新型脂肪族酯和磷酸酯共聚物的合成、表征及其生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪族聚酯类高分子良好的生物相容性和生物可降解性,使它成为目前最重要的生物医用材料和绿色高分子材料之一。但是,现有的生物降解性脂肪族聚酯的大分子骨架的高度疏水性,分子间作用力弱,亲水性差、难以调解亲水/疏水平衡并且缺乏反应活性位点等问题的存在,很大程度上制约了它们在生物医用材料尤其是作为药物控释材料的广泛应用。
     聚磷酸酯是近十几年来发展较快的另一类新型生物可降解材料。它的主链骨架类似于核酸和磷壁质酸,主链上的磷酸酯键具有在生理条件下易降解的特点,且其结构可变性高,有利于对其进行结构修饰及功能化。然而,聚磷酸酯较易水解,单独用作药物控释材料时释药速度过快,限制了其在药物控释领域的应用。
     为了使脂肪族聚酯和聚磷酸酯作为生物医用材料更好的服务于人类,本论文试图通过脂肪族酯和磷酸酯的共聚以及在脂肪族聚酯的末端引入亲水的磷酰胆碱基团的方法来实现对脂肪族聚酯进行亲水性和药物控释性能调控的目的。
     本论文的主要工作及结论如下:
     (1)采用溶液聚合的方法合成了一系列脂肪族酯和磷酸酯的共聚物。~1H NMR和FT-IR证实了聚合物的化学组成。动态接触角(DCA)的研究结果显示,随着共聚单元中磷酸酯单元含量的增加,聚合物的亲水性增加。以中性红为模型药物研究了系列聚合物的的药物控释性能。结果显示,亲水性较强的均聚磷酸酯(聚乙基磷酸二缩三乙二醇酯)释药速度最快,十天之内释药率达到90%;而疏水性较强的均聚脂肪族聚酯(聚己二酸二缩三乙二醇酯)的释药速度最慢,十天内释药率仅为50%。共聚物的释药速度介于两类共聚物之间,且随着共聚单元中脂肪族聚酯的含量增加释药速率减慢。综合动态接触角和药物控释的研究结果,可以认为通过磷酸酯与脂肪族聚酯的共聚,确实能够实现对聚合物亲/疏水性和释药速率的调节。
     (2)通过四步反应合成得到了末端为磷酰胆碱基团的聚丁二酸丁二醇酯PBS-PC。首先通过调节丁二酸二甲酯和1,4-丁二醇的投料比,合成了末端为亲水羟基的聚丁二酸丁二醇酯PBS。然后利用PBS末端羟基的反应活性,和自制的二氯磷酸-2-氯乙酯反应使末端羟基磷酯化,随后再将提纯过的该聚合物水解,得到了磷酯化的聚丁二酸丁二醇酯PBS-Cl。最后,以无水的三甲胺为季铵化试剂,在高压釜中实现了对PBS-Cl的季铵化,得到了末端为磷酰胆碱基团的聚丁二酸丁二醇酯PBS-PC。~1H NMR、FT-IR和X-射线光电子能谱(XPS)结果证实了所有合成的聚合物的结构。根据XPS测试数据计算知道,平均每一个PBS链上约有1.9个PC基团。
     (3)采用示差扫描量热法(DSC)和热重法(TGA)测试了合成聚合物的热性能。与PBS相比,末端磷酯(PBS-Cl)和PC(PBS-PC)基团的存在,一定程度上使得聚合物分子在晶格中的有序排列变得困难,阻碍其结晶;同时,主链的柔顺性降低,使得聚合物的熔点和熔融焓降低(PBS-PC<PBS-Cl<PBS),而玻璃化温度升高(PBS-PC>PBS-Cl>PBS)。动态接触角结果证实,PC基团的引入很大程度上提高了聚合物PBS的亲水性(后退角PBS:33.8°;PBS-PC:8.4°),且目标聚合物PBS-PC的降解速率、吸水率以及以中性红为模型药物释药速率得到了很大的改善。
     (4)通过溶血、细胞毒性(L929细胞)、血小板黏附及蛋白质吸附(牛血清白蛋白和牛血浆纤维蛋白原为模型蛋白)实验,系统研究了聚合物PBS、PBS-Cl和PBS-PC的血液相容性和细胞相容性。溶血实验表明,上述三种聚合物的溶血率均小于5%,不会引起溶血反应。且相对于聚合物PBS和PBS-Cl来说,PBS-PC的溶血率更低,性能更好。以小鼠成纤维细胞L929为对象进行细胞毒性实验发现,不论是三种聚合物本身还是它们的浸提液,均无明显的细胞毒性。而且,聚合物PBS-PC具有比聚合物PBS和PBS-Cl更好的细胞增值率,说明聚合物PBS-PC具有更优良的细胞亲和性。以牛血清白蛋白(BSA)和牛血浆纤维蛋白原(BPF)为模型蛋白,研究了合成聚合物对蛋白质的吸附性能。BSA在PBS表面的吸附量是0.21μg/cm~2,而在PBS-PC表面的吸附量是0.1μg/cm~2,BSA的吸附量减少了大约52%。BPF在PBS表面的吸附量是0.46μg/cm~2,而在PBS-PC表面的吸附量是0.13μg/cm~2,BPF的吸附量减少了大约72%。血小板黏附实验表明,血小板在疏水聚合物PBS涂层产生了激活、凝聚。与此相比,血小板在两亲聚合物PBS-PC涂层基本没有黏附。
     综上所述,PBS-PC可望成为一种新的具有良好生物降解性和生物相容性的高分子材料,在药物控释、基因治疗、组织工程和材料表面改性等生物医用材料领域具有广阔的应用前景。
Biodegradable and biocompatible aliphalic polyester is one of the synthetic polymer materials which is widely used in the research and application of biomedical materials and green polymer materials. However, because of its poor surface hydrophilicity and absence of natural molecule acting point, its application as biomaterials especially as drug delivery materials was limited.
     Polyphosphate is another new biodegradable material with a rapid development. Its main chain phosphate skeleton is similar to nucleic acid and phosphorus acid. The characteristics of degradation at physiological conditions, and vulnerablity and high variability of their structure make them to be modified easily. However, the fast degradation characteristic of polyphosphate restricted its application in drug release.
     In order to overcome these shortcomings and promote the application to public as better biomedical materials, this dissertation attempts to improve hydrophilicity and drug delivery performance of the aliphatic polyesters through copolymerization of aliphatic ester and phosphate ester, and introduction of the phosphorylcholine (PC) groups on both ends of poly(butylenes succinate). The results and conclusions are summarized as follows:
     (1) A series of copolymers containing aliphatic polyester and polyphosphoester segments in the repeat units were synthesized via condensation polymerization reaction with adipoyl chloride, ethyl dicholorophosphate and triethylene glycol as the beginning materials. The effects of reaction conditions on polymerization were studied and the structures of final polymers were characterized by ~1H NMR, FT-IR and MALDI-TOF MS. Dynamic contact angle was used to characterize the surface capability of the polymers. The controlled release character of the copolymers was studied by a fluorescence method using neutral red as a model drug. The experimental data displayed that strong hydrophilic polyphosphate has the fastest release rate, about 90% neutral red was released within 10 days; and strong hydrophobic aliphatic polyester has the slowest release rate, only 50% neutral red was released for 10 days. Hydropholicity and drug release rate of aliphalic polyester indeed can be regulated through the copolymerization of phosphate and aliphatic polyester.
     (2) A new biodegradable and biocompatible polymer, phosphorylcholine functionalized poly(butylene succinate) (PBS-PC) was synthesized via a four-step synthetic strategy. First, chloroethyl phosphoric acid dichloride was synthesized from POCl_3 and 2-chloroethanol. Second, hydroxyl functionalized poly(butylene succinate) (PBS) was synthesized through a condensation polymerization of dimethyl succinate and 1,4-butadiol. Then, the one-pot end capping reaction of the polymer hydroxyl was conducted and chloroethylphosphorate functionalized poly(butylene succinate) (PBS-Cl) was obtained. Finally, the target polymer bearing PC groups on PBS both ends (PBS-PC) was attained by quaterisation reaction. The results of NMR, FT-IR, GPC and XPS demonstrated a successful construction of the product of PBS-PC. As both the PBS-Cl and PBS-PC polymers contain phosphorus atom in their end groups, the P elemental composition is used to estimate the average number of the end functional groups of the polymer chains. The calculated numbers are 1.9 for both the PBS-Cl and PBS-PC polymers.
     (3) Thermal analysis of the synthesized PBS, PBS-Cl and PBS-PC were tested using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Compared with the PBS, phosphatidate and PC groups on the PBS chain significantly retarded the crystallizability and the flexibility. The melting point and melting enthalpy of PBS-Cl and PBS-PC were lowed (PBS-PCPBS-Cl>PBS) was increased. Dynamic contact angle results showed that the introduction of PC groups increased the hydropholicity of the PBS (receding contact angle: 33.8°for PBS and 8.4°for PBS-PC). Dynamic contact angle, in vitro degradation, swelling behavior and drug release measurements revealed that the PBS-PC showed improved hydrophilicity, degradation, swelling and faster drug release rates by compared with PBS.
     (4) From hemolysis, cytotoxicity, platelet adhesion and protein adsorption (bovine serum albumin and bovine plasma fibrinogen) experiments, hemocompatibility and cell compatibility of polymers PBS, PBS-Cl and PBS-PC were studied systematically. Hemolysis experiment showed that hemolytic rate of the three polymers were all less than 5%, and compared to PBS and PBS-Cl, hemolytic rate of PBS-PC was the lowest. The results of cytotoxicity experiment using mouse L929 fibroblast cells as showed that whether the three polymers themselves or their extracts, no significant cytotoxicity was found. Compared with PBS and PBS-Cl, PBS-PC has a better cell affinity. The results of platelet adhesion test showed that the adhered platelets on the surface coated with PBS showed large sizes, which suggested the aggregation and agglomeration of platelet. This result indicated the activation of the platelets by the hydrophobic surface. On the other hand, the surface coated with PBS-PC almost no platelet adhesion, suggesting excellent anti-coagulation property. Protein adsorption test showed that the amounts of bovine serum albumin (BSA) and bovine plasma fibrinogen (BPF) absorbed on the PBS-PC coated surface were 0.1μg/cm~2 and 0.13μg/cm~2, respectively, which were 52% and 72% reduction compared with that on PBS surface.
     These results suggest that PBS-PC may have potential applications in biological environments as new carrier for controlled drug release, scaffold for tissue engineering or temporary coating for the endovascular implant systems.
引文
[1]杜杰,郑玉斌,李冬梅,等.生物降解性脂肪族聚酯改性的研究进展[J].合成树脂及塑料,2006,23(1):70-73
    [2]Ganjyal G.M.,Weber R.,Hanna.M.A.Laboratory composting of extruded starch acetate and polylactic acid blended foams[J].Bioresour.Technol.,2007,98(16):3176-3179
    [3]任杰.可降解与吸收材料[M].北京:化学工业出版社,2003,1-2
    [4]贾林.新型手性嵌段功能大分子的设计、合成以及自组装[D].西安:西北大学,2005
    [5]Kopecek J.Smart and genetically engineered biomaterials and drug delivery systems[J].Eur.J.Pharma.Sci.,2003,20(1):1-16
    [6]Kumar G.S.,Kalpagam V.,Nandi U.S.J.Macromol.Sci.,Rev.Macromol.Chem.Phys.1982-1983,C 22(2):225
    [7]Satyanarayana D.,Chatter P.R.J.Macromol.Sci.,Rev.Macromol.Chem.Phys.,1993,C33(3):349
    [8]张世平.具有功能侧基的脂肪族聚酯的合成与表征[D].西安:西北大学,2003
    [9]Ikada Y.Editor basics and application of biodegradable polymers[M].Japan:Tokyo IPC Publishers,1999
    [10]Inoue Y.,Yoshie N.Structure and physical properties of bacterially synthesized polyesters[J].Prog.Polym.Sci.,1992,17(4):571-560
    [11]Pan P.J.,Liang Z.C.,Cao A.M.,et al.Layered metal phosphonate reinforced poly(1-lactide) composites with a highly enhanced crystallization rate[J].Appl.Mater.Interfaces,2009,1(2):402-411
    [12]王琳霞.生物降解高分子材料[J].塑料科技,2002,2(1):37-41
    [13]黄根龙.降解塑料研究现状和发展趋势[J].上海化工,1996,2(1):32-36
    [14]吴卫霞,涂阿朋,肖俊霞,段明锋.生物降解高分子材料的研究现状及应用前景[J].油气田环境保护,2005,15(1):40-43,62
    [15]杨晶.新型生物降解性高分子的设计、合成及物理性质表征[D].上海:中国科学院上海有机化学研究所,2004
    [16]Mochizuki M.,Mukai K.,Yamada K.et al.Structural effects upon eenzymic hydrolysis of poly(butylene succinate-co-ethylene succinate)s[J].Macromolecules,1997,30(24):7403-7407
    [17]Ichikawa Y.,Washiyama J.,Moteki Y.,et al.Crystal modification in poly(ethylene succinate) [J]. Polymer J., 1995, 27(12): 1264-1266
    [18]Yang J., Tian W. S., Li Q. B., et al. Novel Biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: ii.enzymatic biodegradation and in vitro biocompatibility assay[J]. Biomacromolecules,2004, 5(6): 2258-2268
    [19]Cha Y., Pitt C.G. The biodegradability of polyester blends[J]. Biomaterials, 1990, 11(2):108-112
    [20] Ajioka M., Enomoto K., Suzuki K., et al. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid[J]. Bull. Chem. Soc. Jpn., 1995, 68: 2125-2131
    [21]Fujimaki T. Processability and properties of aliphatic polyesters, "bionolle", synthesized by polycondensation reaction[J]. Polym. Degrad. Stad., 1998, 59(2): 209-214
    [22] Ratto J.A., Stenhouse P. J., Auerbach M., et al. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system[J]. Polymer, 1999,40(24): 6777-6788
    [23] Sosnowski S., Gadzinowski M., Slomkowski S. Poly(L,L-lactide) microspheres by ring-opening polymerization[J]. Macromolecules, 1996,29(13): 4556-4564
    [24]Gadzinowski M., Sosnowski S., Slomkowski S. Kinetics of the dispersion ring-opening polymerization of ε-caprolactone initiated with diethylaluminum ethoxide[J].Macromolecules, 1996,29(20): 6404-6407
    [25]Bhaw-Luximon A., Jhurry D., Spassky, N. Anionic polymerization of d,1-lactide initiated by lithium diisopropylamide[J]. Polymer, 2001,42(24): 9651-9656
    [26]Pulkkinen M., Malin M., B(o|¨)hm J. et al. Erratum to "in vivo implantation of 2,2' -bis(oxazoline)-linked poly-ε-caprolactone: proof for enzyme sensitive surface erosion and biocompatibility" [J]. Eur. J. Pharm. Sci., 2009, 36(3): 310-319
    [27] Storey R. F., Sherman J. W. Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone[J]. Macromolecules, 2002, 35(5): 1504-1512
    [28] Chang K. Y, Lin C. C., Ho G. H., et al. Synthesis and self-assembly of comb-like amphiphilic doxifluridine-poly(ε-caprolactone)-graft-poly(γ-glutamic acid) Copolymer[J].Polymer, 2009, 50(8): 1755-1763
    [29] Kowalski A., Libiszowski J., Duda A., et al. Polymerization of L,L-dilactide initiated by tin(ii) butoxide[J]. Macromolecules, 2000, 33(6): 1964-1971
    [30]Kricheldorf H. R., Kreiser-Saunders I., Boettcher C. Polylactones. 31. Sn(Ⅱ)octoate- initiated polymerization of ±L-lactide: a mechanistic study[J]. Polymer, 1995, 36(6): 1253-1259
    [31]Mcinnes S. J. P., Thissen H., Choudhury N. R., et al. New biodegradable materials produced by ring opening polymerisation of poly(L-lactide) on porous silicon substrates[J]. J. Colloid Interface Sci., 2009, 332(2): 336-344
    [32]Kurcok P., Penczek J., Franek J., et al. Anionic polymerization of lactones. 14. anionic block copolymerization of δ-valerolactone and L-lactide initiated with potassium methoxide[J]. Macromolecules, 1992, 25(9): 2285-2289
    [33]Mecerreyes D., Jerome R., Dubois P. Novel macromolecular architectures based on aliphatic polyesters: relevance of the "coordination-insertion" ring-opening polymerization[J]. Adv. Polym. Sci., 1999,147:1-59
    [34]Mecerreyes D., Jerome R. From living to controlled aluminium alkoxide-mediated ring-opening polymerization of (di)lactones. a powerful tool for the macromolecular engineering of aliphatic polyesters[J]. Macromol. Chem. Phys., 1999, 200(11):2581-2590
    [35]Xu Q., Kennedy J. F., Liu L. J. An ionic liquid as reaction media in the ring opening graft polymerization of ε-caprolactone onto starch granules[J]. Carbohydr. Polym., 2008, 72(1):113-121
    [36]Neijenhuis A. J., Grijpma D. W., Pennings A. J. lewis acid catalyzed polymerization of L-lactide. kinetics and mechanism of the bulk polymerization[J]. Macromolecules, 1992,25(24): 6419-6424
    [37]Dong C. M., Qiu K.Y., Gu Z. W., et al. Synthesis of star-shaped poly(ε-caprolactone) -b-poly(DL-lactic acid-alt-glycolic acid) with multifunctional initiator and stannous octoate catalyst[J]. Macromolecules, 2001,34(14): 4691-4696
    [38]Rafler, G.; Dahlmann, J. Biodegradable polymers. 6th comm. polymerization of e-caprolactone[J]. Acta. Polym., 1992,43(1): 91-95
    [39]Du Y. J., Lemstra P. J., Nijenhuis A. J., et al. ABA type copolymers of lactide with poly(ethylene glycol). kinetic, mechanistic, and model studies[J]. Macromolecules, 1995,28(7): 2124-2132
    [40]Duda A., Penczek S., Kowalski A., et al. Polymerizations of ε-Caprolactone and L,L- dilactide initiated with stannous octoate and stannous butoxide-a comparison[J].Macromol. Symp., 2000,153: 41-53
    [41]Kowalski A., Duda A., Penczek S. Mechanism of cyclic ester polymerization initiated with tin(ii) octoate. 2. Macromolecules fitted with tin(ii) alkoxide species observed directly in MALDI-TOF spectra[J]. Macromolecules, 2000, 33(3): 689-695
    [42]Kowalski A., Duda A., Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with Tin(ii)octoate. part 1 Polymerization of ε-caprolactone[J]. Macromol. Rapid Commun., 1998,19(11): 567-572
    [43]Kowalski A., Duda A., Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with Tin(Ⅱ) octoate. 3. polymerization of L,L-dilactide[J]. J.Macromolecules, 2000, 33(20): 7359-7370
    [44]Ryner M., Stridsberg K., Albertsson A. C., et al. Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and L-lactide with stannous 2-ethylhexanoate. a theoretical study[J]. Macromolecules, 2001,34(12): 3877-3881
    [45]Hirotsu T., Tsujisaka T., Masuda T., et al. Plasma surface treatments and biodegradation of poly(butylene succinate) sheets[J]. J. Appl. Polym. Sci., 2000, 78(5): 1121-1129
    [46]Baharim K., Mitomo H., Enjoji T., et al. Radiation crosslinked poly(butylene succinate) foam and its biodegradation[J]. Polym. Degrad. Stab., 1998, 62(3): 551-557
    [47]Kasuya K. I., Takagi K. I., Ishiwatari S. I., et al. Biodegradabilities of various aliphatic polyesters in natural waters[J]. Polym. Degrad. Stab., 1998(3), 59: 327-332
    [48]Tsai Y., Tai C., Tsai S. Shape memory effects of poly(ethylene terephthalate-co-ethylene succinate) random copolymers[J]. Eur. Polym. J., 2008,44(2): 550-554
    [49]Cao A. M., Okamura T., Ishiguro C., et al. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-vepsiln-caprolactone)s[J]. Polymer, 2002,43(3): 671-679
    [50]Kondratowicz F. L., Ukielski R. Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers[J]. Polym. Degrad. Stab., 2009, 94(3): 375-382
    [51]Maeda Y., Maeda T., Yamaguchi K., et al. Synthesis and characterization of novel biodegradable copolyesters by transreaction of poly(ethylene terephthalate) with copoly(succinic anhydride/ethylene oxide)[J]. J. Polym. Sci. A Polym. Chem., 2000,38(24): 4478-4489
    [52] Lee S. H., Lim S. W., Lee K. H. Properties of potentially biodegradable copolyesters of (succinic acid-1,4-butanediol)/(dimethyl terephthalate-1,4-butane diol)[J]. Polym. Int., 1999,48(9): 861-867
    [53] Jin H. J., Lee B. Y., Kim M. N., et al. Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units[J]. Eur. Polym. J.,2000,36(12): 2693-2698
    [54]Kimura, Y., Shirotani, K., Yamane, H., et al. Ring-opening polymerization of
    3(s)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione:a new route to a
    poly(.alpha.-hydroxy acid) with pendant carboxyl groups[J].Macromolecules,1988,
    21(11):3338-3340
    
    [55]Wang D.,Feng X.D.Synthesis of Poly(glycolic acid-alt-L-aspartic acid) from a morpholine-2,5-dione derivative[J].Macromolecules,1997,30(19):5688-5692
    [56]Zhou Q.X.,Kohn J.Preparation of poly(1-serine ester):a structural analog of conventional poly(L-serine)[J].Macromolecules,1990,23(14):3399-3406
    [57]Morita M.,Mase N.,Yoda H.,et al.A simplified synthesis of(r)-(-)-muscone using a ring-opening reaction of(R)-(+)-β-methyl-β-propiolactone[J].Tetrahedron:Asymmetry,2005,16(19):3176-3182
    [58]Gross R.A.,Zhang Y.,Konrad G.,Lenz R.W.et al.Polymerization of.beta.-monosubstituted-.beta.-propiolactones using trialkylaluminum-water catalytic systems and polymer characterization[J].Macromolecules,1988,21(9):2657-2668
    [59]Shkidchenko A.N.,Krupyanko V.I.Bactericidal action of β-propiolactone homologue[J].Process Biochem.,2004,39(11):1465-1468
    [60]Bizzarri R.,Chiellini F.,Solaro R.,et al.Synthesis and characterization of new malolactonate polymers and copolymers for biomedical applications[J].Macromolecules,2002,35(4):1215-1223
    [61]Trollsas M.,Lee V.Y.,Mecerreyes D.,et al.Hydrophilic aliphatic polyesters:design,synthesis,and ring-opening polymerization of functional cyclic esters[J].Macromolecules,2000,33(13):4619-4627
    [62]Latere Dwan'Isa J.P.,Lecomte P.,Dubois P.,et al.Synthesis and characterization of random copolyesters of ε-caprolactone and 2-oxepane-1,5-dione[J].Macromolecules,2003,36(8):2609-2615
    [63]Ba C.Y.,Yang J.,Hao Q.H.,et al.Syntheses and physical characterization of new aliphatic triblock poly(1-lactide-b-butylene succinate-b-l-lactide)s bearing soft and hard biodegradable building blocks[J].Biomacromolecules,2003,4(6):1827-1834
    [64]Yang J.,Hao Q.H.,Liu X.Y.,et al.Novel biodegradable aliphatic poly(butylenesuccinate-co-cyclic carbonate)s with functionalizable carbonate building blocks.1.chemical synthesis and their structural and physical characterization[J].Biomacromolecules,2004,5(1):209-218
    [65]Zhang S.P.,Yang J.,Liu X.Y.,et al.Synthesis and characterization of poly(butylene succinate-co-butylene malate):a new biodegradable copolyester beating hydroxyl pendant groups[J].Biomacromolecules,2003,4(2):437-445
    [66]张世平,杨晶,刘小云,等.聚(琥珀酸丁二醇酯-共-富马酸丁二醇酯)的合成及其双羟基化反应研究[J].有机化学,2003,23(9):1008-1012
    [67]Zhang G.D.,Wang D.,Feng X.D.Preliminary study of hydrogen bonding in (3s)-3-[(benzyloxycarbonyl)methyl]-morpholine-2,5-dione and its effect on polymerization[J].Macromolecules,1998,31(18):6390-6392
    [68]Wang D.,Feng X.D.Copolymerization of ε-Caprolactone with(3S)-3-[(benzyloxy carbonyl)methyl]morpholine-2,5-dione and the ~(13)C NMR Sequence Analysis of the Copolymer[J].Macromolecules,1998,31(12):3824-3831
    [69]Xie Z.G.,Guan H.L.,Chen X.S.,et al.A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer[J].J.Controlled Release,2007,117(2):210-216
    [70]In't Veld P.J.A.,Dijkstra P.J.,Van Lochem J.H.,et al.Synthesis of alternating polydepsipeptides by ring-opening polymerization of morpholine-2,5-dione derivatives[J].Makromolecular Chemie,1990,191:1813-1825
    [71]In't Veld P.J.A.,Dijkstra P.J.,Feijen J.Synthesis of biodegradable poly(ester amides)with pendant functional groups[J].Makromolekulare Chemie,1992,193:2713-2730
    [72]Lucke A.,Tessmar J.,Schnell E.,et al.Biodegradable poly(d,l-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials[J].Biomaterials,2000,21(23):2361-2370
    [73]Song S.C.,Lee S.B.,Jin J.I.,et al.A new class of biodegradable thermosensitive polymers.Ⅰ.synthesis and characterization of poly(organophos phazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups[J].Macromolecules,1999,32(7):2188-2193
    [74]Tziampazis E.,Kohn J.,Moghe P.V.PEG-variant biomaterials as selectively adhesive protein templates:model surfaces for controlled cell adhesion and migration[J].Biomaterials,2000,21(5):511-520
    [75]Aryal S.,Prabaharan M.,Pilla S.,et al.Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery[J].Int.J.Biol.Macromol.,2009,44(4):346-352
    [76]Forster S.,Antonietti M.Amphiphilic block copolymers in structure-controlled nanomaterial hybrids.Adv.Mater.,1998,10(3):195-217
    [77]Jeong B.M.,Bae Y.H.,Lee D.S.et al.Biodegradable block copolymers as injectable drug-delivery systems[J].Nature,1997,388(6645),860-862
    [78]Li S.M.,Garreau H.,Vert M.,et al.Hydrolytic degradation of poly(oxyethylene)- poly(ε-caprolactone) multiblock copolymers[J].J.Appl.Polym.Sci.,1998,68(6):989-998
    [79]Petrova T.,Manolova N.,Rashkov I.,et al.Synthesis and characterization of poly (oxyethylene)-poly(caprolactone) multiblock copolymers[J].Polym.Int.,1998,45(4):419-426
    [80]Huh K.M.,Bae Y.H.Synthesis and characterization of poly(ethylene glycol)/poly(1-lactic acid) alternating multiblock copolymers[J].Polymer,1999,40(22):6147-6155
    [81]Lee S.C.,Kang S.W.,Kim C.,et al.Synthesis and characterization of amphiphilic poly(2-ethyl-2-oxazoline)/poly(ε-caprolactone) alternating multiblock copolymers[J].Polymer,2000,41(19):7091-7097
    [82]Behravesh E.,Shung A.K.,Jo S.B.,et al.Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate)[J].Biomacromolecules,2002,3(1):153-158
    [83]Rashkov I.,Manolova N.,Li S.,et al.Synthesis,characterization,and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid)Chains[J].Macromoleccules,1996,29(1):50-56
    [84]Li S.,Rashkov I.,Espartero J.L.,et al.Synthesis,characterization,and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(1-lactic acid) blocks[J].Macromolecules,1996,29(1):57-62
    [85]Chung Y.C.,Chiu Y.H.,Wu Y.W.,et al.Self-assembled biomimetic monolayers using phospholipid-containing disulfides[J].Biomaterials,2005,26(15):2313-2324
    [86]Nederberg F.,Bowen T.,Hilborn J.Synthesis,characterization,and properties of phosphoryl choline functionalized poly-caprolactone and charged phospholipid analogues[J].Macromolecules,2004,37(3):954-965
    [87]Nederberg F.,Bowen T.,Nilsson B.,et al.Phosphoryl choline introduces dual activity in biomimetic ionomers[J].J.Am.Chem.Soc.,2004,126(47):15350-15351
    [88]刘琼,范晓东.环糊精高分子[J].高分子通报,2002,5:41-47
    [89]Harada A.,Kamach M.complex formation between poly(ethylene glycol) and α-cyclodextrin[J].Macromolecules,1990,23(10):2821-2823
    [90]Miyawaki A.,Takashima Y.,Yamaguchi H.et al.Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives[J].Tetrahedron,2008,64(36):8355-8361
    [91]Harada A.,Nishiyama T.,Kawaguchi Y.,et al.Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins[J].Macromolecules,1997, 30(23): 7115-7118
    [92]Harada A., Okada M., Kawaguchi Y. Formation of self-assembled tubular structures by mixing cyclodextrin and polymers without solvents[J]. Chem. Lett., 2005, 34(4): 542-543
    [93]Pozuelo J., Mendicuti F., Mattice W. L. Inclusion complexes of chain molecules with cycloamyloses. 2. molecular dynamics simulations of polyrotaxanes formed by poly(ethylene glycol) and α-cyclodextrins[J]. Macromolecules, 1997, 30(12):3685-3690
    [94]Pozuelo J, Mendicuti F., Mattice W. L. Inclusion complexes of chain molecules with cycloamyloses. Ⅲ. molecular dynamics simulations of polyrotaxanes formed by polypropylene glycol and α-cyclodextrins[J]. Polym. J., 1998, 30(6): 479-484
    [95]Rusa C. C., Wei M., Shuai X., et al. Molecular mixing of incompatible polymers through formation of and coalescence from their common crystalline cyclodextrin inclusion compounds[J]. J. Polym. Sci., B Polym. Phys., 2004,42: 4207-4224
    [96]Jia X., Wang X., Tonelli A. E., et al. Two-dimensional spin-diffusion NMR reveals differential mixing in biodegradable polymer blends[J]. Macromolecules, 2005, 38(7):2775-2780
    [97]Shuai X., Wei M., Porbeni F. E. et al. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and α-cyclodextrin. 2: a novel way to regulate the biodegradation behavior of biodegradable block copolymers[J]. Biomacromolecules, 2002, 3(1): 201-207
    [98] Shuai X., Porbeni F. E., Wei M., et al. Inclusion complex formation between α, γ-cyclodextrins and a triblock copolymer and the cyclodextrin-type-dependent microphase structures of their coalesced samples[J]. Macromolecules, 2002, 35(6):2401-2405
    [99]Rusa C. C., Rusa M., Gomez M., et al. Nanostructuring high molecular weight isotactic polyolefins via processing with γ-cyclodextrin inclusion compounds, formation and characterization of polyolefin-γ-cyclodextrin inclusion compounds[J]. Macromolecules,2004, 37(21): 7992-7999
    [100] Dong T., Kai W. H., Pan P. J., et al. Effects of host-guest stoichiometry of α-cyclodextrin-aliphatic polyester inclusion complexes and molecular weight of guest polymer on the crystallization behavior of aliphatic polyesters[J]. Macromolecules, 2007,40(20): 7244-7251
    [101] Toshio H. Biodegradable polymers for biomedical uses[J]. Prog. Polym. Sci., 1994, 19(4): 663-702
    [102]陈文瑛.生物降解高分子材料[J].中国塑料,1991,5(3):29
    [103]李兆龙等.可完全生物降解的壳聚糖—纤维素或淀粉复合高分子材料[J].化工新型高分子材料,1997,8:21-27
    [104]杨丽,姜亦文.甲壳质及壳聚糖的微生物降解的现状[J].青岛化工学院学报,2000,21(4):301-304
    [105]赵瑛.降解性高分子材料的研究与开发现状[J].化工技术经济,2000,18(6):15-17
    [106]陈茹玉,刘纶祖.有机磷化学研究[M].北京:高等教育出版社,2001,1
    [107]汪朝阳,赵耀明,聚磷酸酯医用材料[J].高分子通报,2003,6:19-27
    [108]包瑞,刘承美,邱进俊,等.不饱和聚磷酸酯的合成及释药性能[J].应用化学,2006,23(1):79-83
    [109]Wang S.,Andrew C.A.Wan,Xu X.Y.,et al.a new nerve guide conduit material composed of a biodegradable poly(phosphoester)[J].Biomaterials,2001,22(10):1157-1169
    [110]罗毅,卓仁禧,范昌烈.聚磷酸酯的合成及其释药性能研究[J].合成化学,1995,3(3):271-274
    [111]罗毅,卓仁禧,范昌烈.聚磷酸酯生物可降解材料的释药性能研究[J].中国医药工业杂志,1994,25(6):267-269
    [112]Chen D.P.,Wang J.Synthesis and characterization of block copolymer of polyphosphoester and poly(ε-caprolactone)[J].Macromolecules,2006,39(2):473-475
    [113]Wang Y.C.,Shen S.Y.,Wu Q.P.,et al.Block copolymerization of ε-caprolactone and 2-methoxyethyl ethylene pphosphate initiated by aluminum isopropoxide:synthesis,characterization,and kinetics[J].Macromolecules,2006,39(26):8992-8998
    [114]罗毅,卓仁禧,范昌烈.生物可降解聚磷酸酯的合成及其释药性能研究[J].高等学校化学学报,1994,15(6):932-934
    [115]中国药学杂志编辑部.新药手册[M].天津:天津科学技术出版社,1993,329
    [116]卓仁禧,崔竞舟,刘立建.主链含茜草双酯亚结构单元的聚磷酸酯的合成、降解及释药性能研究[J].合成化学,1997,5(4):385-389
    [117]罗毅,卓仁禧,范昌烈.含己烷雌酚的聚磷酸酯的合成及其抗肿瘤活性研究[J].高等学校化学学报,1994,15(7):1090-1092
    [118]范昌烈,胡斌,卓仁禧.主链含酪氨酸聚磷酸酯药物控制释放材料的研究[J].高 等学校化学学报,1995,16(11):1802-1805
    [119]范昌烈,胡斌,卓仁禧,等.主链含酪氨酸的聚磷酸酯抗肿瘤药物的研究[J].高等学校化学学报,1997,18(1):149-153
    [120]刘振华,曾春龙,范昌烈,等.含双疏水侧链聚磷酸酯脂质体膜材的合成[J].高分子学报,1997,22(2):194-198
    [121]刘振华,陈懋,范昌烈,等.磷脂酰乙醇胺型聚磷酸酯脂质体膜材的合成[J].高等学校化学学报,1997,18(9):1556-1559
    [122]Huang S.W.,Wang J.,Zhang P.C.,et al.Water-soluble and nonionic polyphosphoester:synthesis,degradation,biocompatibility and enhancement of gene expression in mouse muscle[J].Biomacromolecules,2004,5(2):306-311
    [123]Chew S.Y.,Wen J.,Yim E.K.F.,et al.Sustained release of proteins from electrospun biodegradable fibers[J].Biomacromolecules,2005,6(4):2017-2024
    [124]Du J.Z.,Chen D.P.,Wang Y.C.et al.Synthesis and micellization of amphiphilic brush-coil block copolymer based on poly(ε-caprolactone) and PEGylated polyphosphoester[J].Biomacromolecules,2006,7(6):1898-1903
    [125]Xiao C.S.,Wang Y.C.,Du J.Z.,et al.Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate[J].Macromolecules,2006,39(20):6825-6831
    [126]包瑞.不饱和聚磷酸酯的合成及其体外降解、释药性能研究[D].武汉:华中科技大学,2005
    [127]Kaluzynski K.,Libiszowski J.,Pencek S.A new class of synthetic polyelectrolytes.acidic polyesters of phosphoric acid,(poly(hydroxyalkylene phosphates))[J].Macromolecules,1976,9(2):365-367
    [128]傅杰,卓仁禧,范昌烈.含磷二羧酸与二对羧基苯氧基丙烷的共聚及其药物释放性能研究[J].武汉大学学报,1997,43:467-470
    [129]卓仁禧,王均,毛海泉.聚磷酸酯-聚氨酯药物控释材料的合成[J].高等学校化学学报,1995,18(7):1207-1211
    [130]Wang J.,Mao H.Q.,Leong K.W.A novel biodegradable gene carrier based on polyphosphoester[J].J.Am.Chem.Soc.,2001,123(38):9480-9481
    [131]Wang J.,Zhang P.C.,Lu H.F.et al.New polyphosphoramidate with a spermidine side chain as a gene cartier[J].J.Controlled Release,2002,83(1):157-168
    [132]Wang J.,Zhang P.C.,Mao H.Q.et al.Enhanced gene expression in mouse muscle by sustained release of plasmiddna using ppeea as a carrier[J]. Gene Therepy, 2002,9(18):1254-1261
    [133] Wan A. C. A., Mao H. Q., Wang S. et al. Fabrication of poly(phosphoester) nerve guides by immersion precipitation and the control of porosity[J]. Biomaterials, 2001,22(10): 1147-1156
    [134] Xu X., Yee W. C., Hwang P. Y.K. et al. Peripheral nerve regeneration with sustained elease of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits[J]. Biomaterials, 2003, 24(13): 2405-2412
    [135] Wang D. A., Williams C. G., Yang F. et al. Bioresponsive phosphoester hydrogels for bone tissue engineering[J]. Tissue Eng., 2005,11: 201
    
    [136] Wan A. C. A., Mao H. Q., Wang S. et al. Poly(phosphoester) ionomers as tissue-engineering scaffolds[J]. J. Biomed. Mater. Res. B, 2004, 70B(1): 91-102
    [137] Watanabe, J.; Eriguchi, T.; Ishihara, K. Stereocomplex formation by enantiomeric poly(lactic acid) graft-type phospholipid polymers for tissue engineering[J]. Biomacromolecules, 2002,3(5): 1109-1114
    [1] Bahari K., Mitomo H., Enjoji T., et al. Radiation crosslinked poly(butylene succinate) foam and its biodegradation[J]. Polym. Degra. Stab., 1998, 62(3): 551-557
    
    [2] Cao A. M., Okamura T., Nakayama K., et al. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s[J]. Polym. Degra. Stab., 2002,78(1): 107-117
    [3] Hao Q. H., Yang J., Li Q. B., et al. Substituent distribution and clouding behavior of hydroxypropyl methyl cellulose analyzed using enzymatic degradation[J].Biomacromolecules, 2005, 6(6): 3474-3480
    [4] Han X. X., Pan J. Z. A Model for Simultaneous crystallisation and biodegradation of biodegradable polymers[J]. Biomaterials, 2008, 30(3): 423-430
    [5] Liu L. F., Yu J. Y., Cheng L. D., et al. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre[J]. Polym. Degra. Stab., 2009, 94(1): 90-94
    [6] Gu S. Y., Zhang K., Ren J., et al. Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends[J]. Carbohydr. Polym., 2008, 74(1): 79-85
    [7] Ditto A. J., Shah P. N., Lopina S. T. et al. Nanospheres formulated from 1-tyrosine polyphosphate as a potential intracellular delivery device[J]. Int. J. Pharm., 2009,368(1-2): 199-206
    [8] Nijenhuis A. J., Colstee E., Grijpma D.W., et al. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties[J].Polymer, 1996, 37(26): 5849-5857
    [9] Duvvuri S., Janoria K. G., Mitra A. K. Development of a novel formulation containing poly(D,L-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir[J]. J. Controlled Release, 2005, 108(2-3): 282-293
    [10]Yang J., Tian W. S., Li Q. B., et al. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: ii.enzymatic biodegradation and in vitro biocompatibility assay[J]. Biomacromolecules,2004, 5(6): 2258-2268
    
    [11] Sen Gupta A., Lopina S. T. Properties of L-tyrosine based polyphosphates pertinent to potential biomaterial applications[J]. Polymer, 2005,46(7): 2133-2140
    
    [12]Zhang S. P., Yang J., Liu X. Y., et al. Synthesis and characterization of poly(butylene succinate-co-butylene malate): a new biodegradable copolyester bearing hydroxyl pendant groups[J].Biomacromolecules,2003,4(2):437-445
    [13]张世平,杨晶,刘小云,等.聚(琥珀酸丁二醇酯-共-富马酸丁二醇酯)的合成及其双羟基化反应研究[J].有机化学,2003,23(9):1008-1012
    [14]Kaluzynski K.,Libiszowski J.,Penczek St.A new class of synthetic polyelectrolytes.acidic polyesters of phosphoric acid(poly(hydroxyalkylene phosphates))[J].Macromolecules,1976,9(2):365-367
    [15]Wang S.,Wan Andrew C.A.,Xu X.Y.,et al.A new nerve guide conduit material composed of a biodegradable poly(phosphoester)[J].Biomaterials,2001,22(10):1157-1169
    [16]Dahiyat B.I.,Richards M.,Leong K.W.Controlled release from poly(phosphoester)matrixes[J].J.Controlled Release,1995,33(1):13-21
    [17]Xu X.Y.,Yu H.,Gao S.J.,et al.Polyphosphoester mierospheres for sustained release of biologically active nerve growth factor[J].Biomaterials,2002,23(17):3765-3772
    [18]Zhao Z.,Wang J.,Mao H.Q.,et al.Polyphosphoesters in drug and gene delivery[J].Adv.Drug Delivery Rev.,2003,55(4):483-499
    [19]Li Q.,Wang J.,Shahani S.,et al.Biodegradable and photocrosslinkable polyphosphoester hydrogel[J].Biomaterials,2006(7),27:1027-1034
    [20]Xiao C.S.,Wang Y.C.,Du J.Z.,et al.Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate[J].Macromolecules,2006,39(20):6825-6831
    [21]Chen D.P.,Wang J.Synthesis and characterization of block copolymer of polyphosphoester and poly(ε-caprolactone)[J].Macromolecules,2006,39(2):473-475
    [22]Du J.Z.,Chen D.P.,Wang Y.C.,et al.Synthesis and micellization of amphiphilic brush-coil block copolymer based on poly(ε-caprolactone) and PEGylated polyphosphoester[J].Biomacromolecules,2006,7(6):1898-1903
    [23]Wang Y.C.,Shen S.Y.,Wu Q.P.,et al.Block copolymerization of ε-caprolactone and 2-methoxyethyl ethylene phosphate initiated by aluminum isopropoxide:synthesis,characterization,and kinetics[J].Macromolecules,2006,39(26):8992-8998
    [24]Chew S.Y.,Wen J.,Yim Evelyn K.F.,et al.Sustained release of proteins from electrospun biodegradable fibers[J].Biomacromolecules,2005,6(4):2017-2024
    [25]范昌烈,李兵,刘振华,卓仁禧.DL-丙交酯与 2-氢-2-氧-1,3,2-二氧磷杂环己烷的开环共聚合研究[J].高等学校化学学报,1995,16(6):971-973
    [26]范昌烈,李兵,刘振华,卓仁禧.乳酸-磷酸酯共聚物为载体的高分子药物的合成及 其控释研究[J].高等学校化学学报,1996,17(11):1788-1791
    [27]罗毅,卓仁禧,范昌烈.生物可降解聚磷酸酯的合成及其释药性能研究[J].高等学校化学学报,1994,15(6):932-934
    [28]刘振华,曾春龙,范昌烈,等.含双疏水侧链聚磷酸酯脂质体膜材的合成[J].高分子学报,1997,2(2):194-198
    [29]刘振华,曾春龙,范昌烈,等.聚磷酸酯型脂质体膜材的合成[J].高分子学报,1995,4(4):483-487
    [30]卓仁禧,王均,毛海泉.聚磷酸酯-聚氨酯药物控释材料的合成[J].高等学校化学学报,1995,18(7):1207-1211
    [31]毛海泉,卓仁禧,范昌烈,等.新型聚磷酸酯药物控释材料的合成[J].高等学校化学学报,1993,14(12):1743-1747
    [32]包瑞,刘承美,邱进俊,许燕.不饱和聚磷酸酯的合成及释药性能[J].应用化学,2006,23(1):79-83
    [33]樊能廷.有机合成事典[M].北京:北京理工大学出版社,1995,2
    [34]Saunders B.C.,Stacey G.J.,Wild F.,et al.Esters containing phosphorus,part v.esters of substituted phosphonic and phosphonous acids.J.Chem.Soc.,1948,1:699-703
    [35]吕久安.亲/疏水性可调控自组装单分子膜的制备与应用.西安:西北大学,2008
    [36]Gong Y.K.,Winnik F.M.Surface amino amplification and graft with phosphorylcholine by reductive amination.Acta Chim.Sinica,2005,63(7):643-647
    [37]Kern W.The evolution of silicon wafer cleaning technology[J].J.Electrochem.Soc.,1990,137:1887-1892
    [38]刘虹,高志贤,王源升.基于蛋白A定向固定的Love波免疫传感技术研究[J].分析化学特刊,2006,34:73-74
    [39]Cejas M.A.,Raymo F.M.Fluorescent diazapyrenium films and their response to dopamine[J].Langmuir,2005,21(13):5795-5802
    [40]Gong Y.K.,Mwale F.,Wertheimer M.R.,et al.Promotion of U937 cell adhesion on polypropylene surfaces beating phosphorylcholine functionalities[J].J.Biomater.Sci.Polym.Ed.,2004,15(11):1423-1434
    [41]吕久安.亲/疏水性可调控自组装单分子膜的制备与应用[D].西安:西北大学,2008
    [42]Afkhami A.,Khalafi L.Spectrophotometric determination of conditional acidity constant as a function of β-cyclodextrin concentration for some organic acids using rank annihilation factor analysis[J].Anal.Chim.Acta,2006,569(1-2):267-274
    [43]Singh M.K.,Pal H.,Koti A.S.R.,et al.Photophysical properties and rotational relaxation dynamics of neutral red bound to β-cyclodextrin[J].J.Phys.Chem.A,2004,108(9):1465-1474
    [44]乔雪梅.β-环糊精接枝改性海藻酸钠及其控释研究[D].西安:西北大学,2007
    [45]李茵娜.烷基磷酸酯分析方法探讨[J].广州化工,2000,28:42-44
    [46]田欣,董文增.烷基磷酸酯中单双酯含量的测定[J].印染助剂,2000,17:29-30
    [47]张世平.具有功能侧基的脂肪族聚酯的合成与表征[D].西安:西北大学,2003
    [1] Oishi T., Hirama M. Highly enantioselective dihydroxylation of trans-disubstituted and monosubstituted olefins[J]. J. Org. Chem., 1989, 54(25): 5834-5835
    [2] Rozen S., Kol M. Olefin epoxidation using elemental fluorine[J]. J. Org. Chem., 1990, 55(17): 5155-5199
    [3] Ba C. Y., Yang J., Hao Q. H., et al. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks[J]. Biomacromolecules, 2003,4(6): 1827-1834
    [4] Nakajima M., Tomioka K., Iitaka Y., et al. highly enantioselective dihydroxylation of olefins by osmium tetroxide with chiral diamines[J]. Tetrahedron, 1993, 49(47):10793-10806
    [5] Ikada Y., Tsuji H. Biodegradable polyesters for medical and ecological applications[J]. Macromol. Rapid Commun., 2000,21(3): 117-132
    [6] Okada, M. Chemical syntheses of biodegradable polymers[J]. Prog. Polym. Sci., 2001, 27:87-133(1)
    [7] Voronov A., Kohut A., Peukert W., et al. Invertible architectures from amphiphilic polyesters[J]. Langmuir, 2006, 22(5): 1946-1948
    [8] Fialho S. L., Behar-Cohen F., Silva-Cunha A. Dexamethasone-loaded poly(ε-caprolactone) intravitreal implants: A Pilot Study[J]. Eur. J. Pharm. Biopharm.,2008, 68(3): 637-646
    [9] Hiremath J. G., Kusum D. V., Kshama D., et al. Biodegradable poly(sebacic acid-co-ricinoleic-ester anhydride) tamoxifen citrate implants: preparation and in vitro characterization[J]. J. Appl. Polym. Sci., 2008, 107(4): 2745-2754
    [10] Yang J., Tian W. S., Li Q. B., et al. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: ii.enzymatic biodegradation and in vitro biocompatibility assay[J]. Biomacromolecules, 2004, 5(6): 2258-2268
    [11]Ba C. Y., Yang J., Hao Q. H., et al. Syntheses and physical characterization of new aliphatic triblock poly(l-lactide-b-butylene succinate-b-l-lactide)s bearing soft and hard biodegradable building blocks[J]. Biomacromolecules, 2003,4(6): 1827-1834
    [12]Nagasaki Y, Okada T, Scholz C. The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer[J]. Macromolecules, 1998,31(5):1473-1479
    [13]Cook A.D.,Rkach J.S.,Gao N.N.,et al.Characterization and development of rgd-peptide-modified poly(lactic acid-co-lysine) as an interactive,resorbable biomaterial[J].J.Biomed.Mater.Res.,1997,35(4):513-523
    [14]Fujimaki T.Processability and properties of aliphatic polyesters,"bionolle",synthesized by polycondensation reaction[J].Polym.Degrad.Stad.,1998,59(2):209-214
    [15]Shirahama H.,Kawaguchi Y.,Aludin M.S.,et al.Synthesis and enzymatic degradation of high molecular weight aliphatic polyesters[J].J.Appl.Polym.Sci.,2001,80(3):340-347
    [16]Ishii M.,Okazaki M.,Shibasaki Y.,et al.Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation[J].Biomacromolecules,2001,2(4):1267-1270
    [17]Yang J.,Hao Q.H.,Liu X.Y.,et al.Novel biodegradable aliphatic poly(butylenesuccinate-co-cyclic carbonate)s with functionalizable carbonate building blocks.1.Chemical synthesis and their structural and physical characterization[J].Biomacromolecules,2004,5(1):209-218
    [18]马佳妮,宫铭,杨珊,等.2-甲基丙烯酰氧基乙基磷酰胆碱单体及其聚合物的合成与应用[J].化学进展,2008,20(7/8):1151-1157
    [19]宫永宽.高分子科学前沿与进展Ⅱ(董建华编)[M].北京:科学出版社,2006,377-382
    [20]Lewis,A.L.Phosphorylcholine-based polymers and their use in the prevention of biofouling[J].Colloids Surf.B Biointerfaces,2000,18(3-4):261-275
    [21]Xu J.M.,Yuan Y.L.,Shan B.,et al.Ozone-induced grafting phosphorylcholine polymer onto silicone film to improve hemocompatibility[J].Colloids Surf.,B Biointerfaces,2003,30(3):215-223
    [22]曹栋,裘爱泳,王兴国.磷脂及磷脂酰胆碱生物学功能[J].粮食与油脂,2002,11:23-24
    [23]Gong M.,Yang S.,Ma J.N.,et al.Tunable cell membrane mimetic surfaces prepared with a novel phospholipid polymer[J].Appl.Surf.Sci.,2008,255(2):555-558
    [24]Ishihara K.,Nomura H.,Mihara T.,et al.Why do phospholipid polymers reduce protein adsorption[J]? J.Biomed.Mater.Res.,1998,39(2):323-330
    [25]宫永宽,Winnik F.M.聚丙烯表面的生物相容性修饰:表面氨基放大还原胺化接枝磷酰胆碱[J].化学学报,2005,63(7):643-647
    [26]Gong Y.K.,Mwale F.,Wertheimer M.R.,et al.Promotion of U937 cell adhesion on polypropylene surfaces bearing phosphorylcholine functionalities[J].J.Biomater.Sci. Polym.Ed.,2004,15(11):1423-1434
    [27]罗娟,王立坚,罗祥林.磷脂高分子的研究进展[J].高分子材料科学与工程,2006,22(2):25-29
    [28]Chung Y.C.,Chiu Y.H.,Wu Y.W.,et al.Self-assembled biomimetic monolayers using phospholipid-containing disulfides[J].Biomaterials,2005,26(15):2313-2324
    [29]Nederberg F.,Bowen T.,Hilborn J.Synthesis,characterization,and properties of phosphoryl choline functionalized poly-caprolactone and charged phospholipid analogues[J].Macromolecules,2004,37(3):954-965
    [30]Nederberg F.,Bowen T.,Nilsson B.,et al.Phosphoryl choline introduces dual activity in biomimetic ionomers[J].J.Am.Chem.Soc.,2004,126(47):15350-15351
    [31]樊能廷.有机合成事典[M].北京:北京理工大学出版社,1995,342
    [32]Zhang S.P.,Yang J.,Liu X.Y.,et al.Synthesis and characterization of poly(butylene succinate-co-butylene malate):a new biodegradable copolyester bearing hydroxyl pendant groups[J].Biomacromolecules,2003,4(2):437-445
    [33]Kadoma Y.,Nakabayashi N.,Masuhara E.,et al.Synthesis and hemolysis of the polymer containing phosphorylcholine[J].Kobunshi Ronbushu,1978,35:423-427
    [34]刘振华,曾春龙,范昌烈,等.含双疏水侧链聚磷酸酯脂质体膜材的合成[J].高分子学报,1997,2(2):194-198
    [35]王玲,杨志谋,陈林,等.含羟基的 2-烷氧基-2-氧代-1,3,2-二氧磷杂环戊烷及其磷酰胆碱系列的合成与表征[J].高等学校化学学报,2003,24(6):1034-1036
    [36]Lucas H.J.,Mitchell F.W.,Scully C.N.Cyclic Phosphites of some aliphatic glycols[J].J.Am.Chem.Soc.,1950,72(12):5491-5497
    [37]Umeda T.,Nakaya T.,Imoto M.Polymeric phospholipid analogues.14.The convenient preparation of a vinyl monomer containing a phospholipid analogue[J].Makromol.Chem.Rapid Commun.,1982,3(7):457-459
    [38]Tan H.,Liu J.,Li J.H.,et al.Synthesis and hemocompatibility of biomembrane mimicing poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups[J].Biomacromolecules,2006,7(9):2591-2599
    [39]Tegoulia V.A.,Rao W.,Kalambur A.T.,et al.Surface properties fibrinogen adsorption and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold[J].Langmuir,2001,17(14):4396-4404
    [40]欧阳健明,白钰,于贵,等.LB膜的XPS光谱及其电致发光[J].光谱学与光谱分析,2004,24(4):499-501
    [41]Boyd K.J.,Marton,D.,Todorov S.S.,et al.Formation of C-N thin films by ion beam deposition[J].J.Vac.Sci.Technol.,1995,A13(4):2110-2122
    [42]雷明凯,袁力江,张仲麟,等.合成硼碳氮体系薄膜的XPS研究[J].无机材料学报,1999,14(4):635-638
    [43]Laroche G.,Mantovani D.,Chevallier P.,et al.Plasma surface graft process for reducing thrombogenicity.WO:02/070032,2002,3-6
    [44]张世平,杨珊,李晶,等.含磷酰胆碱基团的聚合单体的新合成方法[J].西北大学学报(自然科学版),2006,36(6):913-919,923
    [45]Kimura,Y.;Shirotani,K.;Yamane,H.;Kitao,T.Ring-opening polymerization of 3(s)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione:a new route to a poly(.alpha.-hydroxy acid) with pendant carboxyl groups[J].Macromolecules,1988,21(11):3338-3340
    [46]Bizzarri R.,Chiellini F.,Solaro R.,et al.Synthesis and characterization of new malolactonate polymers and copolymers for biomedical applications[J].Macromolecules,2002,35(4):1215-1223
    [1]张世平.具有功能性侧基的脂肪族聚酯的合成与表征[D].西安:西北大学,2003
    [2]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003,250-290
    [3]中国科学技术大学高分子物理研究室编.高聚物的结构与性能[M].北京:科学出版社,1981
    [4]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2007,151,132
    [5]任杰.可降解与吸收材料[M].北京:化学工业出版社,2003,1-2
    [6]钟世云,许乾魏,王公善,聚合物的降解和稳定化[M].北京:化学工业出版社
    [7]黄岳山,赵修华,吴效明,等.氨基酸类聚合物材料及其在药物控释系统中的应用[J].中国医学物理学杂志,2003,20(1):39-42
    [8]陈蓉,陆瑾,戚慧心.控释药物[J].生物学通报,1998,33(6):21-22
    [9]卓仁禧,王均,毛海泉.聚磷酸酯-聚氨酯药物释放材料的合成[J].高等学校化学学报,1997,18(7):1207-1211
    [10]Zhang S.P.,Yang J.,Liu X.Y.,et al.Synthesis and characterization of poly(butylene succinate-co-butylene malate):A new biodegradable copolyester bearing hydroxyl pendant groups[J].Biomacromolecules,2003,4(2):437-445
    [11]Gong Y.K.,Mwale F.,Wertheimer M.R.,et al.Promotion of U937 cell adhesion on polypropylene surfaces bearing phosphorylcholine functionalities[J].J.Biomater.Sci.,Polym.Ed.,2004,15(11):1423-1434
    [12]张世平,宫铭,马佳妮,等.新型脂肪族酯和磷酸酯共聚物的合成与表征[J].有机化学,2009,29(1):66-70
    [13]Wang Y.T.,Zhao F.L.,Li K.A.et al.Molecular spectroscopic study of dna binding with neutral red and application to assay of nucleic acids[J].Anal.Chim.Acta.,1999,396(1):75-81
    [14]卓仁禧,王均,毛海泉.聚磷酸酯-聚氨酯药物释放材料的合成[J].高等学校化学学报.1997,18(7):1207-1211
    [15]范昌烈,李兵,刘振华,卓仁禧.乳酸-磷酸酯共聚物为载体的高分子药物的合成及其控释研究[J].高等学校化学学报.1996,17(11):1788-1791
    [16]乔雪梅.β-环糊精接枝改性海藻酸钠及其控释研究[D].西安:西北大学,2007
    [17]李玉宝.生物医学材料[M].北京:化学工业出版社,2003,213-217
    [18]Yang J.,Tian W.S.,Li Q.B.,et al.Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks:ⅱ.enzymatic biodegradation and in vitro biocompatibility assay[J].Biomacromolecules,2004,5(6):2258-2268
    [19]张世平,杨晶,刘小云,常建华,曹阿民.聚(琥珀酸丁二醇酯-共-富马酸丁二醇酯)的合成及其双羟基化反应研究[J].有机化学,2003,23(9):1008-1012
    [20]Nederberg F.,Bowden T.,Nilsson B.,et al.Phosphoryl choline introduces dual activity in biomimetic ionomers[J].J.Am.Chem.Soc.,2004;126(47):15350-15351
    [21]宫永宽,Winnik F.M.聚丙烯表面的生物相容性修饰:表面氨基放大还原胺化接枝磷酰胆碱[J].化学学报,2005,63(7):643-647
    [22]Yang S.,Zhang S.P.,Winnik F.M.,et al.Group reorientation and migration of amphiphilic polymer bearing phosphorylcholine functionalities on surface of cellular membrane mimicking coating[J].J.Biomed.Mater.Res.A,2008,84A(3):837-841
    [23]Gong M.,Yang S.,Ma J.N.,et al.Tunable cell membrane mimetic surfaces prepared with a novel phospholipid polymer[J].Appl.Surf.Sci.,2008,255(2):555-558
    [24]Mohanty J.,Bhasikuttan A.C.,Nau W.M.,et al.Host-guest complexation of neutral red with macrocyclic host molecules:contrasting pka shifts and binding affinities for cucurbit [7]uril and β-cyclodextrin[J].J.Phys.Chem.,B 2006,110(10):5132-5138
    [25]曹瑛,李一峻,何锡文.中性红作为DNA作用方式光谱探针的研究[J].高等学校化学学报,1999,20(5):709-712
    [26]Zhang G.M.,Shuang S.M.,Dong Z.M.,et al.Investigation on the inclusion behavior of neutral red with β-cyclodextrin,hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin[J].Anal.Chim.Acta,2002,474(2):189-195
    [27]罗毅,卓仁禧,范昌烈.生物可降解聚磷酸酯的合成及其释药性能研究[J].高等学校化学学报,1994,15(6):932-934
    [28]Ramchandani M.,Robinson D.In vitro and in vivo release of ciprofloxacin from plga 50:50 implants[J].J.Controlled Release,1998,54(2):167-175
    [29]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度[J].石化技术与应用.2007,25(1):48-50
    [30]任学贞,李干佐,王弘立,等.荧光探针法测定甜菜碱CMC的研究[J].高等学校化学学报,1995,16(8):1295-1297
    [31]Aguiar J.,Carpena P.,Molivar J.A.,et al.On the determination of the critical micelle concentration by the pyrene 1:3 ratio method[J].J.Colloid Interface Sci.,2003,258(1): 116-122
    [32]张国林,马建标,王亦农.聚 L-丙氨酸-聚乙二醇嵌段共聚物的胶束化行为研究[J].高等学校化学学报,2006,27(4):767-770
    [33]Joon H.K.,Michael M.D.,Robert D.T.Pyrene solubilization capacity in octethylene glycol monododecyl ether(c12 e8) micelles[J].Colloids Surf.A,1999,150(1):55-68
    [1]周长忍.生物材料学[M].北京:中国医药科技出版社,2004,1-3
    [2]韩凤仙.聚乳酸的功能化及生物相容性评价[D].广州:暨南大学,2007
    [3]李玉宝.生物医学材料[M].北京:化学工业出版社,265
    [4]周长忍.生物材料学[M].北京:中国医药科技出版社,2004,144
    [5]Yang J.,Tian W.S.,Li Q.B.,et al.Novel biodegradable aliphatic poly(butylenes succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks:ⅱ.enzymatic biodegradation and in vitro biocompatibility assay[J].Biomacromolecules,2004,5(6):2258-2268
    [6]Inoue Y.,Watanabe J.,Ishihara K.Dynamic motion of phosphorylcholine groups at the surface of poly(2-methacryloyloxyethyl phosphorylcholine-random-2,2,2-trifluoroethyl methacrylate)[J].J.Colloid Interface Sci.,2004,274(2):465-471
    [7]Li Y.,Cui L.,Li Q.B.,et al.M.Novel symmetric amphiphilic dendritic poly(L-lysine)-b-poly(L-lactide)-b-dendritic poly(L-lysine) with high plasmid dna binding affinity as a biodegradable gene carrier[J].Biomacromolecules,2007,8(5):1409-1416
    [8]Kallinteri P.,Higgins S.,Hutcheon G.A.,et al.Novel functionalized biodegradable polymers for nanoparticle drug delivery systems[J].Biomacromolecules,2005,6(4):1885-1894
    [9]Yang Q.,Xu Z.K.,Dai Z.W.,et al.Surface modification of polypropylene microporous membranes with a novel glycopolymer[J].Chem.Mater.,2005,17:3050-3058
    [10]Tanaka M.,Mochizuki A.,Ishii N.,et al.Study of blood compatibility with poly(2-methoxyethyl acrylate).Relationship between water structure and platelet compatibility in poly(2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate)[J].Biomacromolecules,2002,3(1):36-41
    [11]Wang H.J.,Fu J.X.,Wang J.Y.Effect of water vapor on the surface characteristics and cell compatibility of zein films[J].Colloids Surf.,B:Biointerfaces,2009,69(1):109-115
    [12]Chang Y.,Shih Y.J.,Ruaan R.C.,et al.Preparation of poly(vinylidene fluoride)microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol)methacrylate and improvement of blood compatibility[J].J.Membr.Sci.,2008,309(2):165-174
    [13]瞿鹏,孔晓朵.蛋白质测定的研究进展[J].商丘师范学院学报,2002,18(2):107-110
    [14]刘立明,罗光富,李瑞萍,等.邻羟基苯基荧光酮共振瑞利散射法测量蛋白质含量 [J].化学试剂,2008,30(3):191-193
    [15]路苹,于同泉,王淑英,等.蛋白质测定方法评价[J].北京农学院学报,2006,21(4):65-69
    [16]Malmstr(o|¨)m J.,Agheli H.,Kingshott P.,et al.Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces:quantification of protein layer properties using QCM-D and SPR[J].Langmuir,2007,23(19):9760-9768
    [17]Kasemo B.Biological surface science[J].Surface Science,2002,500(1-3):656-677
    [18]Cen L.,Neoh K.G.,Li Y.L.,et al.Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer[J].Biomacromolecules,2004,5(6):2238-2246
    [19]Roach P.,Farrar D.,Perry C.C.Interpretation of protein adsorption:surface-induced conformational changes[J].J.Am.Chem.Soc.,2005,127(22):8168-8173
    [20]董岳峰,谢红,郭羽,等.新型支架材料羟基丁酸与羟基辛酸共聚体的生物相容性[J].中国组织工程研究与临床康复,2008,12(10):1870-1872
    [21]彭维海,绍英,荣莉,等.新型可吸收材料PLLA/PLLA-g-HA的生物相容性[J].吉林大学学报(医学版),2008,34(1):14-18
    [22]刘君,李金钟,王曼,等.聚乙烯表面紫外光接枝MPC及其性能研究[J].润滑与密封,2008,33(4):42-46,50
    [23]杨志明.组织工程[M].北京:化学工业出版社,2002
    [24]吴海燕,陈颖.羧甲基魔芋葡甘露聚糖对L929细胞体外毒性的研究[J].食品科学,2008,29(7):416-419
    [25]陈浩凡.羧甲基壳聚糖的制备与生物特性及其用于防止术后粘连的研究[D].广州:中山大学,2004
    [26]GB/T 16886.5-2003/ISO 10993-5,医疗器械生物学评价第5部分:体外细胞毒性实验[S].北京:中华人民共和国国家质量监督检验检疫总局.2003
    [27]USP XXII 24 版.Bilolgical tests/Biological reactivity tests,In-vivo
    [28]王昕,施嬿平,朱雪涛,等.医用聚酯类材料的细胞毒性试验[J].山东生物医学工程.2003,39-40
    [29]Xua Z.K.,Nie F.Q.,Qu C.,et al.Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes[J].Biomaterials,2005,26(6):589-598
    [30]Kaladhar K.,Sharma C.P.Supported cell mimetic monolayers and their interaction with blood[J].Langmuir,2004,20(25):11115-11122
    [31]计剑,封麟先,沈家骢.白蛋白原位复合的生物医用功能材料的研究(Ⅱ)-白蛋白的选择性吸附和血液相容性研究[J].高等学校化学学报,2002,23(12):2369-2374
    [32]Huang Y.,Lu X.Y.,Ma J.W.,et al.In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces[J].Appl.Surf.Sci.,2008,255(2),257-259
    [33]Smith P.K.,Krohn R.I.,Hermanson G.T.et al.Measurement of protein using bicinchoninic acid[J].Anal.Biochem.,1985,150(19):76-85
    [34]Bellavite P.,Andrioli G.,Guzzo P.,et al.a colorimetric method for the measurement of platelet adhesion in microtiter plates[J].Anal.Biochem.,1994,216(2):444-450
    [35]Huang X.J.,Xu Z.K.,Wan L.S.,et al Surface modification of polyacrylonitrile-base membranes by chemical reactions to generate phospholipid moieties[J].Langmuir,2005,21(7):2941-2947
    [36]Tangpasuthadol V.,Ponchaisirikul N.,Hoven V.P.Surface modification of chitosan films.effects of hydrophobicity on protein adsorption[J].Carbohydr.Res.,2003,338(9):937-942
    [37]Murphy E.F.,Lu J.R.,Lewis A.L.,et al Characterization of protein adsorption at the phosphorylcholine incorporated polymer-water interface[J].Macromolecules,2000,33(12):4545-4554
    [38]HolmLin R.E.,Chen X.X.,Chapman R.G.et al.Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer[J].Langmuir,2001,17(9):2841-2850
    [39]Ostuni E.,Chapman R.G.,HolmLin R.E.,et al.A Survey of structure-property relationships of surfaces that resist the adsorption of protein[J].Langmuir,2001,17(18):5605-5620
    [40]Sethuraman A.,Han M.Kane R.S.,et al.Effect of surface wettability on the adhesion of proteins[J].Langmuir,2004,20(18):7779-7788
    [41]Goda T.,Konno T.,Takai M.,et al.Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane ssurface using photo-induced polymerization[J].Biomaterials,2006,27(30):5151-5160