肋骨条藻>小球藻,对N吸收速率的敏感性顺序是中肋骨条藻>赤潮异弯藻>小球藻,而硝酸还原酶活性对CO_2加富响应敏感性顺序是赤潮异弯藻>小球藻>中肋骨条藻。
     3种海洋微藻叶绿素a含量对CO_2加富处理都没有作出明显的响应(p> 0.05)。在CO_2加富条件下,其叶绿素a含量与对照组相比无显著差异(p> 0.05)。
The steady enrichment of CO_2 at unprecedented speed is one of the seriously global environment problems. The enrichment of greenhouse gas, such as CO_2, has led to an increase in global temperature, and consequent sea level rising, biodiversity loss and desertification aggravation. All these things described above have obviously influenced terrestrial ecosystem. CO_2 enrichment will directly affect green plants in ecosystem, and then caused changes in different levels of organization including ecosystem, community, population, individual, cell and molecule. In the entire marine food web, marine microalgae are the most direct responders to CO_2 enrichment. They not only drive the energy flow and matter cycle in marine ecosystem, fostering million tons of marine animals, but also play an important role in regulating global changes. In present study, experimental ecology studies were conducted on responses of six species of marine microalgae (Chlorella sp., Platymanas subcordiformis, Isochrysisgalbana Parke 8701, Skeletonema costatum, Dunaliella salina, Heterosigma akashiwo) to CO_2 enrichment with respect to interspecies, population, biochemical, physiological, molecule levels. Results showed that:
     1. Response of population growth of marine microalgae to CO_2 enrichment
     All the six species of microalgae represent responses to CO_2 enrichment. CO_2 enrichment (5000μl/L) could significantly promote population growth of marine microalgae (Chlorella sp., P. subcordiformis, I. galbana, S. costatum, D. salina and H. akashiwo), and shorten the time of entering the stationary phase. And maximum population densities increased remarkably (p < 0.05).
     Differences in sensitivity of microalgal population growth to CO_2 enrichment (5000μl/L) were observed among different microalgae, and the sensitivity was Chlorella sp. < D. salina < I. galbana < S. costatum < P. subcordiformis < H. akashiwo. H. akashiwo was the most sensitive, while Chlorella sp. was the most insensitive.
     2. Response of interspecies competition to CO_2 enrichment between microalgae in co-culture systems
     Co-cultured H. akashiwo and S. costatum were researched to investigate the effect of CO_2 enrichment on interspecies between these. Results showed that the initiative inoculum density had significant effects on population growth of H. akashiwo and S. costatum. And time advances of entering exponential growth phase and stationary phase were observed with increasing in inoculum density for both microalgae. Correspondingly, the maximum population density decreased obviously.
     In co-culture system, S. costatum was always in predominance in the competition. And the dominance was promoted by increasing inoculum density. CO_2 enrichment could change the relationship of competition between H. akashiwo and S. costatum, and resulted in a reduction of competitive ability of H. akashiwo, while remarkably promoted the competition dominance of S. costatum.
     3. The responses of population competition to CO_2 enrichment in co-culture systems
     Co-cultured P. subcordiformis, S. costatum and I. galbana were researched to investigate competitive balance among these and the effect of CO_2 enrichment on it. Results showed that under normal condition (air inflation), I. galbana was weak in competition and S. costatum was strong in competition, while P. subcordiformi showed a constant increase in population density. Therefore, in co-culture system, S. costatum took an advantage in competition, and finally became the dominant species. While P. subcordiformi became subdominant species and I. galbana were taken at a disadvantage.
     CO_2 enrichment treatment (5000μl/L CO_2 inflation) influenced the population dynamics of these three microalgae, and simultaneously influenced the competitive balance. Under CO_2 enrichment conditions, S. costatum showed a constant increase in population density and P. subcordiformi was strong in competition, while I. galbana was weak in competition. Therefore, in co-culture system, P. subcordiformi took an advantage in competition, and finally became the dominant species. While S. costatum became subdominant species and I. galbana were taken at a disadvantage.
     4. The response of macromolecular substance synthesis in marine microalgae to CO_2 enrichment
     Co-cultured P. subcordiformis, Heterosigma akashiwo and Chlorella sp. were researched to investigate the effect of CO_2 enrichment on macromolecular substance synthesis. Results showed that the DNA synthesis represented the response to CO_2 enrichment representing as increase in synthesis speed and content of DNA. For these three microalgae, DNA synthesis in H. akashiwo was the most sensitive to CO_2 enrichment, and it more sensitive in P. subcordiformis than that in Chlorella sp.
     RNA synthesis represented a similar response to CO_2 enrichment. Protein synthesis in P. subcordiformis was the most sensitive to CO_2 enrichment representing as increase in synthesis speed and content of RNA. And RNA synthesis in H. akashiwo was more sensitive than that in Chlorella sp.
     Protein synthesis in microalgae showed different response to CO_2 enrichment. Protein synthesis in H. akashiwo was the most sensitive to CO_2 enrichment representing as increase in synthesis speed and content of protein. And protein synthesis in S. costatum was less sensitive to CO_2 enrichment, while that in Chlorella sp. had no obvious response.
     5. The biochemical and physiological responses of microalgae to CO_2 enrichment
     Co-cultured S. costatum, H. akashiwo and Chlorella sp. were researched to investigate the effect of CO_2 enrichment on responses of physiological and biochemical activity. Results showed that photosynthetic rate, carbon fixation and carbonic anhydrase activity represented obvious response to CO_2 enrichment, compared with control groups (p < 0.05). CO_2 enrichment stimulated an increase in the activity of carbonic anhydrase, so increased the photosynthetic carbon fixation and photosynthetic efficiency and therefore indirectly promoted the increase of microalgae. The response of H. akashiwo was the most sensitive to CO_2 enrichment, and S. costatum was more sensitive than Chlorella sp.
     Nitrate reductase activity and absorption rate of N, P in microalgae represented obvious response to CO_2 enrichment, and were significantly different compared to control (p< 0.01). CO_2 enrichment stimulated an increase in the activity of nitrate reductase, so increased the N, P-absorption rate and therefore indirectly promoted the increase of microalgae. The sensitivity of P absorption rate was: H. akashiwo > S. costatum > Chlorella sp. And the sensitivity of N absorption rate was: S. costatum > Chlorella sp. > H. akashiwo. The sensitivity of nitrate reductase was: H. akashiwo > Chlorella sp. > S. costatum.
     Chlorophyll a contents in microalgae did not represent significant response to CO_2 enrichment (p > 0.05). Under CO_2 enrichment conditions, the content of chlorophyll showed no obvious difference compared with control groups (p > 0.05).
引文
高雷明,黄银晓,林舜华. CO_2倍增对羊草物候和生长的影响.环境科学,1999, 20(5):25-29.
    胡晗华,高坤山. CO_2浓度倍增对牟氏角毛藻生长和光合作用的影响.水生生物学报,2001,25(6):636-638.
    姜微波,Amnon LERS, Nehemia AHARONI. CO_2对离体欧芹叶片中蛋白质代谢的影响.植物学通报,2000,17(2):185-187.
    蒋高明,林高辉,Bruno DV Manur.几种热带雨林与荒漠植物暗呼吸作用对高CO_2浓度的响应.生态学报,1999,19(4):519-522.
    蒋高明.全球大气二氧化碳浓度升高对植物的影响.植物学通报,1995, 12(4):1-7.
    林伟宏.植物光合作用对大气CO_2浓度升高的反应.生态学报,1998,18(5):121-128.
    刘家尧,张其德,赵克夫等.大气CO_2浓度倍增和盐浓度对滨藜离子水平和叶绿素荧光诱导动力学的效应.环境科学学报,1998,18(5):533-538.
    彭长连,林植芳,林桂珠.加富CO_2条件下水稻叶片抗氧化能力的变化.作物学报,1999,25(1):39-43.
    尚宗波.全球气候变化对沈阳地区春玉米生长的可能影响.植物学报,2000,42(3):300-305.
    汪杏芬,李世仪,白克智等. CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响.植物学报,1998,40(12):1169-1172.
    王春乙,潘亚茹,白月明等. CO_2倍增对几种主要农作物影响的实验研究.气象学报,1997,55:86-94.
    王大力,朱力民. CO_2倍增对稻田甲烷排放的影响.植物生态学报,1999,23(5):451-457.
    王可玢,娄世庆,赵福洪等. CO_2浓度倍增对几子种植物叶片的叶绿素蛋白质复合物的影响.植物学报,1997, 39(9):867-973.
    王淼,代力民,韩士杰等.高CO_2浓度对长白山阔叶红松林主要树种的影响.应用生态学报,2000,11(5):675-679.
    王为民,王晨,李春俭等.大气CO_2浓度升高对植物生长的影响.西北植物学报,2000,20(4):676-683.
    王修兰,徐师华,李佑祥等.环境CO_2浓度增加对玉米生育生理及产量的影响.农业工程学报,1995, 11(2):109-114.
    王修兰,徐师华,李佑祥等.小麦对CO_2浓度倍增的生理反应.作物学报,1996, 22(3):340-344.
    王修兰,徐师华,梁红. CO_2浓度增加对C3、C4作物生育和产量影响的实验研究.中国农业科学,1998,31(1):56-61.
    王义琴,张慧娟,杨奠安等.大气CO_2浓度倍增对植物幼苗根系生长影响的分形分析.科学通报,1998,43(16):1736-1738.
    夏建荣,高坤山,叶海波.水华鱼腥藻生长与光合作用对大气CO_2浓度升高的响应.植物生态学报,2002,26(6):652-655.
    夏建荣,高坤山. CO_2浓度变化对两种淡水绿藻的显微结构和超微结构的影响.植物学报,2002,44(5): 527-531.
    夏建荣,高坤山.不同CO_2浓度下培养的蛋白核小球藻细胞结构的变化.武汉植物学研究,2002,20(5):403-404.
    夏建荣,高坤山.高浓度CO_2对极大螺旋藻生长和光合作用的影响.水生生物学报,2001,25(5):474-780.
    张其德,卢从明,冯丽洁等. CO_2加富对紫花苜蓿光合作用原初光能转换的影响.植物学报,1996a,38(1): 77-82.
    张其德,卢从明,匡廷云.大气CO_2浓度升高对光合作用的影响.植物学通报,1992, 9(4):18-23.
    张其德,卢从明,刘丽娜等.二氧化碳加富对大豆叶片光系统Ⅱ功能的影响.植物生态学报,1996b,20(6):517-523.
    周广胜,张新时,高素华等.中国植被对全球变化反应的研究.植物学报,1997,39(9):979-988.
    周广胜,张新时.中国气候-植被关系初探.植物生态学报,1996,20(2):113-119.
    邹定辉,高坤山.高浓度CO_2对大型海藻光合作用及有关过程的影响.生态学报,2002,22(10):1750-1757.
    邹定辉,高坤山.大型海藻类光合无机碳利用研究进展.海洋通报, 2001b, 20 (5): 83-90.
    邹定辉,高坤山.高CO_2浓度对石莼光合作用及营养盐吸收的影响.青岛海洋大学学报, 2001a,31(6): 877-882.
    Amthor J S. Respiration in a future, higher CO_2 world. Plant Cell Environ, 1998, 14, 13-20.
    Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol, 1999, 34: 497-504.
    Badger M R, Berry J A, Kaplan A. Photosynthesis and the intracellular inorganic pool in the blue-green alga Anabaaena variabilis: response to external CO_2 concentration. Planta, 1980b, 149: 219-226.
    Badger M R, Gallagher A. Adaptation of photosynthetic CO_2 and HCO3- accumulation by the cyanobacterium Synechococcus PCC6301 to growth at different inorganic carbon concentrations. Plant Physiol, 1987, 14: 189-201.
    Badger M R, Kaplan A, Berry JA. Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for carbon dioxide concentrating mechanism. Plant Physiol, 1980a, 66: 407-413.
    Baker J T, Allen L H J, Boote K J, et al. Response of vegetation to carbon dioxide concentrations. Joint Program of U.S. Dep. Of Energy and USDA. Plant Stress and Protection Res. Unit, USDA-ARS, and Inst. Of Food and Agric. Sci., University of Florida, Gainesville, FL. 1988.
    Berry J, Boynton J, Kaplan A, et al. Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO_2 concentration. Carnegie Inst Wash Year Book, 1976, 75: 423-432.
    Bjork M, Haglund K, Rammazanov Z, et al. Inducible mechanisms for HCO3- utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J Phycol, 1993, 29: 166-173.
    Bowes G. Facing the inevitable: plants and increasing atmospheric CO_2. Ann Rev Plant Physiol Plant Mol Biol, 1993, 44: 309-332.
    Ceulemans R, Mousseau M. Effects of elevated atmospheric CO_2 on woody plants. NewPhysiologist, 1994,127: 425-446.
    Cure J D, Acock B. Crop responses to carbon dioxide doubling: A literature survey. Agricultural and Forest Meteorology, 1986, 38: 127-145.
    Dahlman R C,Strain B R, Rogers H H. Research on the response of vegetation to elevated atmospheric carbon dioxide. J Environ Qual, 1985, 14:1-8.
    Gao K, Aruga Y, Asada K, et al. Enhanced growth of red alga Porphyra yezoensis Ueda in high CO_2 concentration. J Appl Phycol, 1991, 3: 355-362.
    Gao K, Aruga Y, Asada K, et al. Influence of enhanced CO_2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol, 1993, 5: 563-571.
    Gao K, Ji Y, Aruga Y. Relationship of CO_2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologa, 1999, 398/399: 355-359.
    Garcia-Sanchez M J, Fernandez J A, Niell F X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta, 1994, 194: 55-61.
    Geiger M, Walch P. Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in order plants, and a large stimulation of nitrate reductase activity and higher leaves of amino acids in young tobacco plants. Plant Cell Environ, 1998, 21: 253-266.
    George Bowes. Facing the inevitable: plants and increasing atmospheric CO_2. Ann Rev Plant Physiol Mol Biol, 1993, 44: 309-332.
    Hein M, Sand-Jensen K. CO_2 increases oceanic primary production. Nature, 1997, 18: 339-356.
    Idso K E, Idso S B. Plant responses to atmospheric CO_2 enrichment in the face of environmental constraint: a review of the past 10 yearsˊ research. Agricultural and Forest Meteorology, 1994, 69, 153-203.
    Imamura M, Tsuzuki M, Shiraiwa Y, et al. Form of inorganic carbon utilized for photosynthesis in Chlamydomonas reinhardtii. Plant Cell Physiol, 1983, 24: 533-540.
    Israel A, Katz S, Dubinsky Z, et al. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhorophyta). J Appl Phycol, 1999, 11: 447-453.
    Johnston A M, Raven J A. Effects of Culture in high CO_2 on the photosynthetic physiology of Fucus serratus. Br Phycol J, 1990, 25:75-82.
    Jurik T W, Weber J Q, Gates D M. Short-term effects of CO_2 on gas exchange of leaves of Bigtooth aspen (Populus grandidentata ) in the field. Plant Physilo, 1984, 75: 1022-1026.
    Kimbull B A. Carbon dioxide and agricultural yield: an assemblage and analysis of 330 prior abservations. Agronomy Journal, 1983, 75: 779-788.
    Kǒner C. Toward a better experimental basis for upscaling plant responses to elevated CO_2 and climate warming. Plant Cell Environ, 1995, 18: 1101-1110.
    Kubler J E, Johnston A M, Raven J A. The effects reduced and elevated CO_2 and O2 on the seaweed Lomentaria articulata. Plant Cell Envir, 1999, 22: 1303-1310.
    Lignell B A, Pedersen M. Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. B Phycol J, 1989, 24: 83-89.
    Long S P, Drake B G. Effects of the long-term elevation of CO_2 concentration in the field on the quantum yield of photosynthesis of the O3 sedge, Scirpus olneyi. Plant Physiol, 1991,96: 221-226.
    Maberly S C, Raven J A, Johnston A M. Discrimination between 12C and 13C by marine plants. Oecologia, 1992, 91: 481-492.
    Mauney J R, Kimball B A, Pinter J, et al. Growth and yield of cotton in response to a free-air carbon dioxide enrichment. Agroc For Meteorol, 1994, 70: 49-67.
    Mercado J M, Javier F, Gordillo L, et al. Effects of different levels of CO_2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol, 1999, 11: 455-461.
    Mercado J M, Niell F X, Figueroa F L. Regulation of the mechanism for HCO3- use by the inorganic carbon level in Porphyra leucostica Thus in Le Jolis (Rhotophyta). Planta, 1997, 201: 319-325.
    Miyachi S, Tsuzuki M, Maruyama I, et al. Effects of CO_2 concentration during growth on the intracellular structure of Chlorella and Scenedesmus (Chlorophyta). J Phycol, 1986, 22: 313-319.
    Monje O, Bugbee B. Adatation to high CO_2 concentration in an optional environment radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ, 1998, 21: 315-324.
    Moroney J V, Tolbert N E. Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol, 1985, 77: 253-258.
    Palmqvist K, Ramazanov Z, Samuelsson G. The role of extracellular carbonic anhydrase for accumulation of inorganic carbon in the green alga Chlamydomonas reinhardtii. A comparisonbetween wild type and cell-wall-less mutant cells. Physio Plant, 1990, 80: 267-276.
    Patel B N, Merrett M J. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta, 1986, 169: 81-86.
    Pearson M, Brooks D L. The influence of elevated carbon dioxide on growth age-related changes in leaf gas exchange. J Exp Bol, 1995, 46: 1651-1659.
    Quay P K, Tibrool B, Wong C S. Oceanic uptake of fossil fuel CO_2: carbon-13 evidence. Science, 1992, 256: 74-79
    Raven J A. Physiology of inorganic C acquisition and implication for resource use efficiency by marine phytoplankton: relation to increased CO_2 and temperature. Plant Cell Environ, 1991, 14: 779-794.
    Riebesell U, Wolf- Gladrow DA, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993, 361: 249-251.
    Sage R F, Sharkey T D, Seemann J R. Acclimation of photosynthesis in elevated CO_2 in five C3 species. Plant Physiol, 1989, 89: 590-596.
    Shiraiwa Y, Miyachi S. Factors controlling the induction of carbonic anhydrase and efficiency of photosynthesis in Chlorella vulgaris 11h cells. Plant Physiol, 1983, 24: 919-923.
    Smith S V. Marine macroalgae as a global carbon sink. Science, 1981, 211: 828-840.
    Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ,1999, 22: 583-621.
    Stuian I, Den H J. Root growth and functioning under atmospheric CO_2 enrichment. Vegetation, 1993, 104/105: 99-115.
    Stumm W, Morgan J J. Aquatic Chemistry. John Wiley, Sons, New York. 1981, 171-185.
    Tsuzuki M, Gantar M, Aizawa K, et al. Ultrastructure of Dunaliella tertiolecta cells grown under low and high CO_2 concentrations. Plant Cell Physiol, 1986, 27: 737-739.
    Tumus R W. CO_2 enriched almosphere, seedings growth of ponderosa pine and blue spruce seedling. Tree Planters Notes, 1972, 23: 12-15.
    X J R, Gao K S. Effects of CO_2 enrichment on microstructure and ultrastructure of two species of freshwater green algae. Acta Botanica Sinica, 2002, 44(5): 527-531.
    Zou D H, Gao K S. Photosynthetic responses to inorganic carbon in Ulva lactuca under aquaticand aerial states. Acta Botanica Sinica, 2002, 44(11): 1291-1296.
    
    蔡恒江,唐学玺,张培玉. 3种赤潮微藻对UV-B辐射处理的敏感性.海洋科学,2005,29(3):30-32.
    黄健,唐学玺.蒽对3种海洋微藻致毒效应的研究,植物生态学报,2000,24(6):736-738.
    梁文懂,米本年邦.绿藻的光培养及其生长机理研究.武汉冶金科技大学学报, 1999,22(3):248-251.
    唐学玺,李永祺. 4种海洋微藻对久效磷的抗性与其抗氧化能力的相关性,海洋与湖沼,2000,31(4):414---418.
    王悠,杨震,唐学玺等. 7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225-230.
    夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响.水生生物学报,2001,25(5):474-780.
    周文礼,王悠,肖慧等.不同海洋饵料微藻对抗生素的敏感性差异分析,武汉大学学报,2007,53(2):249-254.
    周立明,肖慧,唐学玺. CO2加富对3种赤潮微藻种群动态的影响.海洋环境科学,2008,27(4):317-319.
    Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. Enhanced growth of red alga Porphyra yezoensis Ueda in high CO2 concentration. J Appl Phycol, 1991, 3: 355-362.
    Gao K, Aruga Y, Asada K, Kiyohara M. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol, 1993, 5: 563-571.
    Gao K, Ji Y, Aruga Y. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologa, 1999, 398/399: 355-359.
    Nobutaka H, Toshifumi T, Yoshiharu F, et al. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 1992, 31: 3345-3348.
    Raven J A. Physiology of inorganic C acquisition and implication for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ, 1991, 14:779-794.
    
    陈洁,段舜山,李爱芬等.眼点拟微绿球藻与扁藻在不同接种比例下的竞争.海洋科学,2003,27(5):73-77.
    高素兰.营养盐和微量元素与黄骅赤潮的相关性.黄渤海海洋,1997,15(2):59-63.
    胡晗华,高坤山. CO2浓度倍增对牟氏角毛藻生长和光合作用的影响.水生生物学报,2001,25(6):636-638.
    李永祺.海水养殖生态环境的保护与改善.山东科学技术出版社,1999,74-126.
    王金辉,黄秀清,徐韧等.排列法检测围隔生态实验中加磷对浮游植物结构的影响.海洋环境科学,2001,20(1):32-54.
    夏建荣,高坤山.高浓度CO2对极大螺旋藻生长和光合作用的影响.水生生物学报,2001,25(5):474-780.
    颜天,周名江,傅萌等.赤潮异弯藻毒性及毒性来源的初步研究.海洋与湖沼,2003,34(1):50-55.
    于娟,唐学玺,张培玉等. CO2加富对两种海洋微绿藻的生长、光和作用和抗氧化酶活性的影响.生态学报,2005,25(2):197-202.
    张冬鹏,武宝轩.几种赤潮藻对温度、氮、磷的响应及藻间相互作用的研究.暨南大学学报,2002,21(5):83-87.
    周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-59.
    Hegarty S G, Villareal T A. Effect of light level and N:P supply ratio on the competition between Phaeocystis cf. pouchetii(Hariot) Lagerheim(Prymnesiophyceae) and five diatom species. J Exp Mar Biol Ecol, 1998,226(2):241-258.
    Hein M, Sand-Jensen K. CO2 increases oceanic primary production. Nature, 1997, 388:526-527.
    Holm N P, Armatrong D E. Role of nutrient limitation and competition controlling the population Asterionela formosa and Microcystis aeruginosk Kutz in semicontinuous culture. Limnol Oceanpgr, 1981,26:672-684.
    Honjo T. The biology and prediction of representative red tides associated with fish kills in Japan. Rev Fish Sci, 1994,2:225-253.
    Maestrini S Y, Bonin D J. Alleropathic relationship between phytoplankton species. Can Bull Fish Aquat Sci, 1981,210:323-338.
    Pratt C M. Competition between Skeletonema costatum and Olisthediscus luteus in Narraganesett Bay and Inculture. Limnol Oceanogr, 1966,11:447-455.
    Riebesell U, Wolf- Gladrow DA, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993,361: 249-251.
    Uchida T, Yamaguchi M, Matsuyama Y, et al. The red-tide dinoflagellate Heterocapsa sp. Kills Gyrodinium instriatum by cell contact. Mar Ecol Prog Ser, 1995,118:301-303.
    Uchida T, Matsuyama Y, Yamaguchi M, et al. Growth interactions between a red tide dinoflagellate Heterocapsa ircularisquama and some other phytoplankton species culture.Intergovernmental Oceanograohic Commission of UNESCO, 1996,369-372.
    Uchida T, Satorutoda Y, Matsuyama M. et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory. J Exp Mar Biol Ecol, 1999,241:285-299.
    Yu J, Tang X X, Zhang P Y, et al. Effect of CO2 enrichment on Photosynthesis, Lipid peroxidation and Activities of Antioxidative Enzymes of Platymonas subcordiformis Subjected to UV-B Radiation Stress. ACTA BOTANICA SINICA, 2004,46(6):682-690.
    Yu J, Tang X X, et al. Effect of elevated CO2 on sensitivity of six species of algae and interspecific competition of three species of algae. Journal of Environmental Sciences, 2006, 18(2): 353-358.
    黄健,唐学玺等.蒽对3种海洋微藻致毒效应的研究,植物生态学报,2000,24(6):736-738.
    李元,杨济龙,王勋陵等.紫外辐射增加对春小麦根际土壤微生物种群数量的影响.中国环境科学,1999,19(2):157-160.
    唐学玺,蔡恒江,张培玉. UV-B辐射增强对亚历山大藻和赤潮异弯藻种群竞争的影响.环境科学学报,2005,25(3):340-345.
    王悠,杨震,唐学玺等. 7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225-230.
    谢荣,唐学玺等.有机磷农药和重金属对海洋微藻联合毒性研究,海洋环境科学, 1999,18(2):16-20.
    于娟,唐学玺,田继远等.UV-B辐射对3种海洋微藻的种间竞争性平衡的研究.中国海洋大学学报,2005,35(1):108-112.
    岳明,王勋陵.紫外线辐射对小麦和燕麦竞争性平衡的影响-小麦和燕麦生物量结构和冠层结构.环境科学学报,1999,19:526-531.
    Arp W J, Drake B G, Pockman W T, et al. Interactions between C3 and C4 slat-marsh plant species during 4 years of exposure to elevated atmospheric CO2. Vegetatio, 1993, 104: 133-143.
    Bjorn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystem. Intern J Environ Studies, 1996, 51: 217-243.
    Bothwell M L, Sherbot D M J, Pollock C M. Ecosystem response to solar ultraviolet-B radiation: Influence of trophic-level interactions. Science, 1994, 265: 97-100.
    Cai H J, Tang X X, Zhang P Y, et al. Effects of UV-B radiation on the growth interaction of Ulva pertusa and Alexandrium tamarense. Journal of environmental sciences, 2005,17(4):605-610.
    Caldwell M M, Bjorn L O, Bornman J F, et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B: Biol, 1998, 46: 40-52.
    Dukes J S. Comparison of the effect of elevated CO2 on an invasive species (Centaurea solstitialis) in monoculture and community settings. Plant Ecology, 2002, 160: 225-234.
    Hader D P, Worrest R C, Kumar H D, et al. Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio, 1995, 24: 174-180.
    Hader D P. Novel method to determine vertical distribution of phytoplankton in marine water columns. Environ Exp Bot, 1995, 35: 547-555.
    Helbling, E W, Villafane V, Holm-Hansen O. Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In: Weiler CS, Penhale PA (Eds), Ultrariolet Radiation in Antarctica: Measurements and Biological Effects. Antarctic Research Series, 1994, 62, pp.207-227. American Geophysical Union, Washington, D.C.
    Hungate B A, Chapin F S, III, Zhong H, et al. Stimulation of grassland nitrogen cycling under carbon-dioxide enrichment. Oecologia, 1997, 109: 149-153.
    Keller A A, Hargraver P, Jeon H, et al. Effects of ultraviolet-B enhancement on marine trophic levels in a stratified coastal system. [J] Marine Biology, 1997a, 130 (2): 277-287.
    Keller A A, Hargraver P, Jeon H, et al. Ultraviolet-B radiation enhancement dose not affect marine trophic levels during a winter-spring bloom. [J] Ecoscience, 1997b, 4 (2): 129-139.
    Kirby, R S, Wilhrlm, S W. Response of the bluegreen algae microcystis aeruginosa to manipulated levels of ultraviolet radiation, IAGLRˊ99. International Association for Great Lakes Research: Great Lakes, Great Science, Great Cities. Program and Abstracts, 1999, A-59.
    Krinsky N I. The protective function of carotenoid pigments, In: Giese A. C. ed. Photophysiology 3. New York: Academic Press, 1986, 123-195.
    Mousseau L, Gosselin M, Levasseur M, et al. Effects of ultraviolet-B radiation on simultaneous carbon and nitrogen transport rates by estuatine phytoplankton during a week-long mesocosmstudy. Marine Ecology Progress Series, 2000, 199 (26): 69-81.
    Rau W. Blue light-induced carotenoid biosynthesis in microorganisms, In: the blue light syndrome. Ed. Senger H. Berlin: Springer-verlag.1980, 283-298.
    Santas R. Effects of solar ultraviolet radiation on tropical algal communities. [J] Diss. ABST. INT. PT. B-SCI. & ENG., 1989,50 (4): 147.
    Wangberg S A, Selmer J S, Gustavson K. Effects of UV-B radiation on biomass and composition in marine phytoplankton communities. Sci Mar, 1996, 60(suppl.1): 81-88.
    Worrest R, Wolniakowski K, Scott J, et al. Sensitivity of marine phytoplankton to UV-B radiation: Impact upon a model ecosystem. Photochem Photobiol, 1981, 33: 223-227.
    Xiao H, Tang X X, Zhang P Y, et al. The effect of UV-B radiation enhancement on the interspecific competion between Skeletonema costatun and Heterosigma akashiwo. Acta Oceanologica sinica, 2005,24(2):77-84.
    Yu J, Tang X X, et al. Effect of elevated CO2 on sensitivity of six species of algae and interspecific competition of three species of algae. Journal of Environmental Sciences, 2006, 18(2): 353-358.
    Xie Z H, Xiao H, Cai H J et al. Influence of UV-B irradiation on the interspecific growth interaction between Heterosigma akashiwo and Prorocentrum donghaiense. International Review Hydrobiology, 2006, 91(6):555-573.
    蔡恒江,唐学玺,张培玉. 3种赤潮微藻对UV-B辐射处理的敏感性.海洋科学,2005,29(3):30-32.
    陈刚,肖慧,唐学玺. 3种海洋赤潮微藻蛋白质和核酸合成动态对芘胁迫的响应.海洋环境科学,2008,27(4):320-322.
    高尚德,吴以平,赵心玉.有机锡对海洋微藻的生理效应.海洋与湖沼,1994,25:259-265.
    黄建,唐学玺,宫相忠等.低浓度毒物对海洋微藻刺激效应的初步研究.应用生态学报,2002,13(11):1516-1518.
    刘泳,王悠,唐学玺等. UV-B辐射对二种海洋微藻生长的影响.海洋水产研究,2000,21(2):22-26.
    唐学玺,张朝阳,李永祺.久效磷对扁藻碳水化合物和游离氨基酸含量的影响.海洋通报,1998,17(5):93-96.
    唐学玺,李岿然,李永祺.辛硫磷对扁藻三种大分子物质合成动态的影响.海洋通报,1999,18(1):93-96.
    唐学玺,李永祺.久效磷对叉鞭金藻和三角褐指藻光合色素的影响.海洋通报,1997,16:31-35.
    唐学玺,徐家英,李永祺.久效磷对四种海洋微藻的毒性效应.海洋环境科学,1998,17:1-5.
    王悠,唐学玺,李永祺等.低浓度蒽对两种海洋微藻生长的兴奋效应.应用生态学报,2002,13(3):343-346.
    王悠,杨震,唐学玺等. 7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225-230.
    喻梅,高琼,高素华.全球变化条件下植物个体的生理生态学模型.植物学报,1997,39(9):811-820.
    于娟,唐学玺,田继远.蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应.中国水产科学,2002,9(2):157-160.
    张培玉,唐学玺,蔡恒江等. 3种海洋赤潮微藻蛋白质和核酸合成对UV-B辐射增强的响应.植物生态学报,2005,29(3):505-509.
    赵素达,付成秋,朱松龄.镉对石莼光合作用和呼吸作用及叶绿素含量的影响.青岛海洋大学学报,2000,30:519-523.
    Beaumont A R, Newman P B. Low levels of tributyltin reduce growth of marine microalgae. Mar Pollut Bull, 1986,17:457-461.
    Chaturvedi R, et al. Degradation and de novo synthesis of D1 protein and psbA transcript levels in green algae during UV-B inactivation of photosynthesis and its reactivation. J. Biosci., 2000, 25(1):65-71.
    Dahlman R C. CO2 and plants:Revisited. Vegetatio,1993,104/105:339-355.
    Ekelund N G. Interactions between photosynthesis and light-enhanced dark respiration (LEDR) in the flagellate Euglena gracilis after irradiation with ultraviolet radiation. J.Photochem.Photobiol.B., 2000,55(1):63-69.
    Graham, R W, Grimm, E C. effects of global climate change on the pattern of terrestrial biological communities. Trends Ecol Evolut, 1990,5:289-292.
    Leadley P W, Reynolds J A, Thomas J F et al., effects of CO2 enrichment on internal leaf surface area in soybeans. Bot Gaz, 1987,148:137-140.
    Lawlor D W, Mitchell R A C. The effects of increasing CO2 on crop photosynthesis and productivity:A review of field studies. Plant Cell Environ, 1991, 14:807-818.
    Lashof D A, Tirpak D A. Policy options for stabilizing global climate. New York:Hemisphere Publishing Corporation.1990.
    Malanson G P. Comment on modelling ecological response to climatic change. Climatic Change,1993,23:95-109.
    Ryan K G et al. UV radiation and photosynthetic production in Antarctic sea ice microalgae. J.Photochem.Photobiol.B., 1992,13(3-4):235-240.
    Scheuerlein R et al. Evidence for UV-B induced DNA degradation in Euglena gracilis mediated by activation of metal-dependent nucleases. J.Photochem.Photobiol.B., 1995,31(3):113-123.
    Stebbing A R D. Homesis-the stimulation of growth by low levels of inhibitors. Sci Tol Environ, 1982,22:213-234.
    Tyree M T, Alexander J D. Plant water relations and the effects of elevated CO2: A review and suggestions for future research. Vegetatio, 1993,104/105:47-62.
    Zhang P Y, Juan Y U, Tang X X. UV-B Radiation Suppresses the Growth and Antioxidant Systems of Two Marine Microalgae, Platymonas subcordiformis (Wille) Hazen and Nitzschina closterium(Ehrenb.)W.Sm. Journal of Integrative Plant Biology,2005,47(6):683-691.
    蒋高明.全球大气二样化碳浓度升高对植物的影响.植物学通报,1995,12(4):1-7.
    蒋高明,韩兴国.大气CO2浓度升高对植物的直接影响.植物生态学报,1997,21(6):489-502.
    于娟,唐学玺,张培玉等. CO2加富对两种海洋微绿藻的生长、光合作用和抗氧化酶活性的影响.生态学报,2005,25(2):197-202.
    周立明,肖慧,唐学玺. CO2加富对3种赤潮微藻种群动态的影响.海洋环境科学,2008,27(4):317-319.
    邹定辉,高坤山.大型海藻类光合无机碳利用研究进展.海洋通报,2001b,20(5): 83-90.
    邹定辉,高坤山.高CO2浓度对石莼光合作用及营养盐吸收的影响.青岛海洋大学学报,2001a,31(6):877-882.
    Agren G I, McMurtrie R E,Parton W J et al. State-of-the-art of models of production-decomposition linkages in conifer and grassland ecosystems. Ecol Applic, 1991. 1: 118-138.
    Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol, 1999, 34: 497-504.
    Badger M R, Berry J A, Kaplan A. Photosynthesis and the intracellular inorganic pool in the blue-green alga Anabaaena variabilis: response to external CO2 concentration. Planta, 1980b, 149: 219-226.
    Badger M R, Gallagher A. Adaptation of photosynthetic CO2 and HCO3- accumulation by the cyanobacterium Synechococcus PCC6301 to growth at different inorganic carbon concentrations. Plant Physiol, 1987, 14: 189-201.
    Badger M R, Kaplan A, Berry J A. Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for carbon dioxide concentrating mechanism. Plant Physiol, 1980a, 66: 407-413.
    Bazzaz F A.The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol System. 1990,21:167-196.
    Beevers, Land R H. Hageman. Nitrate and nitrite reduction. The biochemistry of Plants.1980,5:115-168.
    Berges J A, Harrison P J. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology&Oceanography,1995,40(1):82-93.
    Berry J, Boynton J, Kaplan A, et al. Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO2 concentration. Carnegie Inst Wash Year Book, 1976, 75: 423-432.
    Bjork M, Haglund K, Rammazanov Z, et al. Inducible mechanisms for HCO3- utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J Phycol, 1993, 29: 166-173.
    Collos Y, Slawyk G. Significance of cellular nitrate content in natural population of marine phytoplankton growing in shipboard cultures. Mar Biol . 1976,4:27-32.
    Cure J D, Acock B. Crop responses to carbon dioxide doubling: A literature survey. Agric Forest Meteorol, 1986. 38: 127-145.
    Dahlman R C. CO2 and Plants: Revisited. Vegetatio, 1993, 104/105: 339-355.
    Dahlman R C. Modelling needs for predicting respones to CO2 enrichment: Plants, communities and ecosystems. Ecol Modell, 1985. 29: 77-106.
    Dortch Q, Clayton J J R,Thoresen S S. Species Differences in Accumulation of Nitrogen Pools in Phytoplankton. Mar. Bio1.,1984,81:237-250.
    Dortch Q, Ahmed S I, Packard, T T. Nitrate reductase and glutamate dehydrogenase activities in Skeletonema costatum as measures of nitrogen assimilation rates. Plankton Research, 1979,1:169-186.
    Eppley R W, Coatsworth J L, Solórzano L. Studies of nitrate reductase in marine phytoplankton. Limnology&Oceanography,1969,14:194-205.
    Gao K, Aruga Y, Asada K, et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol, 1993, 5: 563-571.
    Garcia-Sanchez M J, Fernandez J A, Niell F X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta, 1994, 194: 55-61.
    Harrison P J. Determining phosphate uptake rates of phytoplankton. In: Lobban C S, Chapman D J, Kremer B P ed. Experimental Phycology: a Laboratory Manual. New York: Cambridge University Press, 1988, 186-195.
    Hein M, Sand-Jensen K. CO2 increases oceanic primary production. Nature, 1997, 388: 526-527.
    Hernandez M O G., Effects of CO2 on the microalgae Nannochloropsis oculata (Droop) Hibberd. Revista de Investigationes Marinas, 1997,18(1):58-64.
    Jarvis P G.. Atomsphere chabon dioxide and forests. Phil Trans Roy Soc Lon. 1989.324:369-392.
    Jensen A. Chlorophyll and Carotenoids//Helebust JA and Carigie TS ed. Handbook of Physiological Methods. New York: Cambridge University Press, 1978:59-70.
    Johnston A M, Raven J A. Effects of Culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br Phycol J, 1990, 25:75-82.
    Kimball B A. Carbon dioxide and agricultural yield: A assemblage and analysis of 430 observations. Agron J, 1983. 75: 779-788.
    Kimball B A, Manney J R, Nakayama F S et al. Effects of increasing atmospheric CO2 on vegetation. Vegetatio, 1993. 104/105: 65-75.
    Kodama, M.et al. A new species of highly CO2-tolerant fast-growing marine microalgae suitable for high-density culture. Journal of Marine Biotechnology, 1993,1(1):21-25.
    Leadley P W, Drake B G. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas change. Vegetatio, 1993. 104/105: 3-15.
    Lemon E R. CO2 and plants: The response of plants to rising levels of atmospheric carbon dioxide. Colorado: Westview Press, 1983.
    Leanne Joseph, Tracy A. Villareal. Nitrate reductase activity as a measure of nitrogen incorporation in Rhizosolenia formosa (H. Peragallo):Internal nitrate and diel effects. Journal of Experimental Marine Biology and Ecology. 1998,229:159-176.
    Li G L, Jiao R S. Nitrate Assimilation of Amycolatopsis medierrsnei U-32 and Some Properties of its Nitrate Reductase. Acta Microbiologica Sinica, 1995,35(2):141-148.
    Lu J Y, Wang D Z, Hong H S, et al. Comparative Studies on Nitrate Reductase Activity of Thalassiosira weissflogii and Dunaliella salina Cultured in Two Nitrate Concentrations. Journal of Jimei University, 2004,9(1):6-10.
    Malanson G P. Comment on modelling ecological reponse to climatic change. Climatic change,1993,23:95-109.
    Makino A, Mae T. Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol, 1999, 40 (10): 999-1006.
    Mercado J M, Javier F, Gordillo L, et al. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol, 1999, 11: 455-461.
    Mercado J M, Niell F X, Figueroa F L. Regulation of the mechanism for HCO3- use by the inorganic carbon level in Porphyra leucostica Thus in Le Jolis (Rhotophyta). Planta, 1997, 201: 319-325.
    Morita M.et al. High photosynthetic productivity of green microalga Chlorella sorkiniana. Appl.Biochem.Biotechnol, 2000,87(3):208-218.
    Moroney J V, Tolbert N E. Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol, 1985, 77: 253-258.
    Nijs I, Impers I. Effects of long-term elevated atmospheric carbon dioxide on Lolium perenne and Trifolium repens, using a simple photosynthesis model. Vegetatio, 1993. 104/105: 421-431.
    Nonhelbel S. Effects of changes in temperature and CO2 concentration on simulate spring wheat yields in the Netherlands. Climatic Chage, 1993. 24: 311-329.
    Packard T T, Blasco D. Nitrate reductase activity in upwelling regions :Ammonia and light dependence. Tethys, 1974,6:269-280.
    Patel B N, Merrett M J. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta, 1986, 169: 81-86.
    Raven J A. Physiology of inorganic C acquisition and implication for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ, 1991, 14: 779-794.
    Rogers H H, Dahlman R C. Crop responses to CO2 enrichment. Vegetatio, 1993. 104/105: 117-131.
    Sasaki, T et al. Cloning and characterization of high–CO2-specific cDNA from a marine microalga, Chlorococcum littorale, and effect of CO2 concentration and iron deficiency on the gene expression. Plant Cell Physiol, 1998,39(2):131-138.
    Shygart H H.Using ecosystem models to assess the potential consequences of global climatic change.Trends Ecol Evol, 1990, 5: 303-307.
    Solomonson, I P, Barber, M J. Assimilatory nitrate reductase: functional properties and regulation. Annual Review of Plant Physiology and Plant Molecular Biology. 1990,41:225-253.
    Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ, 1999, 22: 583-621.
    Tang H J, Wang J H, Zhu C J, et al Characterization of nitrate reductase in several marine microalgae. Marine Fisheries Research, 2006,27(6):48-54.
    Thompson P A, Oh H M, Rhee G Y. Storage of Phosphorus in Nitrogen-fixing Anabaena flos-aquae(Cyanophyceae).J.Phyco1, 1994,30:267-273.
    Wilbur K M, Anderson N G. Electrometric and colorimetric determination of carbonic anhydrase. Biol Chem, 1948, 176: 147-154.
    Xia J R, Gao K S. Effects of high CO2 concentration on growth and photosynthesis of SpirulinaMaxima. Acta Hydrobiologica Sinica, 2001, 25(5): 474-480.
    Yu J, Tang X X, Zhang P Y, et al. Effect of CO2 enrichment on Photosynthesis, Lipid peroxidation and Activities of Antioxidative Enzymes of Platymonas subcordiformis Subjected to UV-B Radiation Stress. ACTA BOTANICA SINICA, 2004, 46(6): 682-690.
    Yu J, Tang X X, et al. Effect of elevated CO2 on sensitivity of six species of algae and interspecific competition of three species of algae. Journal of Environmental Sciences, 2006, 18(2): 353-358.
    Yu J, Xiao H, Tang X X et al. The effects of enriched CO2 and enhanced UV-B radiation on ultrastructure of Dunaliella salina, singly and in combination. Acta Oceanologia Sin, 2006, 25(1): 137-146.
    Yu J, Tang X X, Zhang P Y, et al. Effects of CO2 enrichment on growth, photosynthesis and activities of antioxidant enzymes of two marine micro-green-algae. Acta Ecologica Sinica, 2005, 25(2): 197-202.
    Zou D H, Gao K S. Effects of elevated CO2 concentration on the photosynthesis and related physiological processes in marine macroalgae. Acta Ecologica Sinica, 2002, 22(10): 1750-1757.
    Zou D H, Chen X W. Effects of elevated CO2 concentration on growth and some physiological and biochemical traits in Enteromorpha clathrata (Chlorophyta). Marine Science Bulletin, 2002, 21(5): 38-45.
    Zou D H, Gao K S, Xia J R. Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the south China sea. J Phycol, 2003, 39: 1095-1100.
    Zou D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaephyta). Aquaculture, 2005, 250: 726-735.