藻间相互作用及其对CO_2加富的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用藻间相互作用进行赤潮的防治工作是目前赤潮研究工作的热点之一,而研究藻间相互作用对CO2加富的响应变化对揭示全球气候变化对海洋生态系统的影响有重要意义。本文在实验室条件下研究了大型海藻:石莼(Ulva pertusa)和江蓠(Gracilaria lemaneiformis)与赤潮微藻间的相互作用及其对CO2加富的响应变化,初步探讨了藻间相互作用及其对CO2加富响应的可能机理,阐明了利用这两种大型海藻进行赤潮防控的可能性和局限性;另一方面,微藻间的相互作用在赤潮的生消过程中同样具有重要作用,本文同时研究了微藻间的相互作用,并利用数学模型对其相互作用进行了实验室条件下的模拟。实验结果表明:
     1.石莼和江蓠对东海原甲藻、塔玛亚历山大藻、锥状斯氏藻和强壮前沟藻生长的影响
     石莼和江蓠的新鲜组织、培养液滤液能明显影响共培养体系中四种赤潮甲藻:东海原甲藻,塔玛亚历山大藻,锥状斯氏藻以及强壮前沟藻的生长。与培养液滤液相比,新鲜组织的作用更明显,它能有效抑制甚至在短时间内完全灭杀与之共培养的赤潮微藻,石莼的作用强于江蓠的作用。结果初步表明,石莼和江蓠可能分泌某种相生相克类化合物影响赤潮微藻的生长。
     2.石莼和江蓠对赤潮异弯藻生长的影响
     以赤潮异弯藻为目标微藻,在实验室条件下研究了大型海藻对它的作用,结果发现:在共培养体系中(一种大藻和一种微藻组成)石莼和江蓠的新鲜组织、培养液滤液、鲜组织匀浆和干粉末均能显著抑制甚至灭杀共培养体系中的赤潮异弯藻,其中新鲜组织的作用最强。环境因子,如温度、光照、环境微生物、培养体系pH以及碳限制等都不能导致上述现象的发生。在对共培养体系中营养盐的跟踪调查结果显示,当共培养体系中的赤潮异弯藻被完全灭杀时,石莼体系中还剩有足够的营养盐,不会限制微藻的生长;而江蓠培养体系中的营养盐几乎消耗殆尽。当向江蓠体系中补充f/2营养盐后发现,充足的营养盐能够减轻但不能完全消除江蓠对赤潮异弯藻生长的影响。另外,不同浓度的石莼新鲜组织、匀浆和培养液滤液与其对赤潮异弯藻的生长影响之间存在明显的正相关性,即起始浓度越高,对赤潮异弯藻的影响越明显。因此,石莼可能通过相生相克作用影响共培养体系中赤潮异弯藻的生长,而相生相克和营养竞争的共同作用是导致江蓠作用的根本原因。
     3.石莼和江蓠与5种赤潮甲藻的相互作用对CO2加富的响应变化
     CO2加富培养后,石莼和江蓠新鲜组织对5种赤潮微藻的影响作用分别作出了不同的响应。有的没有明显变化,有的抑制作用或杀灭作用增强,有的抑制作用或杀灭作用减弱。石莼正常新鲜组织对5种赤潮微藻的杀灭或抑制效应由强到弱的顺序是东海原甲藻>赤潮异弯藻>亚历山大藻>锥状斯氏藻>强壮前沟藻,而CO2加富培养后,其对5种赤潮微藻的杀灭或抑制效应由强到弱的顺序变化为锥状斯氏藻>赤潮异弯藻>亚历山大藻>东海原甲藻>强壮前沟藻。江蓠正常新鲜组织对5种赤潮微藻的杀灭或抑制效应由强到弱的顺序是赤潮异弯藻>东海原甲藻>亚历山大藻和锥状斯氏藻>强壮前沟藻,而CO2加富培养后,其对5种赤潮微藻的杀灭或抑制效应由强到弱的顺序变化为锥状斯氏藻>赤潮异弯藻、亚历山大藻和东海原甲藻>强壮前沟藻。
     CO2加富培养后,石莼和江蓠培养液滤液对5种赤潮微藻的影响作用分别作出了不同的响应。其响应变化规律与新鲜组织的变化规律相类似。这进一步充分证实,石莼和江蓠都可以通过分泌相生相克类化合物来影响共培养体系中赤潮微藻的生长。石莼正常培养液滤液对5种赤潮微藻的抑制效应由强到弱的顺序是亚历山大藻和锥状斯氏藻>东海原甲藻和赤潮异弯藻>强壮前沟藻,而CO2加富培养后,其对5种赤潮微藻的抑制效应由强到弱的顺序变化为锥状斯氏藻>亚历山大藻>强壮前沟藻和赤潮异弯藻>东海原甲藻。江蓠正常培养液滤液对5种赤潮微藻的抑制效应由强到弱的顺序是锥状斯氏藻和强壮前沟藻>赤潮异弯藻、东海原甲藻和亚历山大藻,而CO2加富培养后,其对5种赤潮微藻的抑制效应由强到弱的顺序变化为锥状斯氏藻和强壮前沟藻>亚历山大藻>赤潮异弯藻和东海原甲藻。
     4.东海原甲藻和塔玛亚历山大藻的相互作用研究
     在东海原甲藻—塔玛亚历山大藻的双藻培养体系中,当二者的初始密度/体积比为1:1时,东海原甲藻的生长被完全抑制,最终被完全灭杀,而塔玛亚历山大藻的生长几乎未受影响;当密度/体积比升至10:1时,东海原甲藻和塔玛亚历山大藻的生长均受到抑制,但是没有灭杀现象发生。相同条件下的微藻的培养液滤液试验显示了与双藻培养体系类似的试验结果,说明微藻同样能分泌相生相克类化合物影响培养体系中其它微藻的生长。对于塔玛亚历山大藻滤液的相生相克试验进一步证明了塔玛亚历山大藻能够通过分泌克生类化合物影响体系中东海原甲藻的生长;这种物质的分泌与塔玛亚历山大藻的生长阶段之间有密切关系,稳定期的塔玛亚历山大藻对东海原甲藻的抑制作用强于指数生长期的作用。同时在实验室条件下模拟了共培养体系中两种微藻的生长。当东海原甲藻与塔玛亚历山大藻的密度/体积比分别为1:1和10:1时,塔玛亚历山大藻对东海原甲藻的抑制作用分别是其被后者抑制作用的17倍和8倍。与东海原甲藻相比,塔玛亚历山大藻在双藻培养体系中具有竞争优势。实验同时说明,塔玛亚历山大藻可能分泌毒素以外的其它物质影响共培养体系中其它微藻的生长。
     5.东海原甲藻和塔玛亚历山大藻的相互作用对CO2加富的响应变化
     共培养体系中2种赤潮微藻的竞争关系对CO2的加富培养作出了响应性变化。CO2加富培养后,使东海原甲藻对塔玛亚历山大藻的相对竞争能力增强,而使塔玛亚历山大藻对东海原甲藻的相对竞争能力减弱。在培养液滤液中的实验结果也充分证实了这一结论。
     通过培养液滤液对海原甲藻和塔玛亚历山大藻生长的影响作用证实2种赤潮微藻间的相互作用是通过分泌克生物质产生克生效应来完成的。CO2加富培养后,培养液滤液对海原甲藻和塔玛亚历山大藻生长影响作用的变化也进一步验证了克生物质及其产生的克生效应的存在,同时表明2种赤潮微藻克生活性对CO2加富培养的响应变化是引起二者相对竞争能力发生变化的主要原因。
Species interactions between bloom microalga and other alga play essential roles in affecting phytoplankton sequence, and it is important to study responses of species interactions to CO2 enrichment for illustrating the influence of global climate changes on marine ecosystem. Macroalga has long been suspected of suppressing phytoplankton growth through the excretion of chemical substances that inhibit phytoplankton growth. The production and excretion of allelochemcias by aquatic macroalga could be an effective defense strategy against other photosynthetic organisms competing for light and nutrients and therefore, macroalga might be a potentially biological method in bloom mitigating and controlling. However, the potential for this strategy to be successful in practice is exceedingly difficult mainly due to the lack of the information about the possible macroalgal species involved in and lack of the experimental data supporting its practical application. Moreover, the growth interaction between the phytoplankton species mediated by extracellular organic substances that are released by one or both interacting species has been considered to be essential to the development of phytoplankton community, and the increased population of one phytoplankton species might affect the growth of the other one or several species, influence bloom, pulses and seasonal succession. We carry out a serious of experiments under controlled conditions, and the purpose of the study is to identify if Ulva pertusa Kjellm (Chlorophyta) and Gracilaria lemaneiformis (Bory) Dawson (Rhodophyta) are the potential candidates in bloom controlling and mitigating, to investigate the response of algal interaction to CO2 enrichment, and to study the possibly effective mechanism of the interaction and the response. Moreover, the interactions between different microalgae are also studied and their potential role in bloom development has been discussed. Results show that:
     1. Influence of U. pertusa and G. lemaneiformis on the growth of Prorocentrum donghaiense, Alexandrium tamarense, Scrippsiella trochoide and Amphidinium carterae
     The fresh tissues of either U. pertusa or G. lemaneiformis significantly suppressed the microalgal growth, even killed them by the end of the experiment. However, their culture filtrates exhibited different effects (inhibitory, stimulatory or none) on the co-cultured microalgae according to different microalgal species. It seemed that the macroalgae could release some allelopathic compounds into culture medium to affect the co-cultured microalgae.
     2. Influence of U. pertusa or G. lemaneiformis on the growth of Heterosigma akashiwo
     H. akashiwo was taken as an example to study the possible effect of macroalga in the co-culture. Both U. pertusa and G. lemaneiformis, and especially their fresh tissues, significantly impeded the growth of H. akashiwo, and quickly outcompeted co-cultured cells of this microalga. Carbonate limitations and the presence of bacteria are not necessary for the negative effects of U. pertusa and G. lemaneiformis on H. akashiwo. Nutrient assays showed that nitrate and phosphate were almost exhausted in the G. lemaneiformis co-culture system, but remained at acceptable levels in the U. pertusa system, when all cells of H. akashiwo were dead. When f/2 medium is supplied daily to G. lemaneiformis culture, the growth of H. akashiwo was greatly inhibited but not completely terminated. The allelopathic effects of U. pertusa may be essential for negative effects on H. akashiwo; however, the combined roles of allelopathy and nutrient competition may be responsible for the negative effect of G. lemaneiformis. Different amounts of fresh seaweed tissue, homogenate, and culture medium filtrate prepared from different macroalgal concentrations were analyzed to determine their effects on the growth of H. akashiwo. The results further suggested the release of allelochemicals by U. pertusa.
     3. Response of the interaction between macroalgae and microalgae to CO2 enrichment
     Under CO2 enrichment condition, the fresh tissues of either U. pertusa or G. lemaneiformis showed different effects on the five microalgae, such as no significant effect, enhanced effect of suppressing or killing, or decreased effect of suppressing or killing. The sensitivity of microalgae to the fresh tissue of U. pertusa was P. donghaiense > H. akashiwo > A. tamarense > S. trochoide > A. carterae. Under CO2 enrichment condition, the sensitivity of microalgae to the fresh tissue of U. pertusa was S. trochoide > H. akashiwo > A. tamarense > P. donghaiense > A. carterae. The sensitivity of microalgae to fresh tissue of G. lemaneiformis was H. akashiwo > P. donghaiense > A. tamarense and S. trochoide > A. carterae. Under CO2 enrichment condition, the sensitivity of microalgae to the fresh tissue of G. lemaneiformis was S. trochoide > H. akashiwo, A. tamarense and P. donghaiense > A. carterae.
     The five microalgae showed different response to culture filtrate of U. pertusa and G. lemaneiformis with and without CO2 enrichment. The change law of the response of culture filtrate was similar to the response of the fresh tissue with and without CO2 enrichment. This result confirmed that both U. pertusa and G. lemaneiformis could release some allelopathic compounds into culture medium to affect the co-cultured microalgae. Without CO2 enrichment, the sensitivity of microalgae to the culture filtrate of U. pertusa was A. tamarense and S. trochoide > P. donghaiense and H. akashiwo > A. carterae, while under CO2 enrichment condition, the sensitivity was S. trochoide > A. tamarense > A. carterae and H. akashiwo > P. donghaiense. And without CO2 enrichment, the sensitivity of microalgae to the culture filtrate of G. lemaneiformis was S. trochoide and A. carterae > H. akashiwo, P. donghaiense and A. tamarense, while under CO2 enrichment condition, the sensitivity was S. trochoide and A. carterae > A. tamarense > H. akashiwo and P. donghaiense.
     4. Interaction between P. donghaiense and A. tamarense
     Interactions between P. donghaiense and A. tamarense were investigated using bialgal cultures. P. donghaiense was completely killed but A. tamarense was almost not affected by the end of the experiment when the initial density/size ratio was set at 1:1. However, significant growth suppression occurred on either species when the ratio was increased to 10:1, but no outcompetement was observed. The simultaneous assay on the culture filtrates showed that P. donghaiense filtrate prepared at a lower initial density (1.0×104 cells mL-1) induced stimulatory effect on growth of the co-cultured A. tamarense, but filtrate at a higher initial density (1.0×105cells mL-1) depressed its growth. The filtrate of A. tamarense at a density of 0.28×104 cells mL-1 completed killed P. donghaiense at a lower density, but only exhibited inhibitory effect on it at a higher density. It was likely that these two species of microalgae interfered with each other mainly by releasing allelochemical substance(s) into the culture medium, and the direct cell-cell contact was not necessary for their mutual interaction. Moreover, the strain of A. tramarense we used in this experiment was non-toxic species and therefore, there might another allelochemical(s) except the PSP toxin that affected the co-cultured microalga. The allelopathic test further proved that A. tamarense could affect the growth of co-cultured P. donghaiense by producing allelochemical(s); moreover, A. tamarense culture filtrate at the stationary growth phase (SP) had strongly inhibitory effect on P. donghaiense compared to that at the exponential phase (EP). The growth of P. donghaiense and A. tamarense in the bialgal cultures was simulated using a mathematical model to quantify the interaction. The estimated parameters from the model showed that the degree that P. donghaiense inhibited by A. tamarense was respectively about 17 and 8 times stronger than that P. donghaiense exerted on A. tamarense, when the initial density/size ratio were set at 1:1 and 10:1, respective. A. tamarense seemed to have a superior survival strategy to P. donghaiense in the bialgal cultures under controlled laboratory conditions. The results also indicate that A. tamarense can interfere other microalgae by releasing allelochemical substance(s) into the culture medium.
     5. Interactions between P. donghaiense and A. tamarense with CO2 enrichment
     The competition relation between P. donghaiense and A. tamarense changed with CO2 enrichment in co-culture. Under CO2 enrichment condition, the relative competitive ability of P. donghaiense enhanced, while the relative competitive ability of A. tamarense was weakened. The result from culture experiment in filtrate confirmed the conclusion above.
     Culture medium filtrate of P. donghaiense and A. tamarense could affected each other, and therefore confirmed that these microalgae could release some allelopathic compounds into culture medium to affect the another co-cultured microalgae. Under CO2 enrichment conditions, effects of culture filtrate of P. donghaiense and A. tamarense changed, and hence these phenomenon confirmed existences of alleopathic compounds and their effect, and indicated that the change of allopathic activity of the two microalgae with CO2 enrichment was the main reason why their relative competitive ability changed.
引文
陈菊芳,徐宁,江天久,等.中国赤潮新记录种—球形棕囊藻(Phaeocystis globosa).暨南大学学报(自然科学版), 1999, 20(3): 124-129.
    何家苑,施之新,张银华,等.一种棕囊藻的形态特征与毒素分析.海洋与湖沼, 1999, 30(2): 172-179.
    华泽爱.赤潮灾害.北京:海洋出版社, 1994, 1-2.
    黄晓航,史冬梅,张经浦,等.赤潮发生机理研究:海洋原甲藻的氮营养生理特性.海洋与湖沼, 1996, 28(1):33–38.
    暨国中. 1990-1991年大鹏湾赤潮分析.海洋信息, 1991, 10:26.
    李永祺.海水养殖生态环境的保护与改善.见:门丽雅主编.济南:山东科学技术出版社, 1999,74–126.
    梁松,钱宏林.珠江口及其邻近海域赤潮的研究.南海资源与环境研究文集,广州:中山大学出版社, 1999, 1-7.
    林祖亨,梁舜华.大鹏湾增养殖区环境因子与赤潮.南海资源与环境研究文集,广州:中山大学出版社, 1999, 14-23.
    夏建荣,高坤山,叶海波.水华鱼腥藻生长与光合作用对大气CO2浓度升高的响应.植物生态学报,2002, 26(6):652-655.
    夏建荣,高坤山.不同CO2浓度下培养的蛋白核小球藻细胞结构的变化.武汉植物学研究, 2002, 20(5):403-404.
    夏建荣,高坤山. 2001.高浓度CO2对极大螺旋藻生长和光合作用的影响.水生生物学报, 25(5):474-780.
    齐雨藻.中国沿海赤潮.北京:科学出版社, 2003, 17-68.
    齐雨藻,吕颂辉.南海大鹏湾浮游植物的生态学特征.暨南大学学报(自然科学版), 1995, 16(1): 111-117.
    邱戈水,李锦蓉,杨炼峰. 1998年深圳海域一次赤潮及成因.南海资源与环境研究文集,广州:中山大学出版社, 1999, 31-37.
    王丽平.有害赤潮藻对海湾扇贝(Argopecten irradians)早期发育和褶皱臂尾轮虫(Brachionus plicatilis)种群数量的影响.中国科学院海洋研究所博士论文, 2004: 5-8.
    王朝晖,吕颂辉,陈菊芳,等.中国东南沿海几种常见甲藻赤潮生物.武汉植物学报, 1999,16(4): 310-314.
    王可玢,娄世庆,赵福洪,等.CO2浓度倍增对几种植物叶片的叶绿素蛋白质复合物的影响.植物学报, 1997, 39(9):867-973.
    王修兰,徐师华,李佑祥,等.环境CO2浓度增加对玉米生育生理及产量的影响.农业工程学报, 1995, 11(2):109-114.
    王修兰,徐师华,李佑祥,等.小麦对CO2浓度倍增的生理反应.作物学报, 1996, 22(3): 340-344.
    王修兰,徐师华,梁红.CO2浓度增加对C3、C4作物生育和产量影响的实验研究.中国农业科学, 1998, 31(1):56-61.
    张其德,卢从明,匡廷云.大气CO2浓度升高对光合作用的影响.植物学通报, 1992, 9(4):18-23.
    张其德,卢从明,刘丽娜,等.二氧化碳加富对大豆叶片光系统Ⅱ功能的影响.植物生态学报,1996, 20(6):517-523.
    郑重.赤潮生物研究—海洋浮游生物研究动向之一.自然, 1978, 1(2): 118-121.
    周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学, 2001, 13(2): 54–59.
    周贞英,平潭岛的东洋水束毛藻.福建师范学院学报, 1962, 4: 75–79.
    周广胜,张新时,高素华,等. 1997.中国植被对全球变化反应的研究.植物学报, 39(9):979-988.
    周广胜,张新时.中国气候-植被关系初探.植物生态学报, 1996, 20(2): 113-119.
    邹定辉,高坤山.高浓度CO2对大型海藻光合作用及有关过程的影响.生态学报, 2002, 22(10):1750-1757.
    Alpine AE and Cloern JE. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography, 1992, 37: 946-955.
    Anderson DM. Turning back the harmful red tide. Nature, 1997, 388: 513-514.
    Baker KH and Herson DS. Interaction between the diatom Thallasiosira pseudonanna and as associated Pseudomonad in a maricluture system. Applied Environment Microbiology, 1978, 35: 791-796.
    Bratback G, Egge JK and Heldal M. Viral mortality of the marina alga Emiliano luxleyi
    (Haptophyceae) and termination of algal blooms. Marine Ecological Progress, 1993, 93: 39-48.
    Bricelj VM, MacQuarrie SP and Schaffner RA. Differential effects of Aureococcus anophagefferens isolates (“brown tide”) in unialgal and mixed suspensions on bivalve feeding, Marine Biology, 2000, 139(4): 605-616.
    Cao XH, Song XX and Yu Z. Removal efficiency of red tide organisms by modified clay and its impacts on cultured organism. Environmental Science, 2004, 25 (5): 148-152. (in Chinese with English abstract)
    Coats DW and Adam EJ. Parasitism of photosynthetic dinoflagellates in a shallow subestuary of Chesapeake Bay, USA. Aquatic Microbial Ecology, 1996, 11: 1-9.
    Dahlman RC,Strain BR and Rogers HH. Research on the response of vegetation to elevated atmospheric carbon dioxide. Journal of Environmental Quality, 1985, 14:1-8.
    Doucette GJ, McGovern ER and Babinchak JA. Algicidal bacterial active against Gymnodinium breve (Dinophyceae)Ⅰ. Bacterial isolation and characterization of killing activity. Journal of Phycology, 2003, 38 (3): 520.
    Erard E. - Le Denn, Chretoemmpt-Domet MJ and Probert I. First report of parasitism on the toxic dinoflagellate Alexandrium minutum Halim, Estuarine. Coastal and Shelf Science, 2000, 50: 109-113.
    Fukami K, Nishijima T and Ishida Y. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 1997, 358: 185-191.
    Furuki M and Kobayashi M. Interaction between Chattonella and bacteria and prevention of this red tide. Marine Pollution Bulletin, 1991, 23: 189-193
    Gross EM. Allelopathy in benthic and littoral areas : case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: Indejit D, Dakshini KMM, Foy CL eds.
    Principles and practices in plant ecology: Allelochemical interactions. CRC, Boca Raton, 1999, 179-199.
    Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia, 1993, 32: 79–99.
    Hiroyuki T, Hiroshi K and Yoshinari K. Inhibition effect of red algal lectin and skeipjack fat on the growth of the red tide plankton Chattonella antique. Journal of Fermentation and Bioengineering, 1993, 75 (5): 387-388.
    Ichikawa S, Wakao Y and Fuleugo Y. Hydrogen Peroxide as an extermination agent against cysts of red tide and toxic dinoflagellates. In: Smayda TJ, Shimiza Y (eds). Amsterdam: Elsevier Science Publishers, 1993, 133-138.
    Inderjit D and Dakshini KMM. Algal allelopathy. Botany Review, 19994, 60: 182-196.
    Ishida Y. Microbial impact on occurrence of harmful algal red tides. In: Proceedings of the 1st Korea-Japan Marine Biotechnology symposium, 1999.
    Jeong JH, Jin HJ, Sohn CH, Suh KH and Hong YK. Algicial activity of the seaweed Corallina pilulifera against red tide microalgae. Journal of Applied Phycology, 2000, 12: 37-43.
    Jones HL, Leadbeater, BSC and Green JC. Mixotrophy in marine species of Chrysochromulina (Prymnesiophyceae): ingestion and digetion of a small green flagellate. Journal Marine Biology Ass UK, 1993, 73:283-296.
    Kakizawa H, Asari F, Kusumi T, Oogysam T, Hara Y and Chihara M. An allelopathic fatty acid from brown alga Cladosiphon okamuramus. Phytochemistry, 1988, 27(3): 731-735.
    Keizo N, Tarutani K and Mineo Y. Growth characteristics of Heterosigma akashiwo virus and itspossible use as a microbiological agent for red tide control. Applied and Environmental Microbiology, 1999, 65(3): 898-902.
    Kim MC, Yoshinaga I, Nagasaki K, Itakura S and Ishida S. A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Rhaphidopyceae) blooms in Hiroshima Bay, Japan. Marine Ecology Progress Series, 1998, 170: 25-32.
    Kodama M. Possible links between bacteria and toxin production in algal bloons. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds). Toxic Marine Phytoplankton. New York, Amsterdam, London: Elsevier, 1990, 52-61.
    Kodama M, Shizizu H, Sato S et al. The infection of bacteria in the liver cells of toxic puffer-a possible cause for organisms to be made toxic by tefrodotoxin in association with bacteria. In: Lassus P, Arzul G, Denn E et al. (eds). Harmful Marine Algal Blooms. London, New York, Paris: Technique & Documentation-Lavoisier/Andover, England UK: Intercept Ltd, 1995, 457-462.
    Koki N, Toshiyuki S, Ken F, Honjo T and Takashi N. Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 2003, 218, 601-611.
    Kutt EC and Martin DF. Report on a biochemical red tide repressive agent. Environment Letter, 1974, 9: 195-208.
    Li AS, Stoecker DK and Coats DW. Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients.Journal of Phytology, 2000, 36: 33-45.
    Liang X, Yin PH, Zhao L, Yang PH and Xie LC. Removing red tide algae in the sea by biomass carrier as algae cide. China Environment Science, 2001, 21 (1): 15-17 (in Chinese with English abstract)
    Marshall SM and Orr AP. Further experiments on the fertilization of a sea loch (Loch Craiglin). Journal of Marine Biological Association UK, 1949, 27: 360-379.
    Martin DF, Doig MT and Stackhouse CB. Biocontrol of the Florida red tide organism, Gymnodinium breve, through predator organisms. Environment Letter, 1973, 10: 115-119.
    Nagasaki K, Ando M, Imai I, Itakura S and Ishida Y. Virus-like particles in Heterosigma akashiwo (Raphidophyceae): a possible red tide disintegration mechanism. Marine Biology, 1994, 119: 307-312.
    Nakai S, Inoue Y, Hosomi M and Murakami A. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 1999, 39: 47-53.
    Jin Q and Dong SL. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecolology, 2003, 293: 41-55.
    Rice EL. Allelopathy 2nd eds. New York: Academic Press, 1984, 422.
    Satoshi N, Inoue Y, Hosomi M and Murakami A. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology, 1999, 39 (8): 47-53.
    Satoshi T and Yasushi K. Preliminary study of management of red tide water by the filter feeder Mytilus edulis galloprovincialis. Marine Pollution Bulletin, 1994, 28 (11): 662-667.
    Schaffner RA. The role of suspension feeding bivalves in the initiation and control of Aureococcus anophagefferens blooms, M.S. thesis, State University of New York, Stony Brook, 1999, 82.
    Sfriso A, Pavoni B and Marcomini A. Macroalgae and phytoplankton standing crops in the central Venice lagoon: primary production and nutrient balance. Science Total Environment, 1989, 80: 139-159.
    Shirota A. Red tide problem and countermeasures (2). International Journal of Aquatic Fish Technology, 1989, 1: 195-293.
    Shumway SE. A review of the effects of algal blooms on shellfish and aquaculture. Journal of World Aquaculture Society, 1990, 21(2): 65-104.
    Smith DW and Horne AJ. Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweed) in mesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia, 1988, 159: 259-268.
    Sournia, A. Red-tide and toxic marine phytoplankton of the world ocean: an inguitry into biodiversity. In: Lassus P, Arzul G, Erard E, et al. ed. Proceedings of the Sixth International Conference on Toxic Marine Phytoplankton, Lavoisier, Intercept Ltd, 1995, 103-112.
    Stoecker DK, Li A, Coats DW, et al. Mixoteophy in the dinoflagellate, Prorocentrum minimum. Marine Ecology Progress Series, 1997, 152: 1-12.
    Sugawara T, Taguchi S, Hamasaki K, Toda T and Kikuchi T. Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan. Hydrobiologia, 2003, 493: 17-26.
    Sun J, Liu DY, Wang ZL, Shi XY, Li RX and Zhu MY. Microzooplankton herbivory during red tide-frequent-occurrence period in Spring in the East China Sea. Chinese Journal of Applied Ecology, 2003b, 14 (7): 1073-1080 (in Chinese with English abstract).
    Sun J, Liu DY, Wang ZL and Zhu MY. The effects of zooplankton grazing on the development of red tides. Acta Ecologica Sinica, 2004, 24 (7), 1514-1522 (in Chinese with English abstract). Sun J, Song XX, Yin KD and Liu DY. Preliminary study of microzooplankton herbivory in Hong Kong in summer. Acta Ecologica Sinica, 2003a, 23 (4): 712-724.
    Suttle CA. The significance of viruses to mortality in aquatic microbial communities. Microbial Ecology, 1994, 28: 237-243.
    Suttle CA. Viruses as biological control agents for blooms of marine phytoplankton. In: McElory, A. eds. Proceedlings of the Brown Tide Summit. Stony Brook NY: New York Sea Grant Publication No. NYSGI-W-95-001, SUNY at Stony Brook, 1996, 71-76.
    Thi NNP, Huisman J, Sommeijer BP. Simulation of three-dimensional phytoplankton dynamics: competation in light-limited envrionments. Journal Computational and Applied Mathematics, 2005, 174: 57-77.
    Thingstad TF, Haveskum H, Grade K, et al. On the strategy of eat your competitor: a mathematical analysis of algal mixotrophy. Ecology, 1996, 77(7): 39-49.
    Uchita T, Toda S, Matsuyama Y, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory. Journal of Experimental Marine Biology and Ecology, 1999, 241: 285-299.
    Uchita T, Yamaguchi Y, Matsuyama Y, et al. The red-tide dinoflagellates Heterocapsa sp. Kills Gymnodinium instriatum by cell contact. Marine Ecology Progress Series, 1995, 118: 301-303.
    Wilcox LW and Wedemeyer GJ. Phagotrophy in the freshwater phytosynthenic dinoflagellate Amphidinium cryophilum. Journal of Phycology, 1991, 27: 600-609.
    Yasuhiro Y, Sou N, Tadashi M, et al. Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodinium polykrikoides Margalef. Marine Biology 2007, 152(7): 157-163.
    Yu Z, Zou JZ and Ma X. Application of clays to removal of red tide organismsⅠ. Coagulation of red tide organism with clays. Chinese Journal of Oceanology and Limnology, 1994, 12: 193-200 (in Chinese with English abstract).
    Zhang H, Yang WD, Gao J and Liu JS. Inhibition and elimination of chlorine dioxide on Phaeocystis globosa. Chinese Journal of Applied Ecology, 2003, 14 (7): 1173-1176 (in Chinese with English abstract).
    Zhao L, Yin PH, Li KP, Yu QM, Xie LC and Huang CJ. Removal of red tide algae by a glass algaecide containing Cu (Ⅱ). Marine Environmental Science, 2001, 20 (1): 7-11(in Chinese with English abstract).
    Zheng TL and Tian Y. Study on the ecological relationship between a red tide causative algal and three strains of bacteria isolated from Xiamen harbor. Acta Ecologica Sinica, 2002, 22 (12): 2063-2070 (in Chinese with English abstract).
    Zhou XJ, Bai MD, Deng SF, Dong KB and Xing L. Study on killing Gymnodinium mukimotoi with hydroxyl radical. Marine Environmental Science, 2004, 23 (1): 64-66 (in Chinese with English abstract).
    An M, Johnson IR and Lovett JV. Mathematical modeling of allelopathy.Ⅰ. Phytotoxicity caused by plant residues during decomposition. Allelopathy Journal, 1996, 3: 33-42.
    Anderson RJ, Monteiro PMS and Levitt GJ. The effect of localized eutrophication on competition between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria verrucosa (Gracilariaceae, Rhodophyta). Hydrobiologia, 1996, 326/327: 291-296.
    Barko JW and James WF. Effects of submerged aquatic macroaphytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E., S?ndergaard M., Christoffersen K. (Eds): The structuring role of submerged macrophytes in Lakes. Springer, New York, 1998, 197-217.
    Carballeira A, Carral E and Reigosa MJ. Asymmetric small-scale distribution and allelopathy: interaction between Rumex obtusifolius L. and meadow species. Journal of Chemical Ecology, 1988, 14: 1775-1786.
    Chen CY and Durbin EG. Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 1994, 100: 83-94.
    Chopin T, Buschmann AH, Halling C, et al. Integrating seaweeds into aquaculture systems: a key towards sustainability. Journal of Phycolgy, 2001, 37: 975– 986.
    Crawford SA. Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia. 1979, 62: 17-31.
    Doucette GJ, McGovern ER and Babinchak JA. Algicidal bacterial active against Gymnodinium breve (Dinophyceae)Ⅰ. Bacterial isolation and characterization of killing activity. Journal of Phycology, 2003, 38 (3): 520.
    Doucette GJ, Kodama M, Franca S, et al. Bacterial interaction with harmful algal bloom species: bloom ecology, toxigenesis and cutology. In: Anderson D.M., Cembella A. D., Hallegraeff, G. M. (eds.) Physiological ecology of harmful algal blooms. Springer-Verlag, Berlin, 1998, 619-647.
    Elakovich SD and Wooten JW. Allelopathic, herbaceous, vascular hydrophytes. In: Inderjit Dakshini K. M. M., Einhellig F. A. (Eds.): Allelopathy: Organisms, Progresses and Applications. American Chemical Society, Washington DC, 1995, 58.
    Fei XG. Solving the coastal eutrophication problem by large-scale seaweed cultivation. Hydrobiologia, 2004, 512: 145– 151.
    Fong P, Donohoe RM and Zedler JB. Competition with macroalgae and benthic cyanobacterial mats limits phytoplankton abundance in experimental microcosms. Marine Ecology Progress Series, 1993, 100: 97 - 102.
    Gross EM and Sütfeld R. Polyphenols with algicidal activity in the submerged macrophytes myriophyllum spicatum L. Acta Horticulture, 1995, 381: 710-716.
    Gross EM. Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: In: Inderjit D., Dakshini K. M. M., Foy C L (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, 1999, 179-199
    Guillard RRL and Ryther JH. Studies on marine planktonic diatoms.Ⅰ. Cylotella nana (Hustedt) and Detomula confervaceae (Cleve). Canadian Journal of Microbiology, 1962, 8: 229-239.
    Guillard RRL. Culture of phytoplankton for feeding marine invertebrates, In: Smith W.L., Chanley, M.H. (Eds.), Culture of marine animals, Plenum Press, New York, 1975, 26-60.
    Hager SW, Gordon LI and Park PK. 1968. A practical manual for the use of Technicon Autoanalyzer in seawater nutrient analysis. A final report to B.C.F. Contract 1-1-17-0001-1759, October 1968.
    Hutchinson GE. A Treatise on Linmology. VolⅢ. Limnological Botany. Wiley, New York. Jasser I. The influence of macrophytes on a phytoplankton communities in experimental conditions. Hydrobiologia. 1995, 306: 21-32.
    Jeong JH, Jin HJ, Sohn CH, et al. Algicidal activity of the macroalga Corallina pilulifera against red tide microalgae. Journal of Applied Phycology, 2000, 12: 37-43.
    Jin Q and Dong SL. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecolgoy, 2003, 293: 41-55.
    Jones MN. Nitrate reduction by shaking with cadmium, alternative to cadmium columns. Water Research, 1984, 18: 643-646.
    Kakizawa H, Asari F, Kusumi T, et al. An allelopathic fatty acid from brown alga Cladosiphon okamuramus. Phytochemistry, 1988, 27(3): 731-735.
    Koki N, Toshiyuki S, Ken F, et al. Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 2003, 218: 601-611.
    Lee V and Olsen S. Eutrophication and management implications for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries, 1985, 8: 191-210.
    Marshall SM and Orr AP. Further experiments on the fertilization of a sea loch (Loch Craiglin). Journal of the Marine Biological Association of the United Kingdom, 1949, 27: 360– 379.
    Nakai S, Inoue Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of macroalgals. Water Science and Tchonology, 1999, 39: 47-53.
    Nakanishi K, Nishijima M, Kuwano K, et al. Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) under axenic conditions. Journal of Phycology, 1996, 32: 479-482.
    Nan CR, Zhang HZ and Zhao GQ. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. Journal of Sea Research, 2004, 52: 259-268.
    Nelson TA and Lee A. A manipulative experiment proveproves that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquatic Botany, 2001, 71: 149-154
    Nelson TA., Lee DJ and Smith BC. Are“green tides”harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). Journal of Phycology, 2003, 39: 874-879.
    Neori A, Chopin T, Troell M, et al., 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231: 361– 391.
    Ozimek T, Gulati RD, van Donk E. Can macrophytes be useful in biomanipulation of lakes? The lake Zwemlust example. Hydrobiologia, 1990, 200/201: 399-407.
    Schagerl M, Unterrieder I and Angeler DG. Allelopathy among cyanoprokaryota and other algae orginnating form Lake Neusiedlersee (Austria). International Review of Hydrobiology, 2002, 87: 365-374.
    Schimidt E and Hansen PJ. Allelopathy in the prymnesiophyte Chrysochromulina polyepis: effect of cell concentration, growth phase and pH. Marine Ecology Progress Series, 2001, 216, 67-81
    Sfriso A and Pavoni B. Macroalgae and phytoplankton standing crops in the central Venice lagoon: primary prodiction and nutrient balance. Science of the Total Environment, 1994, 80: 139-159.
    Sharp JH, Underhill PA and Hughes D. Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. Journal of Phycology, 1979, 15: 1-14
    Smith DW and Horne AJ. Experimental measurement of resouce competition between planktonicmicroalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia, 1988, 159: 259-268.
    Sugawara T, Taguchi S, Hamasaki K, et al. Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan. Hydrobiologia, 2003, 493: 17-26.
    Uchida T, Toda S, Matsuyama Y. et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 1999, 241(2): 285-299.
    Valiela I, McClelland J, Hauxwell J, et al. Macroalgal blooms in shallow estaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography, 1997, 42: 1105-1118.
    van den Berg M. S. Charophyte colonization in shallow lakes: processed, ecological effects and implications for lake management. Thesis, Free University, Amsterdam. 1999, 138.
    van Donk E and van de Bunk WJ. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany, 2002, 72: 261-274.
    van Donk E, Gulati RD, Iedema A, et al. Macrophyte-related shifts in the nitrogen and phosphorous contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia, 1995, 251: 19-26.
    van Donk E and Van de Bund WJ. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany, 2002, 72: 261– 274.
    Wium-Anderson S and Anthoni U. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos, 1982, 39: 187-190.
    Zhou Y, Yang H, Hu H, et al. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture, 2006, 252: 264-276.
    张善东,俞志明,宋秀贤,宋飞,王悠.大型海藻龙须菜与东海原甲藻间的营养竞争.生态学报. 2005, 25(10): 2676-2680.
    Ahn O, Petrell RJ and Harrison PJ. Ammonium and nitrate uptake by Laminaria sacchrina and Nereocystis leutkeana originating from a Salmon sea cage farm. Journal of Applied Phycology, 1998, 10: 333-340
    
    Anderson DM. Turning back the harmful red tide. Nature, 1997, 388: 513-514
    Callaway RM. Positive interactions among plants. Botanical Review, 1995, 61: 306-349
    Fitzgerald GP. Some factors in the competition of antagonism among bacteria, algae, and aquatic weeds. Journal of Phycology, 1969, 5: 351-359
    Gross, E M. Allelopathy in benthis and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: Allelochemical interactions. CRC, Boca Raton, 1999, 179-199
    Guillard RRL. Culture of phytoplankton for feeding marine invertebrates, In: Smith WL, Chanley MH (eds.), Culture of marine animals. Plenum Press, New York, 1975, 26-60.
    Hager SW, Gordon LI and Park PK. A practical manual for the use of Technicon Autoanalyzer in seawater nutrient analysis. A final report to B.C.F. Contract 1-1-17-0001-1759, October 1968.
    Hogetsu K and Okanishi R. Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants. Jap. J. Jimnol. 1960, 21: 124-130
    Inderjit D and Dakshini KMM. Algal allelopathy. Botanical Review, 1994, 60: 182-196
    Inderjit D and Weiner J. Plant allelochemical interference or soil chemical ecology? Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4: 3-12
    Jeong JH, Jin HJ, Sohn CH, et al. Algicial activity of the seaweed Corallina pilulifera against red tide microalgae. Journal of Applied Phycology, 2000, 12: 37-43.
    Jones MN. Nitrate reduction by shaking with cadmium, alternative to cadmium columns. Water Research, 1984, 18: 643-646
    Keating KI. Blue-green algal inhibition of diatom-growth: transition from mesotrophic to eutrophic community structure. Science, 1978, 199: 971-973
    Keizo N, Tarytani K and Mineo Y. Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control. Applied and Environmental Microbiology, 1999, 65(3): 898-902.
    Khan S, Arakawa O and Onoue Y. 1997. Neurotoxin in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquatic Research, 1999, 28: 9-14
    Marshall BE and Callaway RM. Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology, 1992, 73: 1180-1186
    Nakai S, Inoue Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of macroalgals. Water Science and Technology, 1999, 39: 47-53.
    Nelson MC. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum. Oecologia, 1994, 98: 1-7.
    Jin Q and Dong SL. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 2003, 293: 41-55.
    Ridenour WM and Callaway RM. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia, 2001, 126: 444-450.
    Satoshi T and Yasushi K. Preliminary study of management of red tide water by the filter feeder Mytilus edulis galloprovincialis. Marine Pollution Bulletin, 1994, 28 (11):662-667.
    Schimidt LE and Hansen PJ. Allelopathy in the prymnesiophyte Chrysochromulina polyepis: effect of cell concentration, growth phase and pH. Marine Ecology Progress Series, 2001, 216: 67-81.
    Sfriso A and Pavoni B. Macroalgae and phytoplankton standing crops in the central Venice lagoon: primary prodiction and nutrient balance. Science of Total Environment, 1994, 80: 139-159.
    Stebbing ARD. Hormesis - the stimulation of growth by low levels of inhibiytions. Science of Total Environment, 1982, 22: 213-234.
    Sugawara T, Taguchi S, Hamasaki K, et al. Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan. Hydrobiologia, 2003, 493:17-26.
    Uchida T, Toda S , Matsuyama, Y., et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratoryoratoryoratory culture. Journal of Experimental Marine Biology and Ecology, 1999, 241(2): 285-299.
    Whittaker RH and Feeny PP. Allelochemics: chemical interactions among species. Science, 1971, 171: 757-770
    Yao NY (eds). Plant Physiology. Industrial College of Dalian Press, Dalian, China, 1987, 255-266.
    Yu Z, Zou JZ and Ma X. Application of clays to removal of red tide organismsⅠ. Coagulation of red tide organism with clays. Chinese Journal of Oceanology and Limnology, 1994, 12:193-200 (in Chinese with English abstract)
    Zheng TL and Tian, Y. Study on the ecological relationship between a red tide causative algal and three strains of bacteria isolated from Xiamen harbor. Acta Ecologica Sinica, 2002, 22 (12): 2063-2070 (in Chinese with English abstract).
    邹定辉,高坤山.高CO2浓度对石莼光合作用及营养盐吸收的影响.青岛海洋大学学报, 2001, 31(6): 877-882.
    Bjork M, Haglund K, Rammazanov Z, et al. Inducible mechanisms for HCO3- utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). Journal of Phycology, 1993, 29: 166-173.
    Andria JR, Vergara JJ and Perez-Llorens JL. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. European Journal of Phycology, 1999, 34: 497-504.
    Gao K, Aruga Y, Asada K, et al. Enhanced growth of red alga Porphyra yezoensis Ueda in highCO2 concentration. Journal of Applied Phycology, 1991, 3: 355-362.
    Gao K, Aruga Y, Asada K, et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. Journal of Applied Phycology, 1993, 5: 563-571.
    Gao K, Ji Y, Aruga Y. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologa, 1999, 398/399: 355-359.
    Garcia-Sanchez MJ, Fernandez JA and Niell FX. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta, 1994, 194: 55-61.
    Guillard RRL. Culture of phytoplankton for feeding marine invertebrates, In: Smith W.L., Chanley, M.H. (Eds.), Culture of marine animals, Plenum Press, New York, 1975, 26-60.
    Jeong JH, Jin HJ, Sohn CH, et al. Algicidal activity of the macroalga Corallina pilulifera against red tide microalgae. Journal of Applied Phycology, 2000, 12, 37-43.
    Jin Q and Dong SL. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Applied Phycology, 2003, 293: 41-55.
    Kubler JE, Johnston AM and Raven JA. The effects reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell and Environment, 1999, 22: 1303-1310.
    Maberly SC, Raven JA and Johnston AM. Discrimination between 12C and 13C by marine plants. Oecologia, 1992, 91: 481-492.
    Mercado JM, Niell FX and Figueroa FL. Regulation of the mechanism for HCO3- use by the inorganic carbon level in Porphyra leucostica Thus in Le Jolis (Rhotophyta). Planta, 1997, 201: 319-325.
    Mercado JM, Javier F, Gordillo L,et al. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. Journal of Applied Phycology, 1999, 11: 455-461.
    Molisch H. Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer Verlag, Jena, Germany, 1937, 106.
    Nakai S, Inoue Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Tecnology, 1999, 39: 47-53.
    Nakanishi K, Nishijima M, Kuwano K, et al. Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) under axenic conditions. Journal of Phycology, 1996, 32: 479-482.
    Wang RJ, Xiao H, Zhang PY, et al. Comparative Studies on the Allelopathic Effects of Ulva Pertusa Kjellml, Corallina Pilulifera Postl et Ruprl, and Sargassum thunbergii Mertl O.Kuntze on Skeletonema costatum(Grev.) Dleve. Journal of Integrative Plant Biology, 2006, 48(12):1415-1423.
    Wang RJ, Xiao H, Zhang PY, et al. Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. Journal of Applied Phycology, 2007a, 19:109-121.
    Wang RJ, Xiao H, Wang Y, et al. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under Laboratory conditions. Journal of Sea Research, 2007b, 5: 189-197.
    Smith SV. Marine macroalgae as a global carbon sink. Science, 1981, 211: 828-840.
    Stitt M and Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell and Environment, 1999, 22: 583-621.
    Van Donk E and van de Bund WJ. Impact of submerged macrophytes including charophytes on phyto-and zooplandton communities: allelopathy versus other mechanisms. Aquatic Botany, 2002, 72: 261-274.
    An M, Johnson IR and Lovett JV. Mathematical modeling of allelopathy.Ⅰ. Phytotoxicity caused by plant residues during decomposition. Allelopathy Journal, 1996, 3: 33-42.
    Armstrong RA. A hybrid spectral representation of phytoplankton growth and zooplankton response: The‘‘control rod’’model of plankton interaction. Deep-Sea Research, 2003, 50: 2895-2916.
    Arzul G, Gentien P and Crassous MP. A haemolytic test to assay toxins excreted by the marine dinoflagellates Gyrodinium cf. aureolum. Water Research, 1994, 28(4): 961-965.
    Arzul G, Seguel M, Guzman L, et al. Comparison of allelopathic properties in three toxic Alexandrium species. Journal of Experimental Marine Biology and Ecology, 1999, 232: 285-295.
    Berglund H. Stimulation of growth of two marine algae by organic substances excreted by Enteromorpha linza in unialgal and axenic cultures. Physiol Plantarum 1969, 22: 1069-1078.
    Brand LE, Guillard RRL and Murphy LS. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. Journal of Plankton Research, 1981, 3: 193-201.
    Bricelj VM and Shumway SE. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Review in Fisheries Science, 1998, 6 (4): 315-383.
    Carballeira A, Carral E and Reigosa MJ. Asymmetric small-scale distribution and allelopathy: interaction between Rumex obtusifolius L. and meadow species. Journal of Chemical Ecology, 1988, 14: 1775-1786.
    Cavender-Bares KK, Rinaldo A and Chisholm SW. 2001. Microbial size spectra from natural and nutrient enriched ecosystems. Limnology and Oceanogrophy, 2001, 46: 778–789.
    Doucette GJ, Kodama M, Franca S, et al. Bacterial interaction with harmful algal bloom species: bloom ecology, toxigenesis and cutology. In: Anderson D.M., Cembella A. D., Hallegraeff, G. M. (eds.) Physiological ecology of harmful algal blooms. Springer-Verlag, Berlin: 1998, 619-647.
    Emura A, Matsuyama Y and Oda T. Evidence for the production of a novel proteinacelus hemolytic exotoxin by dinoflagellate Alexandrium taylori. Harmful Algae. 2004, 3: 29-37.
    Gross EM. Allelopathy in benthis and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: Inderjit, Dakshini K. M. M., Foy C. L. (eds) Principles and practices in plant ecology: Allelochemical interactions. CRC, Boca Raton, 1999, 179-199.
    Guillard RRL. Culture of phytoplankton for feeding marine invertebrates, In: Smith W.L., Chanley, M.H. (eds.). Culture of marine animals, Plenum Press, New York, 1975, 26-60.
    Guillard RRL. Culture methods and growth measurements. In: Stein, J. R. (Ed.), Handbook of phycological methods. Cambridge Univ. Press, 1979, 289-311.
    Hashimoto, K. and Noguchi, T. Recent studies on paralytic shellfish poison in Japan. Pure and Applied Chemistry, 1989, 61: 7-18.
    Honjo T. The biology and prediction of representative red tide associated with fish kills in Japan. Review in Fisheries Science, 1994, 2: 225-253.
    Iwasa, Y. (ed.). Suri-seibutugaku nyuumon, 2nd ed., Kyoritu Syuppan, Tokyo, 1998, 352.
    Jin Q and Dong SL. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 2003, 293: 41-55.
    Keating KI. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science,1977, 196: 885-887
    Keating KI. Blue-green algal inhibition of diatom-growth: transition from mesotrophic to eutrophic community structure. Science, 1978, 199: 971-973.
    Landry MR, Ondrusek ME, Tanner SJ, et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Marine Ecology Progress Series, 2000, 201: 27–42.
    Lu D, Qi YZ, Goebel J, et al. Prorocentrum donghaiense Lu and comparison with relevant Prorocentrum species. Chinese Journal of Applied Ecology, 2003, 14 (7): 1060-1064 (in Chinese with English abstract).
    Lu D and Goebel J. Five red tide species in genus Prorocentrum including the deScrippsiellaion of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chinese Journal of Oceanography and Limnology, 2001, 19 (4): 337-334.
    Maynard-Smith J. Models in Ecology, Cambridge University Press. 1974, 146.
    Mukhopadhyay A, Chattopadhyay J and Tapaswi PK. A delay differential equations model of plankton allelopathy. Mathematical Biosciences, 1998, 149: 167-189.
    Ogata T and Kodama M. Ichthytoxicity found in cultured media of Protogonyaulax spp. Marine Biology, 1986, 92: 31-34.
    Pratt R. Influence of the size of the inoculum on the growth of Chlorella culgaris in freshlu prepared culture medium. Ametican Journal of Botany, 1940, 27: 52.
    Pratt DM. Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnology and Oceanography, 1966, 11: 447–455.
    Rice EL. (ed.). Allelopathy, 2nd ed. Academic Press, London, 1984, 422.
    Sinkkonen A. Density-dependent chemical interference– an extension of the biological response model. Journal of Chemical Ecology, 2001, 27 (7): 1513-1523.
    Tapaswi PK and Mukhopadhyay A. Effects of environmental fluctuation on plankton allelopathy. Journal of Mathematical Biology, 39: 39-58.
    Tillmann U and John U. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Marine Ecology Progress Series, 2002, 230: 47-58.
    Uchida T, Yamaguchi Y, Matsuyama Y, et al. The red-tide dinoflagellate Heterocapsa sp. kills 107Gyrodinium instriatum by cell contact. Marine Ecology Progress Series, 1995, 118: 301–303.
    Uchida T, Toda S, Matsuyama Y, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 1999, 241(2): 285-299.
    Weidenhamer JD, Hartnett DC and Romeo JT. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. Journal of Applied Ecology, 1989, 26: 613-624.
    蔡恒江,唐学玺,张培玉,等.不同起始密度对3种赤潮微藻种间竞争的影响.生态学报, 2005a, 25 (6): 1331-1336.
    蔡恒江,唐学玺,张培玉,等.不同起始密度对3种赤潮微藻种群增长的影响.海洋环境科学, 2005b, 24(3): 37-39.
    高素兰.营养盐和微量元素与黄骅赤潮的相关性.黄渤海海洋, 1997, 15(2): 59-63.
    霍文毅,俞志明,邹景忠,等.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼, 6: 311-318.
    胡晗华,高坤山. CO2浓度倍增对牟氏角毛藻生长和光合作用的影响.水生生物学报, 2001, 25(6): 636-638
    蓝虹,许昆灿,张世民,等.厦门西海域一次中肋骨条藻赤潮与水文气象的关系。海洋科学, 2004, 4:93-99.
    李永祺.海水养殖生态环境的保护与改善.山东科学技术出版社, 1999, 74-126.
    李金涛,赵卫红,杨登峰,等.长江口海水盐度和悬浮体对中肋骨条藻生长的影响.海洋环境科学, 2005, 2: 34-37.
    谭志军,颜天,周名江,等.塔玛亚历山大藻对黑褐新糠虾存活、生长及种群繁殖的影响.生态学报, 2002, 22(10): 1635-1639.
    王金辉,黄秀清,徐韧,等.排列法检测围隔生态实验中加磷对浮游植物结构的影响.海洋环境科学, 2001, 20(1): 32-54.
    颜天,周名江,傅萌,等.赤潮异弯藻毒性及毒性来源的初步研究.海洋与湖沼,2003, 34(1): 50-55.
    于娟,唐学玺,张培玉,等.CO2加富对两种海洋微绿藻的生长、光合作用和抗氧化酶活性的影响.生态学报, 2005, 25(2): 197-202.
    张冬鹏,武宝轩.几种赤潮藻对温度、氮、磷的响应及藻间相互作用的研究.暨南大学学报, 2002, 21(5):83-87.
    周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学, 2001, 13 (2):54-59。
    Armstrong RA. A hybrid spectral representation of phytoplankton growth and zooplankton response: The‘‘control rod’’model of plankton interaction. Deep-Sea Research, 2003, 50: 2895-2916.
    Cavender-Bares KK, Rinaldo A and Chisholm SW. Microbial size spectra from natural and nutrient enriched ecosystems. Limnology and Oceanography, 2001, 46: 778–789.
    Conlan K, White KN and Hawkins SJ. The hydrography and ecology of a re-developed brackish-water dock. Estuarine, Coastal and Shelf Science, 1992, 35(5): 435-452.
    Guillard RRL. Culture of phytoplankton for feeding marine invertebrates, In: Smith W.L., Chanley, M.H. (eds.). Culture of marine animals, Plenum Press, New York, 1975, 26-60.
    Hegarty SG and Villareal TA. Effect of light level and N:P supply ratio on the competitionbetween Phaeocystis cf. pouchetii (Hariot) Lagerheim (Prymnesiophyceae) and five diatom species. Journal of Experimental Marine Biology and Ecology, 1998, 1226(2): 241-258.
    Hein M and Sand-Jensen K. CO2 increases oceanic primary production. Nature, 1997, 388:526-527.
    Hernandez MOG. Effects of CO2 on the microalgae Nannochloropsis oculata (Droop) Hibberd. Revista de Investigationes Marinas, 1997, 18(1):58-64.
    Holm NP and Armatrong DE. Role of nutrient limitation and competition controlling the population Asterionela formosa and Microcystis aeruginosk Kutz in semicontinuous culture. Limnology and Oceanography, 1981, 26:672-684.
    Honjo T. The biology and prediction of representative red tides associated with fish kills in Japan. Review in Fisheries Sciences, 1994, 2:225-253.
    Jin Q and Dong SL. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 2003, 293: 41-55.
    Kodama M. A new species of highly CO2-tolerant fast-growing marine microalgae suitable for high-density culture. Journal of Marine Biotechnology, 1993, 1(1):21-25.
    Landry MR, Ondrusek ME, Tanner SJ, et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Marine Ecology Progress Series, 2000, 201: 27–42.
    Maestrini SY and Bonin DJ. Alleropathic relationship between phytoplankton species. Canadian Bulletin of Fisheries and Aquatic Science, 1981, 210: 323-338.
    Morita, M. High photosynthetic productivity of green microalga Chlorella sorkiniana. Applied Biochemistry and Biotechnology, 2000, 87(3): 208-218.
    Moroney JV and Tolbert NE. Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiology, 1985, 77: 253-258.
    Patel BN and Merrett MJ. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta, 1986, 169: 81-86.
    Pratt CM. Competition between Skeletonema costatum and Olisthediscus luteus in Narraganesett Bay and Inculture. Limnology and Oceanography, 1966, 11:447-455.
    Riebesell U, Wolf- Gladrow DA and Smetacek V. Carbon dioxide limitation of marinephytoplankton growth rates. Nature, 1993, 361: 249-251.
    Sasaki T. Cloning and characterization of high–CO2-specific cDNA from a marine microalga, Chlorococcum littorale, and effect of CO2 concentration and iron deficiency on the gene expression. Plant and Cell Physiology,1998, 39(2):131-138.
    Townsend DW, Bennett SL and Thomas MA. Diel vertical distributions of the red tide dinoflagellate Alexandrium fundyense in the Gulf of Maine. Deep-Sea Research, 2005, 52: 2593-2602.
    Trainer V.L. and Baden DG. High affinity binding of red tide neurotoxins to marine mammal brain. Aquatic Toxicology, 1999, 46(2): 139-148.
    Uchida T, Yamaguchi M, Matsuyama Y, et al. The red-tide dinoflagellate Heterocapsa sp. Kills Gyrodinium instriatum by cell contact. Marine Ecology Progress Series, 1995, 118:301-303.
    Uchida T, Matsuyama Y, Yamaguchi M, et al. Growth interactions between a red tide dinoflagellate Heterocapsa ircularisquama and some other phytoplankton species culture. Intergovernmental Oceanograohic Commission of UNESCO, 1996, 369-372.
    Uchida T, Satorutoda Y, Matsuyama M, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory. Journal of Experimental Marine Biology and Ecology, 1999, 241:285-299.
    Yu J, Tang XX, Zhang PY, et al. Effect of CO2 enrichment on Photosynthesis, Lipid peroxidation and Activities of Antioxidative Enzymes of Platymonas subcordiformis Subjected to UV-B Radiation Stress. Acta Botanica Sinica, 2004, 46(6): 682-690.
    Yu J, Tang XX, Zhang PY, et al. Effect of elevated CO2 on sensitivity of six species of algae and interspecific competition of three species of algae. Journal of Environmental Sciences, 2006, 18(2): 353-358.